MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tchtopn Structured version   Unicode version

Theorem tchtopn 21537
Description: The topology of a pre-Hilbert space augmented with norm. (Contributed by Mario Carneiro, 8-Oct-2015.)
Hypotheses
Ref Expression
tchval.n  |-  G  =  (toCHil `  W )
tchtopn.d  |-  D  =  ( dist `  G
)
tchtopn.j  |-  J  =  ( TopOpen `  G )
Assertion
Ref Expression
tchtopn  |-  ( W  e.  V  ->  J  =  ( MetOpen `  D
) )

Proof of Theorem tchtopn
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 eqid 2467 . . . 4  |-  ( Base `  W )  =  (
Base `  W )
21tchex 21528 . . 3  |-  ( x  e.  ( Base `  W
)  |->  ( sqr `  (
x ( .i `  W ) x ) ) )  e.  _V
3 tchval.n . . . . 5  |-  G  =  (toCHil `  W )
4 eqid 2467 . . . . 5  |-  ( .i
`  W )  =  ( .i `  W
)
53, 1, 4tchval 21529 . . . 4  |-  G  =  ( W toNrmGrp  ( x  e.  ( Base `  W
)  |->  ( sqr `  (
x ( .i `  W ) x ) ) ) )
6 tchtopn.d . . . 4  |-  D  =  ( dist `  G
)
7 eqid 2467 . . . 4  |-  ( MetOpen `  D )  =  (
MetOpen `  D )
85, 6, 7tngtopn 21032 . . 3  |-  ( ( W  e.  V  /\  ( x  e.  ( Base `  W )  |->  ( sqr `  ( x ( .i `  W
) x ) ) )  e.  _V )  ->  ( MetOpen `  D )  =  ( TopOpen `  G
) )
92, 8mpan2 671 . 2  |-  ( W  e.  V  ->  ( MetOpen
`  D )  =  ( TopOpen `  G )
)
10 tchtopn.j . 2  |-  J  =  ( TopOpen `  G )
119, 10syl6reqr 2527 1  |-  ( W  e.  V  ->  J  =  ( MetOpen `  D
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1379    e. wcel 1767   _Vcvv 3118    |-> cmpt 4511   ` cfv 5594  (class class class)co 6295   sqrcsqrt 13046   Basecbs 14507   .icip 14577   distcds 14581   TopOpenctopn 14694   MetOpencmopn 18278  toCHilctch 21482
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4564  ax-sep 4574  ax-nul 4582  ax-pow 4631  ax-pr 4692  ax-un 6587  ax-cnex 9560  ax-resscn 9561  ax-1cn 9562  ax-icn 9563  ax-addcl 9564  ax-addrcl 9565  ax-mulcl 9566  ax-mulrcl 9567  ax-mulcom 9568  ax-addass 9569  ax-mulass 9570  ax-distr 9571  ax-i2m1 9572  ax-1ne0 9573  ax-1rid 9574  ax-rnegex 9575  ax-rrecex 9576  ax-cnre 9577  ax-pre-lttri 9578  ax-pre-lttrn 9579  ax-pre-ltadd 9580  ax-pre-mulgt0 9581  ax-pre-sup 9582
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2822  df-rex 2823  df-reu 2824  df-rmo 2825  df-rab 2826  df-v 3120  df-sbc 3337  df-csb 3441  df-dif 3484  df-un 3486  df-in 3488  df-ss 3495  df-pss 3497  df-nul 3791  df-if 3946  df-pw 4018  df-sn 4034  df-pr 4036  df-tp 4038  df-op 4040  df-uni 4252  df-iun 4333  df-br 4454  df-opab 4512  df-mpt 4513  df-tr 4547  df-eprel 4797  df-id 4801  df-po 4806  df-so 4807  df-fr 4844  df-we 4846  df-ord 4887  df-on 4888  df-lim 4889  df-suc 4890  df-xp 5011  df-rel 5012  df-cnv 5013  df-co 5014  df-dm 5015  df-rn 5016  df-res 5017  df-ima 5018  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-riota 6256  df-ov 6298  df-oprab 6299  df-mpt2 6300  df-om 6696  df-1st 6795  df-2nd 6796  df-recs 7054  df-rdg 7088  df-er 7323  df-map 7434  df-en 7529  df-dom 7530  df-sdom 7531  df-sup 7913  df-pnf 9642  df-mnf 9643  df-xr 9644  df-ltxr 9645  df-le 9646  df-sub 9819  df-neg 9820  df-div 10219  df-nn 10549  df-2 10606  df-3 10607  df-4 10608  df-5 10609  df-6 10610  df-7 10611  df-8 10612  df-9 10613  df-10 10614  df-n0 10808  df-z 10877  df-dec 10989  df-uz 11095  df-q 11195  df-rp 11233  df-xneg 11330  df-xadd 11331  df-xmul 11332  df-seq 12088  df-exp 12147  df-cj 12912  df-re 12913  df-im 12914  df-sqrt 13048  df-abs 13049  df-ndx 14510  df-slot 14511  df-base 14512  df-sets 14513  df-tset 14591  df-ds 14594  df-rest 14695  df-topn 14696  df-topgen 14716  df-sbg 15931  df-psmet 18281  df-xmet 18282  df-bl 18284  df-mopn 18285  df-top 19268  df-bases 19270  df-topon 19271  df-tng 20973  df-tch 21484
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator