MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tchcphlem2 Structured version   Unicode version

Theorem tchcphlem2 21971
Description: Lemma for tchcph 21972: homogeneity. (Contributed by Mario Carneiro, 8-Oct-2015.)
Hypotheses
Ref Expression
tchval.n  |-  G  =  (toCHil `  W )
tchcph.v  |-  V  =  ( Base `  W
)
tchcph.f  |-  F  =  (Scalar `  W )
tchcph.1  |-  ( ph  ->  W  e.  PreHil )
tchcph.2  |-  ( ph  ->  F  =  (flds  K ) )
tchcph.h  |-  .,  =  ( .i `  W )
tchcph.3  |-  ( (
ph  /\  ( x  e.  K  /\  x  e.  RR  /\  0  <_  x ) )  -> 
( sqr `  x
)  e.  K )
tchcph.4  |-  ( (
ph  /\  x  e.  V )  ->  0  <_  ( x  .,  x
) )
tchcph.k  |-  K  =  ( Base `  F
)
tchcph.s  |-  .x.  =  ( .s `  W )
tchcphlem2.3  |-  ( ph  ->  X  e.  K )
tchcphlem2.4  |-  ( ph  ->  Y  e.  V )
Assertion
Ref Expression
tchcphlem2  |-  ( ph  ->  ( sqr `  (
( X  .x.  Y
)  .,  ( X  .x.  Y ) ) )  =  ( ( abs `  X )  x.  ( sqr `  ( Y  .,  Y ) ) ) )
Distinct variable groups:    x,  .,    x, F   
x, G    x, V    ph, x    x, W    x,  .x.    x, X    x, Y
Allowed substitution hint:    K( x)

Proof of Theorem tchcphlem2
StepHypRef Expression
1 tchval.n . . . . . . 7  |-  G  =  (toCHil `  W )
2 tchcph.v . . . . . . 7  |-  V  =  ( Base `  W
)
3 tchcph.f . . . . . . 7  |-  F  =  (Scalar `  W )
4 tchcph.1 . . . . . . 7  |-  ( ph  ->  W  e.  PreHil )
5 tchcph.2 . . . . . . 7  |-  ( ph  ->  F  =  (flds  K ) )
61, 2, 3, 4, 5tchclm 21967 . . . . . 6  |-  ( ph  ->  W  e. CMod )
7 tchcph.k . . . . . . 7  |-  K  =  ( Base `  F
)
83, 7clmsscn 21871 . . . . . 6  |-  ( W  e. CMod  ->  K  C_  CC )
96, 8syl 17 . . . . 5  |-  ( ph  ->  K  C_  CC )
10 tchcphlem2.3 . . . . 5  |-  ( ph  ->  X  e.  K )
119, 10sseldd 3443 . . . 4  |-  ( ph  ->  X  e.  CC )
1211cjmulrcld 13188 . . 3  |-  ( ph  ->  ( X  x.  (
* `  X )
)  e.  RR )
1311cjmulge0d 13190 . . 3  |-  ( ph  ->  0  <_  ( X  x.  ( * `  X
) ) )
14 tchcphlem2.4 . . . 4  |-  ( ph  ->  Y  e.  V )
15 tchcph.h . . . . 5  |-  .,  =  ( .i `  W )
161, 2, 3, 4, 5, 15tchcphlem3 21968 . . . 4  |-  ( (
ph  /\  Y  e.  V )  ->  ( Y  .,  Y )  e.  RR )
1714, 16mpdan 666 . . 3  |-  ( ph  ->  ( Y  .,  Y
)  e.  RR )
18 tchcph.4 . . . . 5  |-  ( (
ph  /\  x  e.  V )  ->  0  <_  ( x  .,  x
) )
1918ralrimiva 2818 . . . 4  |-  ( ph  ->  A. x  e.  V 
0  <_  ( x  .,  x ) )
20 oveq12 6287 . . . . . . 7  |-  ( ( x  =  Y  /\  x  =  Y )  ->  ( x  .,  x
)  =  ( Y 
.,  Y ) )
2120anidms 643 . . . . . 6  |-  ( x  =  Y  ->  (
x  .,  x )  =  ( Y  .,  Y ) )
2221breq2d 4407 . . . . 5  |-  ( x  =  Y  ->  (
0  <_  ( x  .,  x )  <->  0  <_  ( Y  .,  Y ) ) )
2322rspcv 3156 . . . 4  |-  ( Y  e.  V  ->  ( A. x  e.  V 
0  <_  ( x  .,  x )  ->  0  <_  ( Y  .,  Y
) ) )
2414, 19, 23sylc 59 . . 3  |-  ( ph  ->  0  <_  ( Y  .,  Y ) )
2512, 13, 17, 24sqrtmuld 13405 . 2  |-  ( ph  ->  ( sqr `  (
( X  x.  (
* `  X )
)  x.  ( Y 
.,  Y ) ) )  =  ( ( sqr `  ( X  x.  ( * `  X ) ) )  x.  ( sqr `  ( Y  .,  Y ) ) ) )
26 phllmod 18963 . . . . . . 7  |-  ( W  e.  PreHil  ->  W  e.  LMod )
274, 26syl 17 . . . . . 6  |-  ( ph  ->  W  e.  LMod )
28 tchcph.s . . . . . . 7  |-  .x.  =  ( .s `  W )
292, 3, 28, 7lmodvscl 17849 . . . . . 6  |-  ( ( W  e.  LMod  /\  X  e.  K  /\  Y  e.  V )  ->  ( X  .x.  Y )  e.  V )
3027, 10, 14, 29syl3anc 1230 . . . . 5  |-  ( ph  ->  ( X  .x.  Y
)  e.  V )
31 eqid 2402 . . . . . 6  |-  ( .r
`  F )  =  ( .r `  F
)
32 eqid 2402 . . . . . 6  |-  ( *r `  F )  =  ( *r `  F )
333, 15, 2, 7, 28, 31, 32ipassr 18979 . . . . 5  |-  ( ( W  e.  PreHil  /\  (
( X  .x.  Y
)  e.  V  /\  Y  e.  V  /\  X  e.  K )
)  ->  ( ( X  .x.  Y )  .,  ( X  .x.  Y ) )  =  ( ( ( X  .x.  Y
)  .,  Y )
( .r `  F
) ( ( *r `  F ) `
 X ) ) )
344, 30, 14, 10, 33syl13anc 1232 . . . 4  |-  ( ph  ->  ( ( X  .x.  Y )  .,  ( X  .x.  Y ) )  =  ( ( ( X  .x.  Y ) 
.,  Y ) ( .r `  F ) ( ( *r `  F ) `  X ) ) )
353clmmul 21867 . . . . . 6  |-  ( W  e. CMod  ->  x.  =  ( .r `  F ) )
366, 35syl 17 . . . . 5  |-  ( ph  ->  x.  =  ( .r
`  F ) )
3736oveqd 6295 . . . . . 6  |-  ( ph  ->  ( X  x.  ( Y  .,  Y ) )  =  ( X ( .r `  F ) ( Y  .,  Y
) ) )
383, 15, 2, 7, 28, 31ipass 18978 . . . . . . 7  |-  ( ( W  e.  PreHil  /\  ( X  e.  K  /\  Y  e.  V  /\  Y  e.  V )
)  ->  ( ( X  .x.  Y )  .,  Y )  =  ( X ( .r `  F ) ( Y 
.,  Y ) ) )
394, 10, 14, 14, 38syl13anc 1232 . . . . . 6  |-  ( ph  ->  ( ( X  .x.  Y )  .,  Y
)  =  ( X ( .r `  F
) ( Y  .,  Y ) ) )
4037, 39eqtr4d 2446 . . . . 5  |-  ( ph  ->  ( X  x.  ( Y  .,  Y ) )  =  ( ( X 
.x.  Y )  .,  Y ) )
413clmcj 21868 . . . . . . 7  |-  ( W  e. CMod  ->  *  =  ( *r `  F
) )
426, 41syl 17 . . . . . 6  |-  ( ph  ->  *  =  ( *r `  F ) )
4342fveq1d 5851 . . . . 5  |-  ( ph  ->  ( * `  X
)  =  ( ( *r `  F
) `  X )
)
4436, 40, 43oveq123d 6299 . . . 4  |-  ( ph  ->  ( ( X  x.  ( Y  .,  Y ) )  x.  ( * `
 X ) )  =  ( ( ( X  .x.  Y ) 
.,  Y ) ( .r `  F ) ( ( *r `  F ) `  X ) ) )
4517recnd 9652 . . . . 5  |-  ( ph  ->  ( Y  .,  Y
)  e.  CC )
4611cjcld 13178 . . . . 5  |-  ( ph  ->  ( * `  X
)  e.  CC )
4711, 45, 46mul32d 9824 . . . 4  |-  ( ph  ->  ( ( X  x.  ( Y  .,  Y ) )  x.  ( * `
 X ) )  =  ( ( X  x.  ( * `  X ) )  x.  ( Y  .,  Y
) ) )
4834, 44, 473eqtr2d 2449 . . 3  |-  ( ph  ->  ( ( X  .x.  Y )  .,  ( X  .x.  Y ) )  =  ( ( X  x.  ( * `  X ) )  x.  ( Y  .,  Y
) ) )
4948fveq2d 5853 . 2  |-  ( ph  ->  ( sqr `  (
( X  .x.  Y
)  .,  ( X  .x.  Y ) ) )  =  ( sqr `  (
( X  x.  (
* `  X )
)  x.  ( Y 
.,  Y ) ) ) )
50 absval 13220 . . . 4  |-  ( X  e.  CC  ->  ( abs `  X )  =  ( sqr `  ( X  x.  ( * `  X ) ) ) )
5111, 50syl 17 . . 3  |-  ( ph  ->  ( abs `  X
)  =  ( sqr `  ( X  x.  (
* `  X )
) ) )
5251oveq1d 6293 . 2  |-  ( ph  ->  ( ( abs `  X
)  x.  ( sqr `  ( Y  .,  Y
) ) )  =  ( ( sqr `  ( X  x.  ( * `  X ) ) )  x.  ( sqr `  ( Y  .,  Y ) ) ) )
5325, 49, 523eqtr4d 2453 1  |-  ( ph  ->  ( sqr `  (
( X  .x.  Y
)  .,  ( X  .x.  Y ) ) )  =  ( ( abs `  X )  x.  ( sqr `  ( Y  .,  Y ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 367    /\ w3a 974    = wceq 1405    e. wcel 1842   A.wral 2754    C_ wss 3414   class class class wbr 4395   ` cfv 5569  (class class class)co 6278   CCcc 9520   RRcr 9521   0cc0 9522    x. cmul 9527    <_ cle 9659   *ccj 13078   sqrcsqrt 13215   abscabs 13216   Basecbs 14841   ↾s cress 14842   .rcmulr 14910   *rcstv 14911  Scalarcsca 14912   .scvsca 14913   .icip 14914   LModclmod 17832  ℂfldccnfld 18740   PreHilcphl 18957  CModcclm 21854  toCHilctch 21906
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-8 1844  ax-9 1846  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026  ax-ext 2380  ax-rep 4507  ax-sep 4517  ax-nul 4525  ax-pow 4572  ax-pr 4630  ax-un 6574  ax-cnex 9578  ax-resscn 9579  ax-1cn 9580  ax-icn 9581  ax-addcl 9582  ax-addrcl 9583  ax-mulcl 9584  ax-mulrcl 9585  ax-mulcom 9586  ax-addass 9587  ax-mulass 9588  ax-distr 9589  ax-i2m1 9590  ax-1ne0 9591  ax-1rid 9592  ax-rnegex 9593  ax-rrecex 9594  ax-cnre 9595  ax-pre-lttri 9596  ax-pre-lttrn 9597  ax-pre-ltadd 9598  ax-pre-mulgt0 9599  ax-pre-sup 9600  ax-addf 9601  ax-mulf 9602
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 975  df-3an 976  df-tru 1408  df-ex 1634  df-nf 1638  df-sb 1764  df-eu 2242  df-mo 2243  df-clab 2388  df-cleq 2394  df-clel 2397  df-nfc 2552  df-ne 2600  df-nel 2601  df-ral 2759  df-rex 2760  df-reu 2761  df-rmo 2762  df-rab 2763  df-v 3061  df-sbc 3278  df-csb 3374  df-dif 3417  df-un 3419  df-in 3421  df-ss 3428  df-pss 3430  df-nul 3739  df-if 3886  df-pw 3957  df-sn 3973  df-pr 3975  df-tp 3977  df-op 3979  df-uni 4192  df-int 4228  df-iun 4273  df-br 4396  df-opab 4454  df-mpt 4455  df-tr 4490  df-eprel 4734  df-id 4738  df-po 4744  df-so 4745  df-fr 4782  df-we 4784  df-xp 4829  df-rel 4830  df-cnv 4831  df-co 4832  df-dm 4833  df-rn 4834  df-res 4835  df-ima 4836  df-pred 5367  df-ord 5413  df-on 5414  df-lim 5415  df-suc 5416  df-iota 5533  df-fun 5571  df-fn 5572  df-f 5573  df-f1 5574  df-fo 5575  df-f1o 5576  df-fv 5577  df-riota 6240  df-ov 6281  df-oprab 6282  df-mpt2 6283  df-om 6684  df-1st 6784  df-2nd 6785  df-tpos 6958  df-wrecs 7013  df-recs 7075  df-rdg 7113  df-1o 7167  df-oadd 7171  df-er 7348  df-map 7459  df-en 7555  df-dom 7556  df-sdom 7557  df-fin 7558  df-sup 7935  df-pnf 9660  df-mnf 9661  df-xr 9662  df-ltxr 9663  df-le 9664  df-sub 9843  df-neg 9844  df-div 10248  df-nn 10577  df-2 10635  df-3 10636  df-4 10637  df-5 10638  df-6 10639  df-7 10640  df-8 10641  df-9 10642  df-10 10643  df-n0 10837  df-z 10906  df-dec 11020  df-uz 11128  df-rp 11266  df-fz 11727  df-seq 12152  df-exp 12211  df-cj 13081  df-re 13082  df-im 13083  df-sqrt 13217  df-abs 13218  df-struct 14843  df-ndx 14844  df-slot 14845  df-base 14846  df-sets 14847  df-ress 14848  df-plusg 14922  df-mulr 14923  df-starv 14924  df-sca 14925  df-vsca 14926  df-ip 14927  df-tset 14928  df-ple 14929  df-ds 14931  df-unif 14932  df-0g 15056  df-mgm 16196  df-sgrp 16235  df-mnd 16245  df-mhm 16290  df-grp 16381  df-subg 16522  df-ghm 16589  df-cmn 17124  df-mgp 17462  df-ur 17474  df-ring 17520  df-cring 17521  df-oppr 17592  df-dvdsr 17610  df-unit 17611  df-rnghom 17684  df-drng 17718  df-subrg 17747  df-staf 17814  df-srng 17815  df-lmod 17834  df-lmhm 17988  df-lvec 18069  df-sra 18138  df-rgmod 18139  df-cnfld 18741  df-phl 18959  df-clm 21855
This theorem is referenced by:  tchcph  21972
  Copyright terms: Public domain W3C validator