MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tchcph Structured version   Unicode version

Theorem tchcph 21443
Description: The standard definition of a norm turns any pre-Hilbert space over a quadratically closed subfield of  CC into a complex pre-Hilbert space (which allows access to a norm, metric, and topology). (Contributed by Mario Carneiro, 11-Oct-2015.)
Hypotheses
Ref Expression
tchval.n  |-  G  =  (toCHil `  W )
tchcph.v  |-  V  =  ( Base `  W
)
tchcph.f  |-  F  =  (Scalar `  W )
tchcph.1  |-  ( ph  ->  W  e.  PreHil )
tchcph.2  |-  ( ph  ->  F  =  (flds  K ) )
tchcph.h  |-  .,  =  ( .i `  W )
tchcph.3  |-  ( (
ph  /\  ( x  e.  K  /\  x  e.  RR  /\  0  <_  x ) )  -> 
( sqr `  x
)  e.  K )
tchcph.4  |-  ( (
ph  /\  x  e.  V )  ->  0  <_  ( x  .,  x
) )
Assertion
Ref Expression
tchcph  |-  ( ph  ->  G  e.  CPreHil )
Distinct variable groups:    x,  .,    x, F   
x, G    x, V    ph, x    x, W
Allowed substitution hint:    K( x)

Proof of Theorem tchcph
Dummy variables  y 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tchcph.1 . . . 4  |-  ( ph  ->  W  e.  PreHil )
2 tchval.n . . . . 5  |-  G  =  (toCHil `  W )
32tchphl 21433 . . . 4  |-  ( W  e.  PreHil 
<->  G  e.  PreHil )
41, 3sylib 196 . . 3  |-  ( ph  ->  G  e.  PreHil )
5 tchcph.v . . . . . . 7  |-  V  =  ( Base `  W
)
6 tchcph.h . . . . . . 7  |-  .,  =  ( .i `  W )
72, 5, 6tchval 21424 . . . . . 6  |-  G  =  ( W toNrmGrp  ( x  e.  V  |->  ( sqr `  ( x  .,  x
) ) ) )
8 eqid 2467 . . . . . 6  |-  ( -g `  W )  =  (
-g `  W )
9 eqid 2467 . . . . . 6  |-  ( 0g
`  W )  =  ( 0g `  W
)
10 phllmod 18460 . . . . . . . 8  |-  ( W  e.  PreHil  ->  W  e.  LMod )
111, 10syl 16 . . . . . . 7  |-  ( ph  ->  W  e.  LMod )
12 lmodgrp 17319 . . . . . . 7  |-  ( W  e.  LMod  ->  W  e. 
Grp )
1311, 12syl 16 . . . . . 6  |-  ( ph  ->  W  e.  Grp )
14 tchcph.f . . . . . . . . 9  |-  F  =  (Scalar `  W )
15 tchcph.2 . . . . . . . . 9  |-  ( ph  ->  F  =  (flds  K ) )
162, 5, 14, 1, 15, 6tchcphlem3 21439 . . . . . . . 8  |-  ( (
ph  /\  x  e.  V )  ->  (
x  .,  x )  e.  RR )
17 tchcph.4 . . . . . . . 8  |-  ( (
ph  /\  x  e.  V )  ->  0  <_  ( x  .,  x
) )
1816, 17resqrtcld 13212 . . . . . . 7  |-  ( (
ph  /\  x  e.  V )  ->  ( sqr `  ( x  .,  x ) )  e.  RR )
19 eqid 2467 . . . . . . 7  |-  ( x  e.  V  |->  ( sqr `  ( x  .,  x
) ) )  =  ( x  e.  V  |->  ( sqr `  (
x  .,  x )
) )
2018, 19fmptd 6045 . . . . . 6  |-  ( ph  ->  ( x  e.  V  |->  ( sqr `  (
x  .,  x )
) ) : V --> RR )
21 oveq12 6293 . . . . . . . . . . . 12  |-  ( ( x  =  y  /\  x  =  y )  ->  ( x  .,  x
)  =  ( y 
.,  y ) )
2221anidms 645 . . . . . . . . . . 11  |-  ( x  =  y  ->  (
x  .,  x )  =  ( y  .,  y ) )
2322fveq2d 5870 . . . . . . . . . 10  |-  ( x  =  y  ->  ( sqr `  ( x  .,  x ) )  =  ( sqr `  (
y  .,  y )
) )
24 fvex 5876 . . . . . . . . . 10  |-  ( sqr `  ( x  .,  x
) )  e.  _V
2523, 19, 24fvmpt3i 5954 . . . . . . . . 9  |-  ( y  e.  V  ->  (
( x  e.  V  |->  ( sqr `  (
x  .,  x )
) ) `  y
)  =  ( sqr `  ( y  .,  y
) ) )
2625adantl 466 . . . . . . . 8  |-  ( (
ph  /\  y  e.  V )  ->  (
( x  e.  V  |->  ( sqr `  (
x  .,  x )
) ) `  y
)  =  ( sqr `  ( y  .,  y
) ) )
2726eqeq1d 2469 . . . . . . 7  |-  ( (
ph  /\  y  e.  V )  ->  (
( ( x  e.  V  |->  ( sqr `  (
x  .,  x )
) ) `  y
)  =  0  <->  ( sqr `  ( y  .,  y ) )  =  0 ) )
28 eqid 2467 . . . . . . . . . . . . . . 15  |-  ( Base `  F )  =  (
Base `  F )
29 phllvec 18459 . . . . . . . . . . . . . . . . 17  |-  ( W  e.  PreHil  ->  W  e.  LVec )
301, 29syl 16 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  W  e.  LVec )
3114lvecdrng 17551 . . . . . . . . . . . . . . . 16  |-  ( W  e.  LVec  ->  F  e.  DivRing )
3230, 31syl 16 . . . . . . . . . . . . . . 15  |-  ( ph  ->  F  e.  DivRing )
3328, 15, 32cphsubrglem 21387 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( F  =  (flds  ( Base `  F ) )  /\  ( Base `  F )  =  ( K  i^i  CC )  /\  ( Base `  F )  e.  (SubRing ` fld ) ) )
3433simp2d 1009 . . . . . . . . . . . . 13  |-  ( ph  ->  ( Base `  F
)  =  ( K  i^i  CC ) )
35 inss2 3719 . . . . . . . . . . . . 13  |-  ( K  i^i  CC )  C_  CC
3634, 35syl6eqss 3554 . . . . . . . . . . . 12  |-  ( ph  ->  ( Base `  F
)  C_  CC )
3736adantr 465 . . . . . . . . . . 11  |-  ( (
ph  /\  y  e.  V )  ->  ( Base `  F )  C_  CC )
3814, 6, 5, 28ipcl 18463 . . . . . . . . . . . . 13  |-  ( ( W  e.  PreHil  /\  y  e.  V  /\  y  e.  V )  ->  (
y  .,  y )  e.  ( Base `  F
) )
39383anidm23 1287 . . . . . . . . . . . 12  |-  ( ( W  e.  PreHil  /\  y  e.  V )  ->  (
y  .,  y )  e.  ( Base `  F
) )
401, 39sylan 471 . . . . . . . . . . 11  |-  ( (
ph  /\  y  e.  V )  ->  (
y  .,  y )  e.  ( Base `  F
) )
4137, 40sseldd 3505 . . . . . . . . . 10  |-  ( (
ph  /\  y  e.  V )  ->  (
y  .,  y )  e.  CC )
4241sqrtcld 13231 . . . . . . . . 9  |-  ( (
ph  /\  y  e.  V )  ->  ( sqr `  ( y  .,  y ) )  e.  CC )
43 sqeq0 12200 . . . . . . . . 9  |-  ( ( sqr `  ( y 
.,  y ) )  e.  CC  ->  (
( ( sqr `  (
y  .,  y )
) ^ 2 )  =  0  <->  ( sqr `  ( y  .,  y
) )  =  0 ) )
4442, 43syl 16 . . . . . . . 8  |-  ( (
ph  /\  y  e.  V )  ->  (
( ( sqr `  (
y  .,  y )
) ^ 2 )  =  0  <->  ( sqr `  ( y  .,  y
) )  =  0 ) )
4541sqsqrtd 13233 . . . . . . . . 9  |-  ( (
ph  /\  y  e.  V )  ->  (
( sqr `  (
y  .,  y )
) ^ 2 )  =  ( y  .,  y ) )
462, 5, 14, 1, 15tchclm 21438 . . . . . . . . . . 11  |-  ( ph  ->  W  e. CMod )
4714clm0 21335 . . . . . . . . . . 11  |-  ( W  e. CMod  ->  0  =  ( 0g `  F ) )
4846, 47syl 16 . . . . . . . . . 10  |-  ( ph  ->  0  =  ( 0g
`  F ) )
4948adantr 465 . . . . . . . . 9  |-  ( (
ph  /\  y  e.  V )  ->  0  =  ( 0g `  F ) )
5045, 49eqeq12d 2489 . . . . . . . 8  |-  ( (
ph  /\  y  e.  V )  ->  (
( ( sqr `  (
y  .,  y )
) ^ 2 )  =  0  <->  ( y  .,  y )  =  ( 0g `  F ) ) )
5144, 50bitr3d 255 . . . . . . 7  |-  ( (
ph  /\  y  e.  V )  ->  (
( sqr `  (
y  .,  y )
)  =  0  <->  (
y  .,  y )  =  ( 0g `  F ) ) )
52 eqid 2467 . . . . . . . . 9  |-  ( 0g
`  F )  =  ( 0g `  F
)
5314, 6, 5, 52, 9ipeq0 18468 . . . . . . . 8  |-  ( ( W  e.  PreHil  /\  y  e.  V )  ->  (
( y  .,  y
)  =  ( 0g
`  F )  <->  y  =  ( 0g `  W ) ) )
541, 53sylan 471 . . . . . . 7  |-  ( (
ph  /\  y  e.  V )  ->  (
( y  .,  y
)  =  ( 0g
`  F )  <->  y  =  ( 0g `  W ) ) )
5527, 51, 543bitrd 279 . . . . . 6  |-  ( (
ph  /\  y  e.  V )  ->  (
( ( x  e.  V  |->  ( sqr `  (
x  .,  x )
) ) `  y
)  =  0  <->  y  =  ( 0g `  W ) ) )
561adantr 465 . . . . . . . 8  |-  ( (
ph  /\  ( y  e.  V  /\  z  e.  V ) )  ->  W  e.  PreHil )
5733simp1d 1008 . . . . . . . . 9  |-  ( ph  ->  F  =  (flds  ( Base `  F
) ) )
5857adantr 465 . . . . . . . 8  |-  ( (
ph  /\  ( y  e.  V  /\  z  e.  V ) )  ->  F  =  (flds  ( Base `  F
) ) )
59 3anass 977 . . . . . . . . . . 11  |-  ( ( x  e.  ( Base `  F )  /\  x  e.  RR  /\  0  <_  x )  <->  ( x  e.  ( Base `  F
)  /\  ( x  e.  RR  /\  0  <_  x ) ) )
60 tchcph.3 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( x  e.  K  /\  x  e.  RR  /\  0  <_  x ) )  -> 
( sqr `  x
)  e.  K )
61 simpr2 1003 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( x  e.  K  /\  x  e.  RR  /\  0  <_  x ) )  ->  x  e.  RR )
6261recnd 9622 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( x  e.  K  /\  x  e.  RR  /\  0  <_  x ) )  ->  x  e.  CC )
6362sqrtcld 13231 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( x  e.  K  /\  x  e.  RR  /\  0  <_  x ) )  -> 
( sqr `  x
)  e.  CC )
6460, 63jca 532 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( x  e.  K  /\  x  e.  RR  /\  0  <_  x ) )  -> 
( ( sqr `  x
)  e.  K  /\  ( sqr `  x )  e.  CC ) )
6564ex 434 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( x  e.  K  /\  x  e.  RR  /\  0  <_  x )  ->  (
( sqr `  x
)  e.  K  /\  ( sqr `  x )  e.  CC ) ) )
6634eleq2d 2537 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( x  e.  (
Base `  F )  <->  x  e.  ( K  i^i  CC ) ) )
67 recn 9582 . . . . . . . . . . . . . . . . . 18  |-  ( x  e.  RR  ->  x  e.  CC )
68 elin 3687 . . . . . . . . . . . . . . . . . . 19  |-  ( x  e.  ( K  i^i  CC )  <->  ( x  e.  K  /\  x  e.  CC ) )
6968rbaib 904 . . . . . . . . . . . . . . . . . 18  |-  ( x  e.  CC  ->  (
x  e.  ( K  i^i  CC )  <->  x  e.  K ) )
7067, 69syl 16 . . . . . . . . . . . . . . . . 17  |-  ( x  e.  RR  ->  (
x  e.  ( K  i^i  CC )  <->  x  e.  K ) )
7166, 70sylan9bb 699 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  x  e.  RR )  ->  ( x  e.  ( Base `  F
)  <->  x  e.  K
) )
7271adantrr 716 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( x  e.  RR  /\  0  <_  x ) )  -> 
( x  e.  (
Base `  F )  <->  x  e.  K ) )
7372ex 434 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( x  e.  RR  /\  0  <_  x )  ->  (
x  e.  ( Base `  F )  <->  x  e.  K ) ) )
7473pm5.32rd 640 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( x  e.  ( Base `  F
)  /\  ( x  e.  RR  /\  0  <_  x ) )  <->  ( x  e.  K  /\  (
x  e.  RR  /\  0  <_  x ) ) ) )
75 3anass 977 . . . . . . . . . . . . 13  |-  ( ( x  e.  K  /\  x  e.  RR  /\  0  <_  x )  <->  ( x  e.  K  /\  (
x  e.  RR  /\  0  <_  x ) ) )
7674, 75syl6bbr 263 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( x  e.  ( Base `  F
)  /\  ( x  e.  RR  /\  0  <_  x ) )  <->  ( x  e.  K  /\  x  e.  RR  /\  0  <_  x ) ) )
7734eleq2d 2537 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( sqr `  x
)  e.  ( Base `  F )  <->  ( sqr `  x )  e.  ( K  i^i  CC ) ) )
78 elin 3687 . . . . . . . . . . . . 13  |-  ( ( sqr `  x )  e.  ( K  i^i  CC )  <->  ( ( sqr `  x )  e.  K  /\  ( sqr `  x
)  e.  CC ) )
7977, 78syl6bb 261 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( sqr `  x
)  e.  ( Base `  F )  <->  ( ( sqr `  x )  e.  K  /\  ( sqr `  x )  e.  CC ) ) )
8065, 76, 793imtr4d 268 . . . . . . . . . . 11  |-  ( ph  ->  ( ( x  e.  ( Base `  F
)  /\  ( x  e.  RR  /\  0  <_  x ) )  -> 
( sqr `  x
)  e.  ( Base `  F ) ) )
8159, 80syl5bi 217 . . . . . . . . . 10  |-  ( ph  ->  ( ( x  e.  ( Base `  F
)  /\  x  e.  RR  /\  0  <_  x
)  ->  ( sqr `  x )  e.  (
Base `  F )
) )
8281imp 429 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  ( Base `  F
)  /\  x  e.  RR  /\  0  <_  x
) )  ->  ( sqr `  x )  e.  ( Base `  F
) )
8382adantlr 714 . . . . . . . 8  |-  ( ( ( ph  /\  (
y  e.  V  /\  z  e.  V )
)  /\  ( x  e.  ( Base `  F
)  /\  x  e.  RR  /\  0  <_  x
) )  ->  ( sqr `  x )  e.  ( Base `  F
) )
8417adantlr 714 . . . . . . . 8  |-  ( ( ( ph  /\  (
y  e.  V  /\  z  e.  V )
)  /\  x  e.  V )  ->  0  <_  ( x  .,  x
) )
85 simprl 755 . . . . . . . 8  |-  ( (
ph  /\  ( y  e.  V  /\  z  e.  V ) )  -> 
y  e.  V )
86 simprr 756 . . . . . . . 8  |-  ( (
ph  /\  ( y  e.  V  /\  z  e.  V ) )  -> 
z  e.  V )
872, 5, 14, 56, 58, 6, 83, 84, 28, 8, 85, 86tchcphlem1 21441 . . . . . . 7  |-  ( (
ph  /\  ( y  e.  V  /\  z  e.  V ) )  -> 
( sqr `  (
( y ( -g `  W ) z ) 
.,  ( y (
-g `  W )
z ) ) )  <_  ( ( sqr `  ( y  .,  y
) )  +  ( sqr `  ( z 
.,  z ) ) ) )
885, 8grpsubcl 15928 . . . . . . . . . 10  |-  ( ( W  e.  Grp  /\  y  e.  V  /\  z  e.  V )  ->  ( y ( -g `  W ) z )  e.  V )
89883expb 1197 . . . . . . . . 9  |-  ( ( W  e.  Grp  /\  ( y  e.  V  /\  z  e.  V
) )  ->  (
y ( -g `  W
) z )  e.  V )
9013, 89sylan 471 . . . . . . . 8  |-  ( (
ph  /\  ( y  e.  V  /\  z  e.  V ) )  -> 
( y ( -g `  W ) z )  e.  V )
91 oveq12 6293 . . . . . . . . . . 11  |-  ( ( x  =  ( y ( -g `  W
) z )  /\  x  =  ( y
( -g `  W ) z ) )  -> 
( x  .,  x
)  =  ( ( y ( -g `  W
) z )  .,  ( y ( -g `  W ) z ) ) )
9291anidms 645 . . . . . . . . . 10  |-  ( x  =  ( y (
-g `  W )
z )  ->  (
x  .,  x )  =  ( ( y ( -g `  W
) z )  .,  ( y ( -g `  W ) z ) ) )
9392fveq2d 5870 . . . . . . . . 9  |-  ( x  =  ( y (
-g `  W )
z )  ->  ( sqr `  ( x  .,  x ) )  =  ( sqr `  (
( y ( -g `  W ) z ) 
.,  ( y (
-g `  W )
z ) ) ) )
9493, 19, 24fvmpt3i 5954 . . . . . . . 8  |-  ( ( y ( -g `  W
) z )  e.  V  ->  ( (
x  e.  V  |->  ( sqr `  ( x 
.,  x ) ) ) `  ( y ( -g `  W
) z ) )  =  ( sqr `  (
( y ( -g `  W ) z ) 
.,  ( y (
-g `  W )
z ) ) ) )
9590, 94syl 16 . . . . . . 7  |-  ( (
ph  /\  ( y  e.  V  /\  z  e.  V ) )  -> 
( ( x  e.  V  |->  ( sqr `  (
x  .,  x )
) ) `  (
y ( -g `  W
) z ) )  =  ( sqr `  (
( y ( -g `  W ) z ) 
.,  ( y (
-g `  W )
z ) ) ) )
96 oveq12 6293 . . . . . . . . . . . 12  |-  ( ( x  =  z  /\  x  =  z )  ->  ( x  .,  x
)  =  ( z 
.,  z ) )
9796anidms 645 . . . . . . . . . . 11  |-  ( x  =  z  ->  (
x  .,  x )  =  ( z  .,  z ) )
9897fveq2d 5870 . . . . . . . . . 10  |-  ( x  =  z  ->  ( sqr `  ( x  .,  x ) )  =  ( sqr `  (
z  .,  z )
) )
9998, 19, 24fvmpt3i 5954 . . . . . . . . 9  |-  ( z  e.  V  ->  (
( x  e.  V  |->  ( sqr `  (
x  .,  x )
) ) `  z
)  =  ( sqr `  ( z  .,  z
) ) )
10025, 99oveqan12d 6303 . . . . . . . 8  |-  ( ( y  e.  V  /\  z  e.  V )  ->  ( ( ( x  e.  V  |->  ( sqr `  ( x  .,  x
) ) ) `  y )  +  ( ( x  e.  V  |->  ( sqr `  (
x  .,  x )
) ) `  z
) )  =  ( ( sqr `  (
y  .,  y )
)  +  ( sqr `  ( z  .,  z
) ) ) )
101100adantl 466 . . . . . . 7  |-  ( (
ph  /\  ( y  e.  V  /\  z  e.  V ) )  -> 
( ( ( x  e.  V  |->  ( sqr `  ( x  .,  x
) ) ) `  y )  +  ( ( x  e.  V  |->  ( sqr `  (
x  .,  x )
) ) `  z
) )  =  ( ( sqr `  (
y  .,  y )
)  +  ( sqr `  ( z  .,  z
) ) ) )
10287, 95, 1013brtr4d 4477 . . . . . 6  |-  ( (
ph  /\  ( y  e.  V  /\  z  e.  V ) )  -> 
( ( x  e.  V  |->  ( sqr `  (
x  .,  x )
) ) `  (
y ( -g `  W
) z ) )  <_  ( ( ( x  e.  V  |->  ( sqr `  ( x 
.,  x ) ) ) `  y )  +  ( ( x  e.  V  |->  ( sqr `  ( x  .,  x
) ) ) `  z ) ) )
1037, 5, 8, 9, 13, 20, 55, 102tngngpd 20930 . . . . 5  |-  ( ph  ->  G  e. NrmGrp )
104 phllmod 18460 . . . . . 6  |-  ( G  e.  PreHil  ->  G  e.  LMod )
1054, 104syl 16 . . . . 5  |-  ( ph  ->  G  e.  LMod )
106 cnnrg 21051 . . . . . . 7  |-fld  e. NrmRing
10733simp3d 1010 . . . . . . 7  |-  ( ph  ->  ( Base `  F
)  e.  (SubRing ` fld ) )
108 eqid 2467 . . . . . . . 8  |-  (flds  ( Base `  F
) )  =  (flds  ( Base `  F ) )
109108subrgnrg 20945 . . . . . . 7  |-  ( (fld  e. NrmRing  /\  ( Base `  F
)  e.  (SubRing ` fld ) )  ->  (flds  ( Base `  F ) )  e. NrmRing )
110106, 107, 109sylancr 663 . . . . . 6  |-  ( ph  ->  (flds  (
Base `  F )
)  e. NrmRing )
11157, 110eqeltrd 2555 . . . . 5  |-  ( ph  ->  F  e. NrmRing )
112103, 105, 1113jca 1176 . . . 4  |-  ( ph  ->  ( G  e. NrmGrp  /\  G  e.  LMod  /\  F  e. NrmRing ) )
1131adantr 465 . . . . . . 7  |-  ( (
ph  /\  ( y  e.  ( Base `  F
)  /\  z  e.  V ) )  ->  W  e.  PreHil )
11457adantr 465 . . . . . . 7  |-  ( (
ph  /\  ( y  e.  ( Base `  F
)  /\  z  e.  V ) )  ->  F  =  (flds  ( Base `  F
) ) )
11582adantlr 714 . . . . . . 7  |-  ( ( ( ph  /\  (
y  e.  ( Base `  F )  /\  z  e.  V ) )  /\  ( x  e.  ( Base `  F )  /\  x  e.  RR  /\  0  <_  x ) )  -> 
( sqr `  x
)  e.  ( Base `  F ) )
11617adantlr 714 . . . . . . 7  |-  ( ( ( ph  /\  (
y  e.  ( Base `  F )  /\  z  e.  V ) )  /\  x  e.  V )  ->  0  <_  ( x  .,  x ) )
117 eqid 2467 . . . . . . 7  |-  ( .s
`  W )  =  ( .s `  W
)
118 simprl 755 . . . . . . 7  |-  ( (
ph  /\  ( y  e.  ( Base `  F
)  /\  z  e.  V ) )  -> 
y  e.  ( Base `  F ) )
119 simprr 756 . . . . . . 7  |-  ( (
ph  /\  ( y  e.  ( Base `  F
)  /\  z  e.  V ) )  -> 
z  e.  V )
1202, 5, 14, 113, 114, 6, 115, 116, 28, 117, 118, 119tchcphlem2 21442 . . . . . 6  |-  ( (
ph  /\  ( y  e.  ( Base `  F
)  /\  z  e.  V ) )  -> 
( sqr `  (
( y ( .s
`  W ) z )  .,  ( y ( .s `  W
) z ) ) )  =  ( ( abs `  y )  x.  ( sqr `  (
z  .,  z )
) ) )
12113adantr 465 . . . . . . 7  |-  ( (
ph  /\  ( y  e.  ( Base `  F
)  /\  z  e.  V ) )  ->  W  e.  Grp )
1225, 14, 117, 28lmodvscl 17329 . . . . . . . . 9  |-  ( ( W  e.  LMod  /\  y  e.  ( Base `  F
)  /\  z  e.  V )  ->  (
y ( .s `  W ) z )  e.  V )
1231223expb 1197 . . . . . . . 8  |-  ( ( W  e.  LMod  /\  (
y  e.  ( Base `  F )  /\  z  e.  V ) )  -> 
( y ( .s
`  W ) z )  e.  V )
12411, 123sylan 471 . . . . . . 7  |-  ( (
ph  /\  ( y  e.  ( Base `  F
)  /\  z  e.  V ) )  -> 
( y ( .s
`  W ) z )  e.  V )
125 eqid 2467 . . . . . . . 8  |-  ( norm `  G )  =  (
norm `  G )
1262, 125, 5, 6tchnmval 21435 . . . . . . 7  |-  ( ( W  e.  Grp  /\  ( y ( .s
`  W ) z )  e.  V )  ->  ( ( norm `  G ) `  (
y ( .s `  W ) z ) )  =  ( sqr `  ( ( y ( .s `  W ) z )  .,  (
y ( .s `  W ) z ) ) ) )
127121, 124, 126syl2anc 661 . . . . . 6  |-  ( (
ph  /\  ( y  e.  ( Base `  F
)  /\  z  e.  V ) )  -> 
( ( norm `  G
) `  ( y
( .s `  W
) z ) )  =  ( sqr `  (
( y ( .s
`  W ) z )  .,  ( y ( .s `  W
) z ) ) ) )
128114fveq2d 5870 . . . . . . . . 9  |-  ( (
ph  /\  ( y  e.  ( Base `  F
)  /\  z  e.  V ) )  -> 
( norm `  F )  =  ( norm `  (flds  ( Base `  F ) ) ) )
129128fveq1d 5868 . . . . . . . 8  |-  ( (
ph  /\  ( y  e.  ( Base `  F
)  /\  z  e.  V ) )  -> 
( ( norm `  F
) `  y )  =  ( ( norm `  (flds  (
Base `  F )
) ) `  y
) )
130 subrgsubg 17235 . . . . . . . . . . 11  |-  ( (
Base `  F )  e.  (SubRing ` fld )  ->  ( Base `  F )  e.  (SubGrp ` fld ) )
131107, 130syl 16 . . . . . . . . . 10  |-  ( ph  ->  ( Base `  F
)  e.  (SubGrp ` fld )
)
132131adantr 465 . . . . . . . . 9  |-  ( (
ph  /\  ( y  e.  ( Base `  F
)  /\  z  e.  V ) )  -> 
( Base `  F )  e.  (SubGrp ` fld ) )
133 cnfldnm 21049 . . . . . . . . . 10  |-  abs  =  ( norm ` fld )
134 eqid 2467 . . . . . . . . . 10  |-  ( norm `  (flds  (
Base `  F )
) )  =  (
norm `  (flds  ( Base `  F
) ) )
135108, 133, 134subgnm2 20911 . . . . . . . . 9  |-  ( ( ( Base `  F
)  e.  (SubGrp ` fld )  /\  y  e.  ( Base `  F ) )  ->  ( ( norm `  (flds  (
Base `  F )
) ) `  y
)  =  ( abs `  y ) )
136132, 118, 135syl2anc 661 . . . . . . . 8  |-  ( (
ph  /\  ( y  e.  ( Base `  F
)  /\  z  e.  V ) )  -> 
( ( norm `  (flds  ( Base `  F ) ) ) `
 y )  =  ( abs `  y
) )
137129, 136eqtrd 2508 . . . . . . 7  |-  ( (
ph  /\  ( y  e.  ( Base `  F
)  /\  z  e.  V ) )  -> 
( ( norm `  F
) `  y )  =  ( abs `  y
) )
1382, 125, 5, 6tchnmval 21435 . . . . . . . 8  |-  ( ( W  e.  Grp  /\  z  e.  V )  ->  ( ( norm `  G
) `  z )  =  ( sqr `  (
z  .,  z )
) )
139121, 119, 138syl2anc 661 . . . . . . 7  |-  ( (
ph  /\  ( y  e.  ( Base `  F
)  /\  z  e.  V ) )  -> 
( ( norm `  G
) `  z )  =  ( sqr `  (
z  .,  z )
) )
140137, 139oveq12d 6302 . . . . . 6  |-  ( (
ph  /\  ( y  e.  ( Base `  F
)  /\  z  e.  V ) )  -> 
( ( ( norm `  F ) `  y
)  x.  ( (
norm `  G ) `  z ) )  =  ( ( abs `  y
)  x.  ( sqr `  ( z  .,  z
) ) ) )
141120, 127, 1403eqtr4d 2518 . . . . 5  |-  ( (
ph  /\  ( y  e.  ( Base `  F
)  /\  z  e.  V ) )  -> 
( ( norm `  G
) `  ( y
( .s `  W
) z ) )  =  ( ( (
norm `  F ) `  y )  x.  (
( norm `  G ) `  z ) ) )
142141ralrimivva 2885 . . . 4  |-  ( ph  ->  A. y  e.  (
Base `  F ) A. z  e.  V  ( ( norm `  G
) `  ( y
( .s `  W
) z ) )  =  ( ( (
norm `  F ) `  y )  x.  (
( norm `  G ) `  z ) ) )
1432, 5tchbas 21425 . . . . 5  |-  V  =  ( Base `  G
)
1442, 117tchvsca 21430 . . . . 5  |-  ( .s
`  W )  =  ( .s `  G
)
1452, 14tchsca 21429 . . . . 5  |-  F  =  (Scalar `  G )
146 eqid 2467 . . . . 5  |-  ( norm `  F )  =  (
norm `  F )
147143, 125, 144, 145, 28, 146isnlm 20947 . . . 4  |-  ( G  e. NrmMod 
<->  ( ( G  e. NrmGrp  /\  G  e.  LMod  /\  F  e. NrmRing )  /\  A. y  e.  ( Base `  F ) A. z  e.  V  ( ( norm `  G ) `  ( y ( .s
`  W ) z ) )  =  ( ( ( norm `  F
) `  y )  x.  ( ( norm `  G
) `  z )
) ) )
148112, 142, 147sylanbrc 664 . . 3  |-  ( ph  ->  G  e. NrmMod )
1494, 148, 573jca 1176 . 2  |-  ( ph  ->  ( G  e.  PreHil  /\  G  e. NrmMod  /\  F  =  (flds  (
Base `  F )
) ) )
150 elin 3687 . . . . . 6  |-  ( x  e.  ( ( Base `  F )  i^i  (
0 [,) +oo )
)  <->  ( x  e.  ( Base `  F
)  /\  x  e.  ( 0 [,) +oo ) ) )
151 elrege0 11627 . . . . . . 7  |-  ( x  e.  ( 0 [,) +oo )  <->  ( x  e.  RR  /\  0  <_  x ) )
152151anbi2i 694 . . . . . 6  |-  ( ( x  e.  ( Base `  F )  /\  x  e.  ( 0 [,) +oo ) )  <->  ( x  e.  ( Base `  F
)  /\  ( x  e.  RR  /\  0  <_  x ) ) )
153150, 152bitri 249 . . . . 5  |-  ( x  e.  ( ( Base `  F )  i^i  (
0 [,) +oo )
)  <->  ( x  e.  ( Base `  F
)  /\  ( x  e.  RR  /\  0  <_  x ) ) )
154153, 80syl5bi 217 . . . 4  |-  ( ph  ->  ( x  e.  ( ( Base `  F
)  i^i  ( 0 [,) +oo ) )  ->  ( sqr `  x
)  e.  ( Base `  F ) ) )
155154ralrimiv 2876 . . 3  |-  ( ph  ->  A. x  e.  ( ( Base `  F
)  i^i  ( 0 [,) +oo ) ) ( sqr `  x
)  e.  ( Base `  F ) )
156 sqrtf 13159 . . . . 5  |-  sqr : CC
--> CC
157 ffun 5733 . . . . 5  |-  ( sqr
: CC --> CC  ->  Fun 
sqr )
158156, 157ax-mp 5 . . . 4  |-  Fun  sqr
159 inss1 3718 . . . . . 6  |-  ( (
Base `  F )  i^i  ( 0 [,) +oo ) )  C_  ( Base `  F )
160159, 36syl5ss 3515 . . . . 5  |-  ( ph  ->  ( ( Base `  F
)  i^i  ( 0 [,) +oo ) ) 
C_  CC )
161156fdmi 5736 . . . . 5  |-  dom  sqr  =  CC
162160, 161syl6sseqr 3551 . . . 4  |-  ( ph  ->  ( ( Base `  F
)  i^i  ( 0 [,) +oo ) ) 
C_  dom  sqr )
163 funimass4 5918 . . . 4  |-  ( ( Fun  sqr  /\  (
( Base `  F )  i^i  ( 0 [,) +oo ) )  C_  dom  sqr )  ->  ( ( sqr " ( ( Base `  F )  i^i  (
0 [,) +oo )
) )  C_  ( Base `  F )  <->  A. x  e.  ( ( Base `  F
)  i^i  ( 0 [,) +oo ) ) ( sqr `  x
)  e.  ( Base `  F ) ) )
164158, 162, 163sylancr 663 . . 3  |-  ( ph  ->  ( ( sqr " (
( Base `  F )  i^i  ( 0 [,) +oo ) ) )  C_  ( Base `  F )  <->  A. x  e.  ( (
Base `  F )  i^i  ( 0 [,) +oo ) ) ( sqr `  x )  e.  (
Base `  F )
) )
165155, 164mpbird 232 . 2  |-  ( ph  ->  ( sqr " (
( Base `  F )  i^i  ( 0 [,) +oo ) ) )  C_  ( Base `  F )
)
166 eqid 2467 . . . . 5  |-  ( y  e.  V  |->  ( sqr `  ( y  .,  y
) ) )  =  ( y  e.  V  |->  ( sqr `  (
y  .,  y )
) )
16742, 166fmptd 6045 . . . 4  |-  ( ph  ->  ( y  e.  V  |->  ( sqr `  (
y  .,  y )
) ) : V --> CC )
1682, 5, 6tchval 21424 . . . . 5  |-  G  =  ( W toNrmGrp  ( y  e.  V  |->  ( sqr `  ( y  .,  y
) ) ) )
169 cnex 9573 . . . . 5  |-  CC  e.  _V
170168, 5, 169tngnm 20928 . . . 4  |-  ( ( W  e.  Grp  /\  ( y  e.  V  |->  ( sqr `  (
y  .,  y )
) ) : V --> CC )  ->  ( y  e.  V  |->  ( sqr `  ( y  .,  y
) ) )  =  ( norm `  G
) )
17113, 167, 170syl2anc 661 . . 3  |-  ( ph  ->  ( y  e.  V  |->  ( sqr `  (
y  .,  y )
) )  =  (
norm `  G )
)
172171eqcomd 2475 . 2  |-  ( ph  ->  ( norm `  G
)  =  ( y  e.  V  |->  ( sqr `  ( y  .,  y
) ) ) )
1732, 6tchip 21431 . . 3  |-  .,  =  ( .i `  G )
174143, 173, 125, 145, 28iscph 21380 . 2  |-  ( G  e.  CPreHil 
<->  ( ( G  e. 
PreHil  /\  G  e. NrmMod  /\  F  =  (flds  (
Base `  F )
) )  /\  ( sqr " ( ( Base `  F )  i^i  (
0 [,) +oo )
) )  C_  ( Base `  F )  /\  ( norm `  G )  =  ( y  e.  V  |->  ( sqr `  (
y  .,  y )
) ) ) )
175149, 165, 172, 174syl3anbrc 1180 1  |-  ( ph  ->  G  e.  CPreHil )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 973    = wceq 1379    e. wcel 1767   A.wral 2814    i^i cin 3475    C_ wss 3476   class class class wbr 4447    |-> cmpt 4505   dom cdm 4999   "cima 5002   Fun wfun 5582   -->wf 5584   ` cfv 5588  (class class class)co 6284   CCcc 9490   RRcr 9491   0cc0 9492    + caddc 9495    x. cmul 9497   +oocpnf 9625    <_ cle 9629   2c2 10585   [,)cico 11531   ^cexp 12134   sqrcsqrt 13029   abscabs 13030   Basecbs 14490   ↾s cress 14491  Scalarcsca 14558   .scvsca 14559   .icip 14560   0gc0g 14695   Grpcgrp 15727   -gcsg 15730  SubGrpcsubg 16000   DivRingcdr 17196  SubRingcsubrg 17225   LModclmod 17312   LVecclvec 17548  ℂfldccnfld 18219   PreHilcphl 18454   normcnm 20860  NrmGrpcngp 20861  NrmRingcnrg 20863  NrmModcnlm 20864  CModcclm 21325   CPreHilccph 21376  toCHilctch 21377
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6576  ax-cnex 9548  ax-resscn 9549  ax-1cn 9550  ax-icn 9551  ax-addcl 9552  ax-addrcl 9553  ax-mulcl 9554  ax-mulrcl 9555  ax-mulcom 9556  ax-addass 9557  ax-mulass 9558  ax-distr 9559  ax-i2m1 9560  ax-1ne0 9561  ax-1rid 9562  ax-rnegex 9563  ax-rrecex 9564  ax-cnre 9565  ax-pre-lttri 9566  ax-pre-lttrn 9567  ax-pre-ltadd 9568  ax-pre-mulgt0 9569  ax-pre-sup 9570  ax-addf 9571  ax-mulf 9572
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-int 4283  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5551  df-fun 5590  df-fn 5591  df-f 5592  df-f1 5593  df-fo 5594  df-f1o 5595  df-fv 5596  df-riota 6245  df-ov 6287  df-oprab 6288  df-mpt2 6289  df-om 6685  df-1st 6784  df-2nd 6785  df-tpos 6955  df-recs 7042  df-rdg 7076  df-1o 7130  df-oadd 7134  df-er 7311  df-map 7422  df-en 7517  df-dom 7518  df-sdom 7519  df-fin 7520  df-sup 7901  df-pnf 9630  df-mnf 9631  df-xr 9632  df-ltxr 9633  df-le 9634  df-sub 9807  df-neg 9808  df-div 10207  df-nn 10537  df-2 10594  df-3 10595  df-4 10596  df-5 10597  df-6 10598  df-7 10599  df-8 10600  df-9 10601  df-10 10602  df-n0 10796  df-z 10865  df-dec 10977  df-uz 11083  df-q 11183  df-rp 11221  df-xneg 11318  df-xadd 11319  df-xmul 11320  df-ico 11535  df-fz 11673  df-seq 12076  df-exp 12135  df-cj 12895  df-re 12896  df-im 12897  df-sqrt 13031  df-abs 13032  df-struct 14492  df-ndx 14493  df-slot 14494  df-base 14495  df-sets 14496  df-ress 14497  df-plusg 14568  df-mulr 14569  df-starv 14570  df-sca 14571  df-vsca 14572  df-ip 14573  df-tset 14574  df-ple 14575  df-ds 14577  df-unif 14578  df-rest 14678  df-topn 14679  df-0g 14697  df-topgen 14699  df-mnd 15732  df-mhm 15786  df-grp 15867  df-minusg 15868  df-sbg 15869  df-subg 16003  df-ghm 16070  df-cmn 16606  df-abl 16607  df-mgp 16944  df-ur 16956  df-rng 17002  df-cring 17003  df-oppr 17073  df-dvdsr 17091  df-unit 17092  df-invr 17122  df-dvr 17133  df-rnghom 17165  df-drng 17198  df-subrg 17227  df-abv 17266  df-staf 17294  df-srng 17295  df-lmod 17314  df-lmhm 17468  df-lvec 17549  df-sra 17618  df-rgmod 17619  df-psmet 18210  df-xmet 18211  df-met 18212  df-bl 18213  df-mopn 18214  df-cnfld 18220  df-phl 18456  df-top 19194  df-bases 19196  df-topon 19197  df-topsp 19198  df-xms 20586  df-ms 20587  df-nm 20866  df-ngp 20867  df-tng 20868  df-nrg 20869  df-nlm 20870  df-clm 21326  df-cph 21378  df-tch 21379
This theorem is referenced by:  rrxcph  21587
  Copyright terms: Public domain W3C validator