MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tchcph Structured version   Unicode version

Theorem tchcph 20774
Description: The standard definition of a norm turns any pre-Hilbert space over a quadratically closed subfield of  CC into a complex pre-Hilbert space (which allows access to a norm, metric, and topology). (Contributed by Mario Carneiro, 11-Oct-2015.)
Hypotheses
Ref Expression
tchval.n  |-  G  =  (toCHil `  W )
tchcph.v  |-  V  =  ( Base `  W
)
tchcph.f  |-  F  =  (Scalar `  W )
tchcph.1  |-  ( ph  ->  W  e.  PreHil )
tchcph.2  |-  ( ph  ->  F  =  (flds  K ) )
tchcph.h  |-  .,  =  ( .i `  W )
tchcph.3  |-  ( (
ph  /\  ( x  e.  K  /\  x  e.  RR  /\  0  <_  x ) )  -> 
( sqr `  x
)  e.  K )
tchcph.4  |-  ( (
ph  /\  x  e.  V )  ->  0  <_  ( x  .,  x
) )
Assertion
Ref Expression
tchcph  |-  ( ph  ->  G  e.  CPreHil )
Distinct variable groups:    x,  .,    x, F   
x, G    x, V    ph, x    x, W
Allowed substitution hint:    K( x)

Proof of Theorem tchcph
Dummy variables  y 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tchcph.1 . . . 4  |-  ( ph  ->  W  e.  PreHil )
2 tchval.n . . . . 5  |-  G  =  (toCHil `  W )
32tchphl 20764 . . . 4  |-  ( W  e.  PreHil 
<->  G  e.  PreHil )
41, 3sylib 196 . . 3  |-  ( ph  ->  G  e.  PreHil )
5 tchcph.v . . . . . . 7  |-  V  =  ( Base `  W
)
6 tchcph.h . . . . . . 7  |-  .,  =  ( .i `  W )
72, 5, 6tchval 20755 . . . . . 6  |-  G  =  ( W toNrmGrp  ( x  e.  V  |->  ( sqr `  ( x  .,  x
) ) ) )
8 eqid 2443 . . . . . 6  |-  ( -g `  W )  =  (
-g `  W )
9 eqid 2443 . . . . . 6  |-  ( 0g
`  W )  =  ( 0g `  W
)
10 phllmod 18081 . . . . . . . 8  |-  ( W  e.  PreHil  ->  W  e.  LMod )
111, 10syl 16 . . . . . . 7  |-  ( ph  ->  W  e.  LMod )
12 lmodgrp 16977 . . . . . . 7  |-  ( W  e.  LMod  ->  W  e. 
Grp )
1311, 12syl 16 . . . . . 6  |-  ( ph  ->  W  e.  Grp )
14 tchcph.f . . . . . . . . 9  |-  F  =  (Scalar `  W )
15 tchcph.2 . . . . . . . . 9  |-  ( ph  ->  F  =  (flds  K ) )
162, 5, 14, 1, 15, 6tchcphlem3 20770 . . . . . . . 8  |-  ( (
ph  /\  x  e.  V )  ->  (
x  .,  x )  e.  RR )
17 tchcph.4 . . . . . . . 8  |-  ( (
ph  /\  x  e.  V )  ->  0  <_  ( x  .,  x
) )
1816, 17resqrcld 12925 . . . . . . 7  |-  ( (
ph  /\  x  e.  V )  ->  ( sqr `  ( x  .,  x ) )  e.  RR )
19 eqid 2443 . . . . . . 7  |-  ( x  e.  V  |->  ( sqr `  ( x  .,  x
) ) )  =  ( x  e.  V  |->  ( sqr `  (
x  .,  x )
) )
2018, 19fmptd 5888 . . . . . 6  |-  ( ph  ->  ( x  e.  V  |->  ( sqr `  (
x  .,  x )
) ) : V --> RR )
21 oveq12 6121 . . . . . . . . . . . 12  |-  ( ( x  =  y  /\  x  =  y )  ->  ( x  .,  x
)  =  ( y 
.,  y ) )
2221anidms 645 . . . . . . . . . . 11  |-  ( x  =  y  ->  (
x  .,  x )  =  ( y  .,  y ) )
2322fveq2d 5716 . . . . . . . . . 10  |-  ( x  =  y  ->  ( sqr `  ( x  .,  x ) )  =  ( sqr `  (
y  .,  y )
) )
24 fvex 5722 . . . . . . . . . 10  |-  ( sqr `  ( x  .,  x
) )  e.  _V
2523, 19, 24fvmpt3i 5799 . . . . . . . . 9  |-  ( y  e.  V  ->  (
( x  e.  V  |->  ( sqr `  (
x  .,  x )
) ) `  y
)  =  ( sqr `  ( y  .,  y
) ) )
2625adantl 466 . . . . . . . 8  |-  ( (
ph  /\  y  e.  V )  ->  (
( x  e.  V  |->  ( sqr `  (
x  .,  x )
) ) `  y
)  =  ( sqr `  ( y  .,  y
) ) )
2726eqeq1d 2451 . . . . . . 7  |-  ( (
ph  /\  y  e.  V )  ->  (
( ( x  e.  V  |->  ( sqr `  (
x  .,  x )
) ) `  y
)  =  0  <->  ( sqr `  ( y  .,  y ) )  =  0 ) )
28 eqid 2443 . . . . . . . . . . . . . . 15  |-  ( Base `  F )  =  (
Base `  F )
29 phllvec 18080 . . . . . . . . . . . . . . . . 17  |-  ( W  e.  PreHil  ->  W  e.  LVec )
301, 29syl 16 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  W  e.  LVec )
3114lvecdrng 17208 . . . . . . . . . . . . . . . 16  |-  ( W  e.  LVec  ->  F  e.  DivRing )
3230, 31syl 16 . . . . . . . . . . . . . . 15  |-  ( ph  ->  F  e.  DivRing )
3328, 15, 32cphsubrglem 20718 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( F  =  (flds  ( Base `  F ) )  /\  ( Base `  F )  =  ( K  i^i  CC )  /\  ( Base `  F )  e.  (SubRing ` fld ) ) )
3433simp2d 1001 . . . . . . . . . . . . 13  |-  ( ph  ->  ( Base `  F
)  =  ( K  i^i  CC ) )
35 inss2 3592 . . . . . . . . . . . . 13  |-  ( K  i^i  CC )  C_  CC
3634, 35syl6eqss 3427 . . . . . . . . . . . 12  |-  ( ph  ->  ( Base `  F
)  C_  CC )
3736adantr 465 . . . . . . . . . . 11  |-  ( (
ph  /\  y  e.  V )  ->  ( Base `  F )  C_  CC )
3814, 6, 5, 28ipcl 18084 . . . . . . . . . . . . 13  |-  ( ( W  e.  PreHil  /\  y  e.  V  /\  y  e.  V )  ->  (
y  .,  y )  e.  ( Base `  F
) )
39383anidm23 1277 . . . . . . . . . . . 12  |-  ( ( W  e.  PreHil  /\  y  e.  V )  ->  (
y  .,  y )  e.  ( Base `  F
) )
401, 39sylan 471 . . . . . . . . . . 11  |-  ( (
ph  /\  y  e.  V )  ->  (
y  .,  y )  e.  ( Base `  F
) )
4137, 40sseldd 3378 . . . . . . . . . 10  |-  ( (
ph  /\  y  e.  V )  ->  (
y  .,  y )  e.  CC )
4241sqrcld 12944 . . . . . . . . 9  |-  ( (
ph  /\  y  e.  V )  ->  ( sqr `  ( y  .,  y ) )  e.  CC )
43 sqeq0 11951 . . . . . . . . 9  |-  ( ( sqr `  ( y 
.,  y ) )  e.  CC  ->  (
( ( sqr `  (
y  .,  y )
) ^ 2 )  =  0  <->  ( sqr `  ( y  .,  y
) )  =  0 ) )
4442, 43syl 16 . . . . . . . 8  |-  ( (
ph  /\  y  e.  V )  ->  (
( ( sqr `  (
y  .,  y )
) ^ 2 )  =  0  <->  ( sqr `  ( y  .,  y
) )  =  0 ) )
4541sqsqrd 12946 . . . . . . . . 9  |-  ( (
ph  /\  y  e.  V )  ->  (
( sqr `  (
y  .,  y )
) ^ 2 )  =  ( y  .,  y ) )
462, 5, 14, 1, 15tchclm 20769 . . . . . . . . . . 11  |-  ( ph  ->  W  e. CMod )
4714clm0 20666 . . . . . . . . . . 11  |-  ( W  e. CMod  ->  0  =  ( 0g `  F ) )
4846, 47syl 16 . . . . . . . . . 10  |-  ( ph  ->  0  =  ( 0g
`  F ) )
4948adantr 465 . . . . . . . . 9  |-  ( (
ph  /\  y  e.  V )  ->  0  =  ( 0g `  F ) )
5045, 49eqeq12d 2457 . . . . . . . 8  |-  ( (
ph  /\  y  e.  V )  ->  (
( ( sqr `  (
y  .,  y )
) ^ 2 )  =  0  <->  ( y  .,  y )  =  ( 0g `  F ) ) )
5144, 50bitr3d 255 . . . . . . 7  |-  ( (
ph  /\  y  e.  V )  ->  (
( sqr `  (
y  .,  y )
)  =  0  <->  (
y  .,  y )  =  ( 0g `  F ) ) )
52 eqid 2443 . . . . . . . . 9  |-  ( 0g
`  F )  =  ( 0g `  F
)
5314, 6, 5, 52, 9ipeq0 18089 . . . . . . . 8  |-  ( ( W  e.  PreHil  /\  y  e.  V )  ->  (
( y  .,  y
)  =  ( 0g
`  F )  <->  y  =  ( 0g `  W ) ) )
541, 53sylan 471 . . . . . . 7  |-  ( (
ph  /\  y  e.  V )  ->  (
( y  .,  y
)  =  ( 0g
`  F )  <->  y  =  ( 0g `  W ) ) )
5527, 51, 543bitrd 279 . . . . . 6  |-  ( (
ph  /\  y  e.  V )  ->  (
( ( x  e.  V  |->  ( sqr `  (
x  .,  x )
) ) `  y
)  =  0  <->  y  =  ( 0g `  W ) ) )
561adantr 465 . . . . . . . 8  |-  ( (
ph  /\  ( y  e.  V  /\  z  e.  V ) )  ->  W  e.  PreHil )
5733simp1d 1000 . . . . . . . . 9  |-  ( ph  ->  F  =  (flds  ( Base `  F
) ) )
5857adantr 465 . . . . . . . 8  |-  ( (
ph  /\  ( y  e.  V  /\  z  e.  V ) )  ->  F  =  (flds  ( Base `  F
) ) )
59 3anass 969 . . . . . . . . . . 11  |-  ( ( x  e.  ( Base `  F )  /\  x  e.  RR  /\  0  <_  x )  <->  ( x  e.  ( Base `  F
)  /\  ( x  e.  RR  /\  0  <_  x ) ) )
60 tchcph.3 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( x  e.  K  /\  x  e.  RR  /\  0  <_  x ) )  -> 
( sqr `  x
)  e.  K )
61 simpr2 995 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( x  e.  K  /\  x  e.  RR  /\  0  <_  x ) )  ->  x  e.  RR )
6261recnd 9433 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( x  e.  K  /\  x  e.  RR  /\  0  <_  x ) )  ->  x  e.  CC )
6362sqrcld 12944 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( x  e.  K  /\  x  e.  RR  /\  0  <_  x ) )  -> 
( sqr `  x
)  e.  CC )
6460, 63jca 532 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( x  e.  K  /\  x  e.  RR  /\  0  <_  x ) )  -> 
( ( sqr `  x
)  e.  K  /\  ( sqr `  x )  e.  CC ) )
6564ex 434 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( x  e.  K  /\  x  e.  RR  /\  0  <_  x )  ->  (
( sqr `  x
)  e.  K  /\  ( sqr `  x )  e.  CC ) ) )
6634eleq2d 2510 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( x  e.  (
Base `  F )  <->  x  e.  ( K  i^i  CC ) ) )
67 recn 9393 . . . . . . . . . . . . . . . . . 18  |-  ( x  e.  RR  ->  x  e.  CC )
68 elin 3560 . . . . . . . . . . . . . . . . . . 19  |-  ( x  e.  ( K  i^i  CC )  <->  ( x  e.  K  /\  x  e.  CC ) )
6968rbaib 898 . . . . . . . . . . . . . . . . . 18  |-  ( x  e.  CC  ->  (
x  e.  ( K  i^i  CC )  <->  x  e.  K ) )
7067, 69syl 16 . . . . . . . . . . . . . . . . 17  |-  ( x  e.  RR  ->  (
x  e.  ( K  i^i  CC )  <->  x  e.  K ) )
7166, 70sylan9bb 699 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  x  e.  RR )  ->  ( x  e.  ( Base `  F
)  <->  x  e.  K
) )
7271adantrr 716 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( x  e.  RR  /\  0  <_  x ) )  -> 
( x  e.  (
Base `  F )  <->  x  e.  K ) )
7372ex 434 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( x  e.  RR  /\  0  <_  x )  ->  (
x  e.  ( Base `  F )  <->  x  e.  K ) ) )
7473pm5.32rd 640 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( x  e.  ( Base `  F
)  /\  ( x  e.  RR  /\  0  <_  x ) )  <->  ( x  e.  K  /\  (
x  e.  RR  /\  0  <_  x ) ) ) )
75 3anass 969 . . . . . . . . . . . . 13  |-  ( ( x  e.  K  /\  x  e.  RR  /\  0  <_  x )  <->  ( x  e.  K  /\  (
x  e.  RR  /\  0  <_  x ) ) )
7674, 75syl6bbr 263 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( x  e.  ( Base `  F
)  /\  ( x  e.  RR  /\  0  <_  x ) )  <->  ( x  e.  K  /\  x  e.  RR  /\  0  <_  x ) ) )
7734eleq2d 2510 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( sqr `  x
)  e.  ( Base `  F )  <->  ( sqr `  x )  e.  ( K  i^i  CC ) ) )
78 elin 3560 . . . . . . . . . . . . 13  |-  ( ( sqr `  x )  e.  ( K  i^i  CC )  <->  ( ( sqr `  x )  e.  K  /\  ( sqr `  x
)  e.  CC ) )
7977, 78syl6bb 261 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( sqr `  x
)  e.  ( Base `  F )  <->  ( ( sqr `  x )  e.  K  /\  ( sqr `  x )  e.  CC ) ) )
8065, 76, 793imtr4d 268 . . . . . . . . . . 11  |-  ( ph  ->  ( ( x  e.  ( Base `  F
)  /\  ( x  e.  RR  /\  0  <_  x ) )  -> 
( sqr `  x
)  e.  ( Base `  F ) ) )
8159, 80syl5bi 217 . . . . . . . . . 10  |-  ( ph  ->  ( ( x  e.  ( Base `  F
)  /\  x  e.  RR  /\  0  <_  x
)  ->  ( sqr `  x )  e.  (
Base `  F )
) )
8281imp 429 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  ( Base `  F
)  /\  x  e.  RR  /\  0  <_  x
) )  ->  ( sqr `  x )  e.  ( Base `  F
) )
8382adantlr 714 . . . . . . . 8  |-  ( ( ( ph  /\  (
y  e.  V  /\  z  e.  V )
)  /\  ( x  e.  ( Base `  F
)  /\  x  e.  RR  /\  0  <_  x
) )  ->  ( sqr `  x )  e.  ( Base `  F
) )
8417adantlr 714 . . . . . . . 8  |-  ( ( ( ph  /\  (
y  e.  V  /\  z  e.  V )
)  /\  x  e.  V )  ->  0  <_  ( x  .,  x
) )
85 simprl 755 . . . . . . . 8  |-  ( (
ph  /\  ( y  e.  V  /\  z  e.  V ) )  -> 
y  e.  V )
86 simprr 756 . . . . . . . 8  |-  ( (
ph  /\  ( y  e.  V  /\  z  e.  V ) )  -> 
z  e.  V )
872, 5, 14, 56, 58, 6, 83, 84, 28, 8, 85, 86tchcphlem1 20772 . . . . . . 7  |-  ( (
ph  /\  ( y  e.  V  /\  z  e.  V ) )  -> 
( sqr `  (
( y ( -g `  W ) z ) 
.,  ( y (
-g `  W )
z ) ) )  <_  ( ( sqr `  ( y  .,  y
) )  +  ( sqr `  ( z 
.,  z ) ) ) )
885, 8grpsubcl 15627 . . . . . . . . . 10  |-  ( ( W  e.  Grp  /\  y  e.  V  /\  z  e.  V )  ->  ( y ( -g `  W ) z )  e.  V )
89883expb 1188 . . . . . . . . 9  |-  ( ( W  e.  Grp  /\  ( y  e.  V  /\  z  e.  V
) )  ->  (
y ( -g `  W
) z )  e.  V )
9013, 89sylan 471 . . . . . . . 8  |-  ( (
ph  /\  ( y  e.  V  /\  z  e.  V ) )  -> 
( y ( -g `  W ) z )  e.  V )
91 oveq12 6121 . . . . . . . . . . 11  |-  ( ( x  =  ( y ( -g `  W
) z )  /\  x  =  ( y
( -g `  W ) z ) )  -> 
( x  .,  x
)  =  ( ( y ( -g `  W
) z )  .,  ( y ( -g `  W ) z ) ) )
9291anidms 645 . . . . . . . . . 10  |-  ( x  =  ( y (
-g `  W )
z )  ->  (
x  .,  x )  =  ( ( y ( -g `  W
) z )  .,  ( y ( -g `  W ) z ) ) )
9392fveq2d 5716 . . . . . . . . 9  |-  ( x  =  ( y (
-g `  W )
z )  ->  ( sqr `  ( x  .,  x ) )  =  ( sqr `  (
( y ( -g `  W ) z ) 
.,  ( y (
-g `  W )
z ) ) ) )
9493, 19, 24fvmpt3i 5799 . . . . . . . 8  |-  ( ( y ( -g `  W
) z )  e.  V  ->  ( (
x  e.  V  |->  ( sqr `  ( x 
.,  x ) ) ) `  ( y ( -g `  W
) z ) )  =  ( sqr `  (
( y ( -g `  W ) z ) 
.,  ( y (
-g `  W )
z ) ) ) )
9590, 94syl 16 . . . . . . 7  |-  ( (
ph  /\  ( y  e.  V  /\  z  e.  V ) )  -> 
( ( x  e.  V  |->  ( sqr `  (
x  .,  x )
) ) `  (
y ( -g `  W
) z ) )  =  ( sqr `  (
( y ( -g `  W ) z ) 
.,  ( y (
-g `  W )
z ) ) ) )
96 oveq12 6121 . . . . . . . . . . . 12  |-  ( ( x  =  z  /\  x  =  z )  ->  ( x  .,  x
)  =  ( z 
.,  z ) )
9796anidms 645 . . . . . . . . . . 11  |-  ( x  =  z  ->  (
x  .,  x )  =  ( z  .,  z ) )
9897fveq2d 5716 . . . . . . . . . 10  |-  ( x  =  z  ->  ( sqr `  ( x  .,  x ) )  =  ( sqr `  (
z  .,  z )
) )
9998, 19, 24fvmpt3i 5799 . . . . . . . . 9  |-  ( z  e.  V  ->  (
( x  e.  V  |->  ( sqr `  (
x  .,  x )
) ) `  z
)  =  ( sqr `  ( z  .,  z
) ) )
10025, 99oveqan12d 6131 . . . . . . . 8  |-  ( ( y  e.  V  /\  z  e.  V )  ->  ( ( ( x  e.  V  |->  ( sqr `  ( x  .,  x
) ) ) `  y )  +  ( ( x  e.  V  |->  ( sqr `  (
x  .,  x )
) ) `  z
) )  =  ( ( sqr `  (
y  .,  y )
)  +  ( sqr `  ( z  .,  z
) ) ) )
101100adantl 466 . . . . . . 7  |-  ( (
ph  /\  ( y  e.  V  /\  z  e.  V ) )  -> 
( ( ( x  e.  V  |->  ( sqr `  ( x  .,  x
) ) ) `  y )  +  ( ( x  e.  V  |->  ( sqr `  (
x  .,  x )
) ) `  z
) )  =  ( ( sqr `  (
y  .,  y )
)  +  ( sqr `  ( z  .,  z
) ) ) )
10287, 95, 1013brtr4d 4343 . . . . . 6  |-  ( (
ph  /\  ( y  e.  V  /\  z  e.  V ) )  -> 
( ( x  e.  V  |->  ( sqr `  (
x  .,  x )
) ) `  (
y ( -g `  W
) z ) )  <_  ( ( ( x  e.  V  |->  ( sqr `  ( x 
.,  x ) ) ) `  y )  +  ( ( x  e.  V  |->  ( sqr `  ( x  .,  x
) ) ) `  z ) ) )
1037, 5, 8, 9, 13, 20, 55, 102tngngpd 20261 . . . . 5  |-  ( ph  ->  G  e. NrmGrp )
104 phllmod 18081 . . . . . 6  |-  ( G  e.  PreHil  ->  G  e.  LMod )
1054, 104syl 16 . . . . 5  |-  ( ph  ->  G  e.  LMod )
106 cnnrg 20382 . . . . . . 7  |-fld  e. NrmRing
10733simp3d 1002 . . . . . . 7  |-  ( ph  ->  ( Base `  F
)  e.  (SubRing ` fld ) )
108 eqid 2443 . . . . . . . 8  |-  (flds  ( Base `  F
) )  =  (flds  ( Base `  F ) )
109108subrgnrg 20276 . . . . . . 7  |-  ( (fld  e. NrmRing  /\  ( Base `  F
)  e.  (SubRing ` fld ) )  ->  (flds  ( Base `  F ) )  e. NrmRing )
110106, 107, 109sylancr 663 . . . . . 6  |-  ( ph  ->  (flds  (
Base `  F )
)  e. NrmRing )
11157, 110eqeltrd 2517 . . . . 5  |-  ( ph  ->  F  e. NrmRing )
112103, 105, 1113jca 1168 . . . 4  |-  ( ph  ->  ( G  e. NrmGrp  /\  G  e.  LMod  /\  F  e. NrmRing ) )
1131adantr 465 . . . . . . 7  |-  ( (
ph  /\  ( y  e.  ( Base `  F
)  /\  z  e.  V ) )  ->  W  e.  PreHil )
11457adantr 465 . . . . . . 7  |-  ( (
ph  /\  ( y  e.  ( Base `  F
)  /\  z  e.  V ) )  ->  F  =  (flds  ( Base `  F
) ) )
11582adantlr 714 . . . . . . 7  |-  ( ( ( ph  /\  (
y  e.  ( Base `  F )  /\  z  e.  V ) )  /\  ( x  e.  ( Base `  F )  /\  x  e.  RR  /\  0  <_  x ) )  -> 
( sqr `  x
)  e.  ( Base `  F ) )
11617adantlr 714 . . . . . . 7  |-  ( ( ( ph  /\  (
y  e.  ( Base `  F )  /\  z  e.  V ) )  /\  x  e.  V )  ->  0  <_  ( x  .,  x ) )
117 eqid 2443 . . . . . . 7  |-  ( .s
`  W )  =  ( .s `  W
)
118 simprl 755 . . . . . . 7  |-  ( (
ph  /\  ( y  e.  ( Base `  F
)  /\  z  e.  V ) )  -> 
y  e.  ( Base `  F ) )
119 simprr 756 . . . . . . 7  |-  ( (
ph  /\  ( y  e.  ( Base `  F
)  /\  z  e.  V ) )  -> 
z  e.  V )
1202, 5, 14, 113, 114, 6, 115, 116, 28, 117, 118, 119tchcphlem2 20773 . . . . . 6  |-  ( (
ph  /\  ( y  e.  ( Base `  F
)  /\  z  e.  V ) )  -> 
( sqr `  (
( y ( .s
`  W ) z )  .,  ( y ( .s `  W
) z ) ) )  =  ( ( abs `  y )  x.  ( sqr `  (
z  .,  z )
) ) )
12113adantr 465 . . . . . . 7  |-  ( (
ph  /\  ( y  e.  ( Base `  F
)  /\  z  e.  V ) )  ->  W  e.  Grp )
1225, 14, 117, 28lmodvscl 16987 . . . . . . . . 9  |-  ( ( W  e.  LMod  /\  y  e.  ( Base `  F
)  /\  z  e.  V )  ->  (
y ( .s `  W ) z )  e.  V )
1231223expb 1188 . . . . . . . 8  |-  ( ( W  e.  LMod  /\  (
y  e.  ( Base `  F )  /\  z  e.  V ) )  -> 
( y ( .s
`  W ) z )  e.  V )
12411, 123sylan 471 . . . . . . 7  |-  ( (
ph  /\  ( y  e.  ( Base `  F
)  /\  z  e.  V ) )  -> 
( y ( .s
`  W ) z )  e.  V )
125 eqid 2443 . . . . . . . 8  |-  ( norm `  G )  =  (
norm `  G )
1262, 125, 5, 6tchnmval 20766 . . . . . . 7  |-  ( ( W  e.  Grp  /\  ( y ( .s
`  W ) z )  e.  V )  ->  ( ( norm `  G ) `  (
y ( .s `  W ) z ) )  =  ( sqr `  ( ( y ( .s `  W ) z )  .,  (
y ( .s `  W ) z ) ) ) )
127121, 124, 126syl2anc 661 . . . . . 6  |-  ( (
ph  /\  ( y  e.  ( Base `  F
)  /\  z  e.  V ) )  -> 
( ( norm `  G
) `  ( y
( .s `  W
) z ) )  =  ( sqr `  (
( y ( .s
`  W ) z )  .,  ( y ( .s `  W
) z ) ) ) )
128114fveq2d 5716 . . . . . . . . 9  |-  ( (
ph  /\  ( y  e.  ( Base `  F
)  /\  z  e.  V ) )  -> 
( norm `  F )  =  ( norm `  (flds  ( Base `  F ) ) ) )
129128fveq1d 5714 . . . . . . . 8  |-  ( (
ph  /\  ( y  e.  ( Base `  F
)  /\  z  e.  V ) )  -> 
( ( norm `  F
) `  y )  =  ( ( norm `  (flds  (
Base `  F )
) ) `  y
) )
130 subrgsubg 16893 . . . . . . . . . . 11  |-  ( (
Base `  F )  e.  (SubRing ` fld )  ->  ( Base `  F )  e.  (SubGrp ` fld ) )
131107, 130syl 16 . . . . . . . . . 10  |-  ( ph  ->  ( Base `  F
)  e.  (SubGrp ` fld )
)
132131adantr 465 . . . . . . . . 9  |-  ( (
ph  /\  ( y  e.  ( Base `  F
)  /\  z  e.  V ) )  -> 
( Base `  F )  e.  (SubGrp ` fld ) )
133 cnfldnm 20380 . . . . . . . . . 10  |-  abs  =  ( norm ` fld )
134 eqid 2443 . . . . . . . . . 10  |-  ( norm `  (flds  (
Base `  F )
) )  =  (
norm `  (flds  ( Base `  F
) ) )
135108, 133, 134subgnm2 20242 . . . . . . . . 9  |-  ( ( ( Base `  F
)  e.  (SubGrp ` fld )  /\  y  e.  ( Base `  F ) )  ->  ( ( norm `  (flds  (
Base `  F )
) ) `  y
)  =  ( abs `  y ) )
136132, 118, 135syl2anc 661 . . . . . . . 8  |-  ( (
ph  /\  ( y  e.  ( Base `  F
)  /\  z  e.  V ) )  -> 
( ( norm `  (flds  ( Base `  F ) ) ) `
 y )  =  ( abs `  y
) )
137129, 136eqtrd 2475 . . . . . . 7  |-  ( (
ph  /\  ( y  e.  ( Base `  F
)  /\  z  e.  V ) )  -> 
( ( norm `  F
) `  y )  =  ( abs `  y
) )
1382, 125, 5, 6tchnmval 20766 . . . . . . . 8  |-  ( ( W  e.  Grp  /\  z  e.  V )  ->  ( ( norm `  G
) `  z )  =  ( sqr `  (
z  .,  z )
) )
139121, 119, 138syl2anc 661 . . . . . . 7  |-  ( (
ph  /\  ( y  e.  ( Base `  F
)  /\  z  e.  V ) )  -> 
( ( norm `  G
) `  z )  =  ( sqr `  (
z  .,  z )
) )
140137, 139oveq12d 6130 . . . . . 6  |-  ( (
ph  /\  ( y  e.  ( Base `  F
)  /\  z  e.  V ) )  -> 
( ( ( norm `  F ) `  y
)  x.  ( (
norm `  G ) `  z ) )  =  ( ( abs `  y
)  x.  ( sqr `  ( z  .,  z
) ) ) )
141120, 127, 1403eqtr4d 2485 . . . . 5  |-  ( (
ph  /\  ( y  e.  ( Base `  F
)  /\  z  e.  V ) )  -> 
( ( norm `  G
) `  ( y
( .s `  W
) z ) )  =  ( ( (
norm `  F ) `  y )  x.  (
( norm `  G ) `  z ) ) )
142141ralrimivva 2829 . . . 4  |-  ( ph  ->  A. y  e.  (
Base `  F ) A. z  e.  V  ( ( norm `  G
) `  ( y
( .s `  W
) z ) )  =  ( ( (
norm `  F ) `  y )  x.  (
( norm `  G ) `  z ) ) )
1432, 5tchbas 20756 . . . . 5  |-  V  =  ( Base `  G
)
1442, 117tchvsca 20761 . . . . 5  |-  ( .s
`  W )  =  ( .s `  G
)
1452, 14tchsca 20760 . . . . 5  |-  F  =  (Scalar `  G )
146 eqid 2443 . . . . 5  |-  ( norm `  F )  =  (
norm `  F )
147143, 125, 144, 145, 28, 146isnlm 20278 . . . 4  |-  ( G  e. NrmMod 
<->  ( ( G  e. NrmGrp  /\  G  e.  LMod  /\  F  e. NrmRing )  /\  A. y  e.  ( Base `  F ) A. z  e.  V  ( ( norm `  G ) `  ( y ( .s
`  W ) z ) )  =  ( ( ( norm `  F
) `  y )  x.  ( ( norm `  G
) `  z )
) ) )
148112, 142, 147sylanbrc 664 . . 3  |-  ( ph  ->  G  e. NrmMod )
1494, 148, 573jca 1168 . 2  |-  ( ph  ->  ( G  e.  PreHil  /\  G  e. NrmMod  /\  F  =  (flds  (
Base `  F )
) ) )
150 elin 3560 . . . . . 6  |-  ( x  e.  ( ( Base `  F )  i^i  (
0 [,) +oo )
)  <->  ( x  e.  ( Base `  F
)  /\  x  e.  ( 0 [,) +oo ) ) )
151 elrege0 11413 . . . . . . 7  |-  ( x  e.  ( 0 [,) +oo )  <->  ( x  e.  RR  /\  0  <_  x ) )
152151anbi2i 694 . . . . . 6  |-  ( ( x  e.  ( Base `  F )  /\  x  e.  ( 0 [,) +oo ) )  <->  ( x  e.  ( Base `  F
)  /\  ( x  e.  RR  /\  0  <_  x ) ) )
153150, 152bitri 249 . . . . 5  |-  ( x  e.  ( ( Base `  F )  i^i  (
0 [,) +oo )
)  <->  ( x  e.  ( Base `  F
)  /\  ( x  e.  RR  /\  0  <_  x ) ) )
154153, 80syl5bi 217 . . . 4  |-  ( ph  ->  ( x  e.  ( ( Base `  F
)  i^i  ( 0 [,) +oo ) )  ->  ( sqr `  x
)  e.  ( Base `  F ) ) )
155154ralrimiv 2819 . . 3  |-  ( ph  ->  A. x  e.  ( ( Base `  F
)  i^i  ( 0 [,) +oo ) ) ( sqr `  x
)  e.  ( Base `  F ) )
156 sqrf 12872 . . . . 5  |-  sqr : CC
--> CC
157 ffun 5582 . . . . 5  |-  ( sqr
: CC --> CC  ->  Fun 
sqr )
158156, 157ax-mp 5 . . . 4  |-  Fun  sqr
159 inss1 3591 . . . . . 6  |-  ( (
Base `  F )  i^i  ( 0 [,) +oo ) )  C_  ( Base `  F )
160159, 36syl5ss 3388 . . . . 5  |-  ( ph  ->  ( ( Base `  F
)  i^i  ( 0 [,) +oo ) ) 
C_  CC )
161156fdmi 5585 . . . . 5  |-  dom  sqr  =  CC
162160, 161syl6sseqr 3424 . . . 4  |-  ( ph  ->  ( ( Base `  F
)  i^i  ( 0 [,) +oo ) ) 
C_  dom  sqr )
163 funimass4 5763 . . . 4  |-  ( ( Fun  sqr  /\  (
( Base `  F )  i^i  ( 0 [,) +oo ) )  C_  dom  sqr )  ->  ( ( sqr " ( ( Base `  F )  i^i  (
0 [,) +oo )
) )  C_  ( Base `  F )  <->  A. x  e.  ( ( Base `  F
)  i^i  ( 0 [,) +oo ) ) ( sqr `  x
)  e.  ( Base `  F ) ) )
164158, 162, 163sylancr 663 . . 3  |-  ( ph  ->  ( ( sqr " (
( Base `  F )  i^i  ( 0 [,) +oo ) ) )  C_  ( Base `  F )  <->  A. x  e.  ( (
Base `  F )  i^i  ( 0 [,) +oo ) ) ( sqr `  x )  e.  (
Base `  F )
) )
165155, 164mpbird 232 . 2  |-  ( ph  ->  ( sqr " (
( Base `  F )  i^i  ( 0 [,) +oo ) ) )  C_  ( Base `  F )
)
166 eqid 2443 . . . . 5  |-  ( y  e.  V  |->  ( sqr `  ( y  .,  y
) ) )  =  ( y  e.  V  |->  ( sqr `  (
y  .,  y )
) )
16742, 166fmptd 5888 . . . 4  |-  ( ph  ->  ( y  e.  V  |->  ( sqr `  (
y  .,  y )
) ) : V --> CC )
1682, 5, 6tchval 20755 . . . . 5  |-  G  =  ( W toNrmGrp  ( y  e.  V  |->  ( sqr `  ( y  .,  y
) ) ) )
169 cnex 9384 . . . . 5  |-  CC  e.  _V
170168, 5, 169tngnm 20259 . . . 4  |-  ( ( W  e.  Grp  /\  ( y  e.  V  |->  ( sqr `  (
y  .,  y )
) ) : V --> CC )  ->  ( y  e.  V  |->  ( sqr `  ( y  .,  y
) ) )  =  ( norm `  G
) )
17113, 167, 170syl2anc 661 . . 3  |-  ( ph  ->  ( y  e.  V  |->  ( sqr `  (
y  .,  y )
) )  =  (
norm `  G )
)
172171eqcomd 2448 . 2  |-  ( ph  ->  ( norm `  G
)  =  ( y  e.  V  |->  ( sqr `  ( y  .,  y
) ) ) )
1732, 6tchip 20762 . . 3  |-  .,  =  ( .i `  G )
174143, 173, 125, 145, 28iscph 20711 . 2  |-  ( G  e.  CPreHil 
<->  ( ( G  e. 
PreHil  /\  G  e. NrmMod  /\  F  =  (flds  (
Base `  F )
) )  /\  ( sqr " ( ( Base `  F )  i^i  (
0 [,) +oo )
) )  C_  ( Base `  F )  /\  ( norm `  G )  =  ( y  e.  V  |->  ( sqr `  (
y  .,  y )
) ) ) )
175149, 165, 172, 174syl3anbrc 1172 1  |-  ( ph  ->  G  e.  CPreHil )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 965    = wceq 1369    e. wcel 1756   A.wral 2736    i^i cin 3348    C_ wss 3349   class class class wbr 4313    e. cmpt 4371   dom cdm 4861   "cima 4864   Fun wfun 5433   -->wf 5435   ` cfv 5439  (class class class)co 6112   CCcc 9301   RRcr 9302   0cc0 9303    + caddc 9306    x. cmul 9308   +oocpnf 9436    <_ cle 9440   2c2 10392   [,)cico 11323   ^cexp 11886   sqrcsqr 12743   abscabs 12744   Basecbs 14195   ↾s cress 14196  Scalarcsca 14262   .scvsca 14263   .icip 14264   0gc0g 14399   Grpcgrp 15431   -gcsg 15434  SubGrpcsubg 15696   DivRingcdr 16854  SubRingcsubrg 16883   LModclmod 16970   LVecclvec 17205  ℂfldccnfld 17840   PreHilcphl 18075   normcnm 20191  NrmGrpcngp 20192  NrmRingcnrg 20194  NrmModcnlm 20195  CModcclm 20656   CPreHilccph 20707  toCHilctch 20708
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4424  ax-sep 4434  ax-nul 4442  ax-pow 4491  ax-pr 4552  ax-un 6393  ax-cnex 9359  ax-resscn 9360  ax-1cn 9361  ax-icn 9362  ax-addcl 9363  ax-addrcl 9364  ax-mulcl 9365  ax-mulrcl 9366  ax-mulcom 9367  ax-addass 9368  ax-mulass 9369  ax-distr 9370  ax-i2m1 9371  ax-1ne0 9372  ax-1rid 9373  ax-rnegex 9374  ax-rrecex 9375  ax-cnre 9376  ax-pre-lttri 9377  ax-pre-lttrn 9378  ax-pre-ltadd 9379  ax-pre-mulgt0 9380  ax-pre-sup 9381  ax-addf 9382  ax-mulf 9383
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2577  df-ne 2622  df-nel 2623  df-ral 2741  df-rex 2742  df-reu 2743  df-rmo 2744  df-rab 2745  df-v 2995  df-sbc 3208  df-csb 3310  df-dif 3352  df-un 3354  df-in 3356  df-ss 3363  df-pss 3365  df-nul 3659  df-if 3813  df-pw 3883  df-sn 3899  df-pr 3901  df-tp 3903  df-op 3905  df-uni 4113  df-int 4150  df-iun 4194  df-br 4314  df-opab 4372  df-mpt 4373  df-tr 4407  df-eprel 4653  df-id 4657  df-po 4662  df-so 4663  df-fr 4700  df-we 4702  df-ord 4743  df-on 4744  df-lim 4745  df-suc 4746  df-xp 4867  df-rel 4868  df-cnv 4869  df-co 4870  df-dm 4871  df-rn 4872  df-res 4873  df-ima 4874  df-iota 5402  df-fun 5441  df-fn 5442  df-f 5443  df-f1 5444  df-fo 5445  df-f1o 5446  df-fv 5447  df-riota 6073  df-ov 6115  df-oprab 6116  df-mpt2 6117  df-om 6498  df-1st 6598  df-2nd 6599  df-tpos 6766  df-recs 6853  df-rdg 6887  df-1o 6941  df-oadd 6945  df-er 7122  df-map 7237  df-en 7332  df-dom 7333  df-sdom 7334  df-fin 7335  df-sup 7712  df-pnf 9441  df-mnf 9442  df-xr 9443  df-ltxr 9444  df-le 9445  df-sub 9618  df-neg 9619  df-div 10015  df-nn 10344  df-2 10401  df-3 10402  df-4 10403  df-5 10404  df-6 10405  df-7 10406  df-8 10407  df-9 10408  df-10 10409  df-n0 10601  df-z 10668  df-dec 10777  df-uz 10883  df-q 10975  df-rp 11013  df-xneg 11110  df-xadd 11111  df-xmul 11112  df-ico 11327  df-fz 11459  df-seq 11828  df-exp 11887  df-cj 12609  df-re 12610  df-im 12611  df-sqr 12745  df-abs 12746  df-struct 14197  df-ndx 14198  df-slot 14199  df-base 14200  df-sets 14201  df-ress 14202  df-plusg 14272  df-mulr 14273  df-starv 14274  df-sca 14275  df-vsca 14276  df-ip 14277  df-tset 14278  df-ple 14279  df-ds 14281  df-unif 14282  df-rest 14382  df-topn 14383  df-0g 14401  df-topgen 14403  df-mnd 15436  df-mhm 15485  df-grp 15566  df-minusg 15567  df-sbg 15568  df-subg 15699  df-ghm 15766  df-cmn 16300  df-abl 16301  df-mgp 16614  df-ur 16626  df-rng 16669  df-cring 16670  df-oppr 16737  df-dvdsr 16755  df-unit 16756  df-invr 16786  df-dvr 16797  df-rnghom 16828  df-drng 16856  df-subrg 16885  df-abv 16924  df-staf 16952  df-srng 16953  df-lmod 16972  df-lmhm 17125  df-lvec 17206  df-sra 17275  df-rgmod 17276  df-psmet 17831  df-xmet 17832  df-met 17833  df-bl 17834  df-mopn 17835  df-cnfld 17841  df-phl 18077  df-top 18525  df-bases 18527  df-topon 18528  df-topsp 18529  df-xms 19917  df-ms 19918  df-nm 20197  df-ngp 20198  df-tng 20199  df-nrg 20200  df-nlm 20201  df-clm 20657  df-cph 20709  df-tch 20710
This theorem is referenced by:  rrxcph  20918
  Copyright terms: Public domain W3C validator