Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  tbw-bijust Structured version   Unicode version

Theorem tbw-bijust 1578
 Description: Justification for tbw-negdf 1579. (Contributed by Anthony Hart, 15-Aug-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
tbw-bijust

Proof of Theorem tbw-bijust
StepHypRef Expression
1 dfbi1 195 . 2
2 pm2.21 112 . . . . 5
32imim2i 16 . . . 4
4 id 23 . . . . . 6
5 falim 1452 . . . . . 6
64, 5ja 165 . . . . 5
76imim2i 16 . . . 4
83, 7impbii 191 . . 3
98notbii 298 . 2
10 pm2.21 112 . . 3
11 ax-1 6 . . . . 5
12 falim 1452 . . . . 5
1311, 12ja 165 . . . 4
1413pm2.43i 50 . . 3
1510, 14impbii 191 . 2
161, 9, 153bitri 275 1
 Colors of variables: wff setvar class Syntax hints:   wn 3   wi 4   wb 188   wfal 1443 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8 This theorem depends on definitions:  df-bi 189  df-tru 1441  df-fal 1444 This theorem is referenced by:  tbw-negdf  1579
 Copyright terms: Public domain W3C validator