MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  taylthlem1 Structured version   Visualization version   Unicode version

Theorem taylthlem1 23328
Description: Lemma for taylth 23330. This is the main part of Taylor's theorem, except for the induction step, which is supposed to be proven using L'Hôpital's rule. However, since our proof of L'Hôpital assumes that  S  =  RR, we can only do this part generically, and for taylth 23330 itself we must restrict to  RR. (Contributed by Mario Carneiro, 1-Jan-2017.)
Hypotheses
Ref Expression
taylthlem1.s  |-  ( ph  ->  S  e.  { RR ,  CC } )
taylthlem1.f  |-  ( ph  ->  F : A --> CC )
taylthlem1.a  |-  ( ph  ->  A  C_  S )
taylthlem1.d  |-  ( ph  ->  dom  ( ( S  Dn F ) `
 N )  =  A )
taylthlem1.n  |-  ( ph  ->  N  e.  NN )
taylthlem1.b  |-  ( ph  ->  B  e.  A )
taylthlem1.t  |-  T  =  ( N ( S Tayl 
F ) B )
taylthlem1.r  |-  R  =  ( x  e.  ( A  \  { B } )  |->  ( ( ( F `  x
)  -  ( T `
 x ) )  /  ( ( x  -  B ) ^ N ) ) )
taylthlem1.i  |-  ( (
ph  /\  ( n  e.  ( 1..^ N )  /\  0  e.  ( ( y  e.  ( A  \  { B } )  |->  ( ( ( ( ( S  Dn F ) `
 ( N  -  n ) ) `  y )  -  (
( ( CC  Dn T ) `  ( N  -  n
) ) `  y
) )  /  (
( y  -  B
) ^ n ) ) ) lim CC  B
) ) )  -> 
0  e.  ( ( x  e.  ( A 
\  { B }
)  |->  ( ( ( ( ( S  Dn F ) `  ( N  -  (
n  +  1 ) ) ) `  x
)  -  ( ( ( CC  Dn
T ) `  ( N  -  ( n  +  1 ) ) ) `  x ) )  /  ( ( x  -  B ) ^ ( n  + 
1 ) ) ) ) lim CC  B ) )
Assertion
Ref Expression
taylthlem1  |-  ( ph  ->  0  e.  ( R lim
CC  B ) )
Distinct variable groups:    x, n, y, A    B, n, x, y    n, F, x, y    ph, n, x, y   
n, N, x, y    S, n, x, y    T, n, x, y
Allowed substitution hints:    R( x, y, n)

Proof of Theorem taylthlem1
Dummy variable  m is distinct from all other variables.
StepHypRef Expression
1 taylthlem1.n . . . 4  |-  ( ph  ->  N  e.  NN )
2 elfz1end 11829 . . . 4  |-  ( N  e.  NN  <->  N  e.  ( 1 ... N
) )
31, 2sylib 200 . . 3  |-  ( ph  ->  N  e.  ( 1 ... N ) )
4 oveq2 6298 . . . . . . . . . . . 12  |-  ( m  =  1  ->  ( N  -  m )  =  ( N  - 
1 ) )
54fveq2d 5869 . . . . . . . . . . 11  |-  ( m  =  1  ->  (
( S  Dn
F ) `  ( N  -  m )
)  =  ( ( S  Dn F ) `  ( N  -  1 ) ) )
65fveq1d 5867 . . . . . . . . . 10  |-  ( m  =  1  ->  (
( ( S  Dn F ) `  ( N  -  m
) ) `  x
)  =  ( ( ( S  Dn
F ) `  ( N  -  1 ) ) `  x ) )
74fveq2d 5869 . . . . . . . . . . 11  |-  ( m  =  1  ->  (
( CC  Dn
T ) `  ( N  -  m )
)  =  ( ( CC  Dn T ) `  ( N  -  1 ) ) )
87fveq1d 5867 . . . . . . . . . 10  |-  ( m  =  1  ->  (
( ( CC  Dn T ) `  ( N  -  m
) ) `  x
)  =  ( ( ( CC  Dn
T ) `  ( N  -  1 ) ) `  x ) )
96, 8oveq12d 6308 . . . . . . . . 9  |-  ( m  =  1  ->  (
( ( ( S  Dn F ) `
 ( N  -  m ) ) `  x )  -  (
( ( CC  Dn T ) `  ( N  -  m
) ) `  x
) )  =  ( ( ( ( S  Dn F ) `
 ( N  - 
1 ) ) `  x )  -  (
( ( CC  Dn T ) `  ( N  -  1
) ) `  x
) ) )
10 oveq2 6298 . . . . . . . . 9  |-  ( m  =  1  ->  (
( x  -  B
) ^ m )  =  ( ( x  -  B ) ^
1 ) )
119, 10oveq12d 6308 . . . . . . . 8  |-  ( m  =  1  ->  (
( ( ( ( S  Dn F ) `  ( N  -  m ) ) `
 x )  -  ( ( ( CC  Dn T ) `
 ( N  -  m ) ) `  x ) )  / 
( ( x  -  B ) ^ m
) )  =  ( ( ( ( ( S  Dn F ) `  ( N  -  1 ) ) `
 x )  -  ( ( ( CC  Dn T ) `
 ( N  - 
1 ) ) `  x ) )  / 
( ( x  -  B ) ^ 1 ) ) )
1211mpteq2dv 4490 . . . . . . 7  |-  ( m  =  1  ->  (
x  e.  ( A 
\  { B }
)  |->  ( ( ( ( ( S  Dn F ) `  ( N  -  m
) ) `  x
)  -  ( ( ( CC  Dn
T ) `  ( N  -  m )
) `  x )
)  /  ( ( x  -  B ) ^ m ) ) )  =  ( x  e.  ( A  \  { B } )  |->  ( ( ( ( ( S  Dn F ) `  ( N  -  1 ) ) `
 x )  -  ( ( ( CC  Dn T ) `
 ( N  - 
1 ) ) `  x ) )  / 
( ( x  -  B ) ^ 1 ) ) ) )
1312oveq1d 6305 . . . . . 6  |-  ( m  =  1  ->  (
( x  e.  ( A  \  { B } )  |->  ( ( ( ( ( S  Dn F ) `
 ( N  -  m ) ) `  x )  -  (
( ( CC  Dn T ) `  ( N  -  m
) ) `  x
) )  /  (
( x  -  B
) ^ m ) ) ) lim CC  B
)  =  ( ( x  e.  ( A 
\  { B }
)  |->  ( ( ( ( ( S  Dn F ) `  ( N  -  1
) ) `  x
)  -  ( ( ( CC  Dn
T ) `  ( N  -  1 ) ) `  x ) )  /  ( ( x  -  B ) ^ 1 ) ) ) lim CC  B ) )
1413eleq2d 2514 . . . . 5  |-  ( m  =  1  ->  (
0  e.  ( ( x  e.  ( A 
\  { B }
)  |->  ( ( ( ( ( S  Dn F ) `  ( N  -  m
) ) `  x
)  -  ( ( ( CC  Dn
T ) `  ( N  -  m )
) `  x )
)  /  ( ( x  -  B ) ^ m ) ) ) lim CC  B )  <->  0  e.  ( ( x  e.  ( A 
\  { B }
)  |->  ( ( ( ( ( S  Dn F ) `  ( N  -  1
) ) `  x
)  -  ( ( ( CC  Dn
T ) `  ( N  -  1 ) ) `  x ) )  /  ( ( x  -  B ) ^ 1 ) ) ) lim CC  B ) ) )
1514imbi2d 318 . . . 4  |-  ( m  =  1  ->  (
( ph  ->  0  e.  ( ( x  e.  ( A  \  { B } )  |->  ( ( ( ( ( S  Dn F ) `
 ( N  -  m ) ) `  x )  -  (
( ( CC  Dn T ) `  ( N  -  m
) ) `  x
) )  /  (
( x  -  B
) ^ m ) ) ) lim CC  B
) )  <->  ( ph  ->  0  e.  ( ( x  e.  ( A 
\  { B }
)  |->  ( ( ( ( ( S  Dn F ) `  ( N  -  1
) ) `  x
)  -  ( ( ( CC  Dn
T ) `  ( N  -  1 ) ) `  x ) )  /  ( ( x  -  B ) ^ 1 ) ) ) lim CC  B ) ) ) )
16 oveq2 6298 . . . . . . . . . . . . 13  |-  ( m  =  n  ->  ( N  -  m )  =  ( N  -  n ) )
1716fveq2d 5869 . . . . . . . . . . . 12  |-  ( m  =  n  ->  (
( S  Dn
F ) `  ( N  -  m )
)  =  ( ( S  Dn F ) `  ( N  -  n ) ) )
1817fveq1d 5867 . . . . . . . . . . 11  |-  ( m  =  n  ->  (
( ( S  Dn F ) `  ( N  -  m
) ) `  x
)  =  ( ( ( S  Dn
F ) `  ( N  -  n )
) `  x )
)
1916fveq2d 5869 . . . . . . . . . . . 12  |-  ( m  =  n  ->  (
( CC  Dn
T ) `  ( N  -  m )
)  =  ( ( CC  Dn T ) `  ( N  -  n ) ) )
2019fveq1d 5867 . . . . . . . . . . 11  |-  ( m  =  n  ->  (
( ( CC  Dn T ) `  ( N  -  m
) ) `  x
)  =  ( ( ( CC  Dn
T ) `  ( N  -  n )
) `  x )
)
2118, 20oveq12d 6308 . . . . . . . . . 10  |-  ( m  =  n  ->  (
( ( ( S  Dn F ) `
 ( N  -  m ) ) `  x )  -  (
( ( CC  Dn T ) `  ( N  -  m
) ) `  x
) )  =  ( ( ( ( S  Dn F ) `
 ( N  -  n ) ) `  x )  -  (
( ( CC  Dn T ) `  ( N  -  n
) ) `  x
) ) )
22 oveq2 6298 . . . . . . . . . 10  |-  ( m  =  n  ->  (
( x  -  B
) ^ m )  =  ( ( x  -  B ) ^
n ) )
2321, 22oveq12d 6308 . . . . . . . . 9  |-  ( m  =  n  ->  (
( ( ( ( S  Dn F ) `  ( N  -  m ) ) `
 x )  -  ( ( ( CC  Dn T ) `
 ( N  -  m ) ) `  x ) )  / 
( ( x  -  B ) ^ m
) )  =  ( ( ( ( ( S  Dn F ) `  ( N  -  n ) ) `
 x )  -  ( ( ( CC  Dn T ) `
 ( N  -  n ) ) `  x ) )  / 
( ( x  -  B ) ^ n
) ) )
2423mpteq2dv 4490 . . . . . . . 8  |-  ( m  =  n  ->  (
x  e.  ( A 
\  { B }
)  |->  ( ( ( ( ( S  Dn F ) `  ( N  -  m
) ) `  x
)  -  ( ( ( CC  Dn
T ) `  ( N  -  m )
) `  x )
)  /  ( ( x  -  B ) ^ m ) ) )  =  ( x  e.  ( A  \  { B } )  |->  ( ( ( ( ( S  Dn F ) `  ( N  -  n ) ) `
 x )  -  ( ( ( CC  Dn T ) `
 ( N  -  n ) ) `  x ) )  / 
( ( x  -  B ) ^ n
) ) ) )
25 fveq2 5865 . . . . . . . . . . 11  |-  ( x  =  y  ->  (
( ( S  Dn F ) `  ( N  -  n
) ) `  x
)  =  ( ( ( S  Dn
F ) `  ( N  -  n )
) `  y )
)
26 fveq2 5865 . . . . . . . . . . 11  |-  ( x  =  y  ->  (
( ( CC  Dn T ) `  ( N  -  n
) ) `  x
)  =  ( ( ( CC  Dn
T ) `  ( N  -  n )
) `  y )
)
2725, 26oveq12d 6308 . . . . . . . . . 10  |-  ( x  =  y  ->  (
( ( ( S  Dn F ) `
 ( N  -  n ) ) `  x )  -  (
( ( CC  Dn T ) `  ( N  -  n
) ) `  x
) )  =  ( ( ( ( S  Dn F ) `
 ( N  -  n ) ) `  y )  -  (
( ( CC  Dn T ) `  ( N  -  n
) ) `  y
) ) )
28 oveq1 6297 . . . . . . . . . . 11  |-  ( x  =  y  ->  (
x  -  B )  =  ( y  -  B ) )
2928oveq1d 6305 . . . . . . . . . 10  |-  ( x  =  y  ->  (
( x  -  B
) ^ n )  =  ( ( y  -  B ) ^
n ) )
3027, 29oveq12d 6308 . . . . . . . . 9  |-  ( x  =  y  ->  (
( ( ( ( S  Dn F ) `  ( N  -  n ) ) `
 x )  -  ( ( ( CC  Dn T ) `
 ( N  -  n ) ) `  x ) )  / 
( ( x  -  B ) ^ n
) )  =  ( ( ( ( ( S  Dn F ) `  ( N  -  n ) ) `
 y )  -  ( ( ( CC  Dn T ) `
 ( N  -  n ) ) `  y ) )  / 
( ( y  -  B ) ^ n
) ) )
3130cbvmptv 4495 . . . . . . . 8  |-  ( x  e.  ( A  \  { B } )  |->  ( ( ( ( ( S  Dn F ) `  ( N  -  n ) ) `
 x )  -  ( ( ( CC  Dn T ) `
 ( N  -  n ) ) `  x ) )  / 
( ( x  -  B ) ^ n
) ) )  =  ( y  e.  ( A  \  { B } )  |->  ( ( ( ( ( S  Dn F ) `
 ( N  -  n ) ) `  y )  -  (
( ( CC  Dn T ) `  ( N  -  n
) ) `  y
) )  /  (
( y  -  B
) ^ n ) ) )
3224, 31syl6eq 2501 . . . . . . 7  |-  ( m  =  n  ->  (
x  e.  ( A 
\  { B }
)  |->  ( ( ( ( ( S  Dn F ) `  ( N  -  m
) ) `  x
)  -  ( ( ( CC  Dn
T ) `  ( N  -  m )
) `  x )
)  /  ( ( x  -  B ) ^ m ) ) )  =  ( y  e.  ( A  \  { B } )  |->  ( ( ( ( ( S  Dn F ) `  ( N  -  n ) ) `
 y )  -  ( ( ( CC  Dn T ) `
 ( N  -  n ) ) `  y ) )  / 
( ( y  -  B ) ^ n
) ) ) )
3332oveq1d 6305 . . . . . 6  |-  ( m  =  n  ->  (
( x  e.  ( A  \  { B } )  |->  ( ( ( ( ( S  Dn F ) `
 ( N  -  m ) ) `  x )  -  (
( ( CC  Dn T ) `  ( N  -  m
) ) `  x
) )  /  (
( x  -  B
) ^ m ) ) ) lim CC  B
)  =  ( ( y  e.  ( A 
\  { B }
)  |->  ( ( ( ( ( S  Dn F ) `  ( N  -  n
) ) `  y
)  -  ( ( ( CC  Dn
T ) `  ( N  -  n )
) `  y )
)  /  ( ( y  -  B ) ^ n ) ) ) lim CC  B ) )
3433eleq2d 2514 . . . . 5  |-  ( m  =  n  ->  (
0  e.  ( ( x  e.  ( A 
\  { B }
)  |->  ( ( ( ( ( S  Dn F ) `  ( N  -  m
) ) `  x
)  -  ( ( ( CC  Dn
T ) `  ( N  -  m )
) `  x )
)  /  ( ( x  -  B ) ^ m ) ) ) lim CC  B )  <->  0  e.  ( ( y  e.  ( A 
\  { B }
)  |->  ( ( ( ( ( S  Dn F ) `  ( N  -  n
) ) `  y
)  -  ( ( ( CC  Dn
T ) `  ( N  -  n )
) `  y )
)  /  ( ( y  -  B ) ^ n ) ) ) lim CC  B ) ) )
3534imbi2d 318 . . . 4  |-  ( m  =  n  ->  (
( ph  ->  0  e.  ( ( x  e.  ( A  \  { B } )  |->  ( ( ( ( ( S  Dn F ) `
 ( N  -  m ) ) `  x )  -  (
( ( CC  Dn T ) `  ( N  -  m
) ) `  x
) )  /  (
( x  -  B
) ^ m ) ) ) lim CC  B
) )  <->  ( ph  ->  0  e.  ( ( y  e.  ( A 
\  { B }
)  |->  ( ( ( ( ( S  Dn F ) `  ( N  -  n
) ) `  y
)  -  ( ( ( CC  Dn
T ) `  ( N  -  n )
) `  y )
)  /  ( ( y  -  B ) ^ n ) ) ) lim CC  B ) ) ) )
36 oveq2 6298 . . . . . . . . . . . 12  |-  ( m  =  ( n  + 
1 )  ->  ( N  -  m )  =  ( N  -  ( n  +  1
) ) )
3736fveq2d 5869 . . . . . . . . . . 11  |-  ( m  =  ( n  + 
1 )  ->  (
( S  Dn
F ) `  ( N  -  m )
)  =  ( ( S  Dn F ) `  ( N  -  ( n  + 
1 ) ) ) )
3837fveq1d 5867 . . . . . . . . . 10  |-  ( m  =  ( n  + 
1 )  ->  (
( ( S  Dn F ) `  ( N  -  m
) ) `  x
)  =  ( ( ( S  Dn
F ) `  ( N  -  ( n  +  1 ) ) ) `  x ) )
3936fveq2d 5869 . . . . . . . . . . 11  |-  ( m  =  ( n  + 
1 )  ->  (
( CC  Dn
T ) `  ( N  -  m )
)  =  ( ( CC  Dn T ) `  ( N  -  ( n  + 
1 ) ) ) )
4039fveq1d 5867 . . . . . . . . . 10  |-  ( m  =  ( n  + 
1 )  ->  (
( ( CC  Dn T ) `  ( N  -  m
) ) `  x
)  =  ( ( ( CC  Dn
T ) `  ( N  -  ( n  +  1 ) ) ) `  x ) )
4138, 40oveq12d 6308 . . . . . . . . 9  |-  ( m  =  ( n  + 
1 )  ->  (
( ( ( S  Dn F ) `
 ( N  -  m ) ) `  x )  -  (
( ( CC  Dn T ) `  ( N  -  m
) ) `  x
) )  =  ( ( ( ( S  Dn F ) `
 ( N  -  ( n  +  1
) ) ) `  x )  -  (
( ( CC  Dn T ) `  ( N  -  (
n  +  1 ) ) ) `  x
) ) )
42 oveq2 6298 . . . . . . . . 9  |-  ( m  =  ( n  + 
1 )  ->  (
( x  -  B
) ^ m )  =  ( ( x  -  B ) ^
( n  +  1 ) ) )
4341, 42oveq12d 6308 . . . . . . . 8  |-  ( m  =  ( n  + 
1 )  ->  (
( ( ( ( S  Dn F ) `  ( N  -  m ) ) `
 x )  -  ( ( ( CC  Dn T ) `
 ( N  -  m ) ) `  x ) )  / 
( ( x  -  B ) ^ m
) )  =  ( ( ( ( ( S  Dn F ) `  ( N  -  ( n  + 
1 ) ) ) `
 x )  -  ( ( ( CC  Dn T ) `
 ( N  -  ( n  +  1
) ) ) `  x ) )  / 
( ( x  -  B ) ^ (
n  +  1 ) ) ) )
4443mpteq2dv 4490 . . . . . . 7  |-  ( m  =  ( n  + 
1 )  ->  (
x  e.  ( A 
\  { B }
)  |->  ( ( ( ( ( S  Dn F ) `  ( N  -  m
) ) `  x
)  -  ( ( ( CC  Dn
T ) `  ( N  -  m )
) `  x )
)  /  ( ( x  -  B ) ^ m ) ) )  =  ( x  e.  ( A  \  { B } )  |->  ( ( ( ( ( S  Dn F ) `  ( N  -  ( n  + 
1 ) ) ) `
 x )  -  ( ( ( CC  Dn T ) `
 ( N  -  ( n  +  1
) ) ) `  x ) )  / 
( ( x  -  B ) ^ (
n  +  1 ) ) ) ) )
4544oveq1d 6305 . . . . . 6  |-  ( m  =  ( n  + 
1 )  ->  (
( x  e.  ( A  \  { B } )  |->  ( ( ( ( ( S  Dn F ) `
 ( N  -  m ) ) `  x )  -  (
( ( CC  Dn T ) `  ( N  -  m
) ) `  x
) )  /  (
( x  -  B
) ^ m ) ) ) lim CC  B
)  =  ( ( x  e.  ( A 
\  { B }
)  |->  ( ( ( ( ( S  Dn F ) `  ( N  -  (
n  +  1 ) ) ) `  x
)  -  ( ( ( CC  Dn
T ) `  ( N  -  ( n  +  1 ) ) ) `  x ) )  /  ( ( x  -  B ) ^ ( n  + 
1 ) ) ) ) lim CC  B ) )
4645eleq2d 2514 . . . . 5  |-  ( m  =  ( n  + 
1 )  ->  (
0  e.  ( ( x  e.  ( A 
\  { B }
)  |->  ( ( ( ( ( S  Dn F ) `  ( N  -  m
) ) `  x
)  -  ( ( ( CC  Dn
T ) `  ( N  -  m )
) `  x )
)  /  ( ( x  -  B ) ^ m ) ) ) lim CC  B )  <->  0  e.  ( ( x  e.  ( A 
\  { B }
)  |->  ( ( ( ( ( S  Dn F ) `  ( N  -  (
n  +  1 ) ) ) `  x
)  -  ( ( ( CC  Dn
T ) `  ( N  -  ( n  +  1 ) ) ) `  x ) )  /  ( ( x  -  B ) ^ ( n  + 
1 ) ) ) ) lim CC  B ) ) )
4746imbi2d 318 . . . 4  |-  ( m  =  ( n  + 
1 )  ->  (
( ph  ->  0  e.  ( ( x  e.  ( A  \  { B } )  |->  ( ( ( ( ( S  Dn F ) `
 ( N  -  m ) ) `  x )  -  (
( ( CC  Dn T ) `  ( N  -  m
) ) `  x
) )  /  (
( x  -  B
) ^ m ) ) ) lim CC  B
) )  <->  ( ph  ->  0  e.  ( ( x  e.  ( A 
\  { B }
)  |->  ( ( ( ( ( S  Dn F ) `  ( N  -  (
n  +  1 ) ) ) `  x
)  -  ( ( ( CC  Dn
T ) `  ( N  -  ( n  +  1 ) ) ) `  x ) )  /  ( ( x  -  B ) ^ ( n  + 
1 ) ) ) ) lim CC  B ) ) ) )
48 oveq2 6298 . . . . . . . . . . . 12  |-  ( m  =  N  ->  ( N  -  m )  =  ( N  -  N ) )
4948fveq2d 5869 . . . . . . . . . . 11  |-  ( m  =  N  ->  (
( S  Dn
F ) `  ( N  -  m )
)  =  ( ( S  Dn F ) `  ( N  -  N ) ) )
5049fveq1d 5867 . . . . . . . . . 10  |-  ( m  =  N  ->  (
( ( S  Dn F ) `  ( N  -  m
) ) `  x
)  =  ( ( ( S  Dn
F ) `  ( N  -  N )
) `  x )
)
5148fveq2d 5869 . . . . . . . . . . 11  |-  ( m  =  N  ->  (
( CC  Dn
T ) `  ( N  -  m )
)  =  ( ( CC  Dn T ) `  ( N  -  N ) ) )
5251fveq1d 5867 . . . . . . . . . 10  |-  ( m  =  N  ->  (
( ( CC  Dn T ) `  ( N  -  m
) ) `  x
)  =  ( ( ( CC  Dn
T ) `  ( N  -  N )
) `  x )
)
5350, 52oveq12d 6308 . . . . . . . . 9  |-  ( m  =  N  ->  (
( ( ( S  Dn F ) `
 ( N  -  m ) ) `  x )  -  (
( ( CC  Dn T ) `  ( N  -  m
) ) `  x
) )  =  ( ( ( ( S  Dn F ) `
 ( N  -  N ) ) `  x )  -  (
( ( CC  Dn T ) `  ( N  -  N
) ) `  x
) ) )
54 oveq2 6298 . . . . . . . . 9  |-  ( m  =  N  ->  (
( x  -  B
) ^ m )  =  ( ( x  -  B ) ^ N ) )
5553, 54oveq12d 6308 . . . . . . . 8  |-  ( m  =  N  ->  (
( ( ( ( S  Dn F ) `  ( N  -  m ) ) `
 x )  -  ( ( ( CC  Dn T ) `
 ( N  -  m ) ) `  x ) )  / 
( ( x  -  B ) ^ m
) )  =  ( ( ( ( ( S  Dn F ) `  ( N  -  N ) ) `
 x )  -  ( ( ( CC  Dn T ) `
 ( N  -  N ) ) `  x ) )  / 
( ( x  -  B ) ^ N
) ) )
5655mpteq2dv 4490 . . . . . . 7  |-  ( m  =  N  ->  (
x  e.  ( A 
\  { B }
)  |->  ( ( ( ( ( S  Dn F ) `  ( N  -  m
) ) `  x
)  -  ( ( ( CC  Dn
T ) `  ( N  -  m )
) `  x )
)  /  ( ( x  -  B ) ^ m ) ) )  =  ( x  e.  ( A  \  { B } )  |->  ( ( ( ( ( S  Dn F ) `  ( N  -  N ) ) `
 x )  -  ( ( ( CC  Dn T ) `
 ( N  -  N ) ) `  x ) )  / 
( ( x  -  B ) ^ N
) ) ) )
5756oveq1d 6305 . . . . . 6  |-  ( m  =  N  ->  (
( x  e.  ( A  \  { B } )  |->  ( ( ( ( ( S  Dn F ) `
 ( N  -  m ) ) `  x )  -  (
( ( CC  Dn T ) `  ( N  -  m
) ) `  x
) )  /  (
( x  -  B
) ^ m ) ) ) lim CC  B
)  =  ( ( x  e.  ( A 
\  { B }
)  |->  ( ( ( ( ( S  Dn F ) `  ( N  -  N
) ) `  x
)  -  ( ( ( CC  Dn
T ) `  ( N  -  N )
) `  x )
)  /  ( ( x  -  B ) ^ N ) ) ) lim CC  B ) )
5857eleq2d 2514 . . . . 5  |-  ( m  =  N  ->  (
0  e.  ( ( x  e.  ( A 
\  { B }
)  |->  ( ( ( ( ( S  Dn F ) `  ( N  -  m
) ) `  x
)  -  ( ( ( CC  Dn
T ) `  ( N  -  m )
) `  x )
)  /  ( ( x  -  B ) ^ m ) ) ) lim CC  B )  <->  0  e.  ( ( x  e.  ( A 
\  { B }
)  |->  ( ( ( ( ( S  Dn F ) `  ( N  -  N
) ) `  x
)  -  ( ( ( CC  Dn
T ) `  ( N  -  N )
) `  x )
)  /  ( ( x  -  B ) ^ N ) ) ) lim CC  B ) ) )
5958imbi2d 318 . . . 4  |-  ( m  =  N  ->  (
( ph  ->  0  e.  ( ( x  e.  ( A  \  { B } )  |->  ( ( ( ( ( S  Dn F ) `
 ( N  -  m ) ) `  x )  -  (
( ( CC  Dn T ) `  ( N  -  m
) ) `  x
) )  /  (
( x  -  B
) ^ m ) ) ) lim CC  B
) )  <->  ( ph  ->  0  e.  ( ( x  e.  ( A 
\  { B }
)  |->  ( ( ( ( ( S  Dn F ) `  ( N  -  N
) ) `  x
)  -  ( ( ( CC  Dn
T ) `  ( N  -  N )
) `  x )
)  /  ( ( x  -  B ) ^ N ) ) ) lim CC  B ) ) ) )
60 taylthlem1.b . . . . . . . . . . . 12  |-  ( ph  ->  B  e.  A )
61 fveq2 5865 . . . . . . . . . . . . . 14  |-  ( y  =  B  ->  (
( ( S  Dn F ) `  N ) `  y
)  =  ( ( ( S  Dn
F ) `  N
) `  B )
)
62 fveq2 5865 . . . . . . . . . . . . . 14  |-  ( y  =  B  ->  (
( ( CC  Dn T ) `  N ) `  y
)  =  ( ( ( CC  Dn
T ) `  N
) `  B )
)
6361, 62oveq12d 6308 . . . . . . . . . . . . 13  |-  ( y  =  B  ->  (
( ( ( S  Dn F ) `
 N ) `  y )  -  (
( ( CC  Dn T ) `  N ) `  y
) )  =  ( ( ( ( S  Dn F ) `
 N ) `  B )  -  (
( ( CC  Dn T ) `  N ) `  B
) ) )
64 eqid 2451 . . . . . . . . . . . . 13  |-  ( y  e.  A  |->  ( ( ( ( S  Dn F ) `  N ) `  y
)  -  ( ( ( CC  Dn
T ) `  N
) `  y )
) )  =  ( y  e.  A  |->  ( ( ( ( S  Dn F ) `
 N ) `  y )  -  (
( ( CC  Dn T ) `  N ) `  y
) ) )
65 ovex 6318 . . . . . . . . . . . . 13  |-  ( ( ( ( S  Dn F ) `  N ) `  B
)  -  ( ( ( CC  Dn
T ) `  N
) `  B )
)  e.  _V
6663, 64, 65fvmpt 5948 . . . . . . . . . . . 12  |-  ( B  e.  A  ->  (
( y  e.  A  |->  ( ( ( ( S  Dn F ) `  N ) `
 y )  -  ( ( ( CC  Dn T ) `
 N ) `  y ) ) ) `
 B )  =  ( ( ( ( S  Dn F ) `  N ) `
 B )  -  ( ( ( CC  Dn T ) `
 N ) `  B ) ) )
6760, 66syl 17 . . . . . . . . . . 11  |-  ( ph  ->  ( ( y  e.  A  |->  ( ( ( ( S  Dn
F ) `  N
) `  y )  -  ( ( ( CC  Dn T ) `  N ) `
 y ) ) ) `  B )  =  ( ( ( ( S  Dn
F ) `  N
) `  B )  -  ( ( ( CC  Dn T ) `  N ) `
 B ) ) )
68 taylthlem1.s . . . . . . . . . . . . 13  |-  ( ph  ->  S  e.  { RR ,  CC } )
69 taylthlem1.f . . . . . . . . . . . . 13  |-  ( ph  ->  F : A --> CC )
70 taylthlem1.a . . . . . . . . . . . . 13  |-  ( ph  ->  A  C_  S )
711nnnn0d 10925 . . . . . . . . . . . . . . 15  |-  ( ph  ->  N  e.  NN0 )
72 nn0uz 11193 . . . . . . . . . . . . . . 15  |-  NN0  =  ( ZZ>= `  0 )
7371, 72syl6eleq 2539 . . . . . . . . . . . . . 14  |-  ( ph  ->  N  e.  ( ZZ>= ` 
0 ) )
74 eluzfz2b 11808 . . . . . . . . . . . . . 14  |-  ( N  e.  ( ZZ>= `  0
)  <->  N  e.  (
0 ... N ) )
7573, 74sylib 200 . . . . . . . . . . . . 13  |-  ( ph  ->  N  e.  ( 0 ... N ) )
76 taylthlem1.d . . . . . . . . . . . . . 14  |-  ( ph  ->  dom  ( ( S  Dn F ) `
 N )  =  A )
7760, 76eleqtrrd 2532 . . . . . . . . . . . . 13  |-  ( ph  ->  B  e.  dom  (
( S  Dn
F ) `  N
) )
78 taylthlem1.t . . . . . . . . . . . . 13  |-  T  =  ( N ( S Tayl 
F ) B )
7968, 69, 70, 75, 77, 78dvntaylp0 23327 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( ( CC  Dn T ) `
 N ) `  B )  =  ( ( ( S  Dn F ) `  N ) `  B
) )
8079oveq2d 6306 . . . . . . . . . . 11  |-  ( ph  ->  ( ( ( ( S  Dn F ) `  N ) `
 B )  -  ( ( ( CC  Dn T ) `
 N ) `  B ) )  =  ( ( ( ( S  Dn F ) `  N ) `
 B )  -  ( ( ( S  Dn F ) `
 N ) `  B ) ) )
81 cnex 9620 . . . . . . . . . . . . . . . 16  |-  CC  e.  _V
8281a1i 11 . . . . . . . . . . . . . . 15  |-  ( ph  ->  CC  e.  _V )
83 elpm2r 7489 . . . . . . . . . . . . . . 15  |-  ( ( ( CC  e.  _V  /\  S  e.  { RR ,  CC } )  /\  ( F : A --> CC  /\  A  C_  S ) )  ->  F  e.  ( CC  ^pm  S )
)
8482, 68, 69, 70, 83syl22anc 1269 . . . . . . . . . . . . . 14  |-  ( ph  ->  F  e.  ( CC 
^pm  S ) )
85 dvnf 22881 . . . . . . . . . . . . . 14  |-  ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm  S
)  /\  N  e.  NN0 )  ->  ( ( S  Dn F ) `
 N ) : dom  ( ( S  Dn F ) `
 N ) --> CC )
8668, 84, 71, 85syl3anc 1268 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( S  Dn F ) `  N ) : dom  ( ( S  Dn F ) `  N ) --> CC )
8786, 77ffvelrnd 6023 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( ( S  Dn F ) `
 N ) `  B )  e.  CC )
8887subidd 9974 . . . . . . . . . . 11  |-  ( ph  ->  ( ( ( ( S  Dn F ) `  N ) `
 B )  -  ( ( ( S  Dn F ) `
 N ) `  B ) )  =  0 )
8967, 80, 883eqtrd 2489 . . . . . . . . . 10  |-  ( ph  ->  ( ( y  e.  A  |->  ( ( ( ( S  Dn
F ) `  N
) `  y )  -  ( ( ( CC  Dn T ) `  N ) `
 y ) ) ) `  B )  =  0 )
90 funmpt 5618 . . . . . . . . . . 11  |-  Fun  (
y  e.  A  |->  ( ( ( ( S  Dn F ) `
 N ) `  y )  -  (
( ( CC  Dn T ) `  N ) `  y
) ) )
91 ovex 6318 . . . . . . . . . . . . 13  |-  ( ( ( ( S  Dn F ) `  N ) `  y
)  -  ( ( ( CC  Dn
T ) `  N
) `  y )
)  e.  _V
9291, 64dmmpti 5707 . . . . . . . . . . . 12  |-  dom  (
y  e.  A  |->  ( ( ( ( S  Dn F ) `
 N ) `  y )  -  (
( ( CC  Dn T ) `  N ) `  y
) ) )  =  A
9360, 92syl6eleqr 2540 . . . . . . . . . . 11  |-  ( ph  ->  B  e.  dom  (
y  e.  A  |->  ( ( ( ( S  Dn F ) `
 N ) `  y )  -  (
( ( CC  Dn T ) `  N ) `  y
) ) ) )
94 funbrfvb 5907 . . . . . . . . . . 11  |-  ( ( Fun  ( y  e.  A  |->  ( ( ( ( S  Dn
F ) `  N
) `  y )  -  ( ( ( CC  Dn T ) `  N ) `
 y ) ) )  /\  B  e. 
dom  ( y  e.  A  |->  ( ( ( ( S  Dn
F ) `  N
) `  y )  -  ( ( ( CC  Dn T ) `  N ) `
 y ) ) ) )  ->  (
( ( y  e.  A  |->  ( ( ( ( S  Dn
F ) `  N
) `  y )  -  ( ( ( CC  Dn T ) `  N ) `
 y ) ) ) `  B )  =  0  <->  B (
y  e.  A  |->  ( ( ( ( S  Dn F ) `
 N ) `  y )  -  (
( ( CC  Dn T ) `  N ) `  y
) ) ) 0 ) )
9590, 93, 94sylancr 669 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( y  e.  A  |->  ( ( ( ( S  Dn F ) `  N ) `  y
)  -  ( ( ( CC  Dn
T ) `  N
) `  y )
) ) `  B
)  =  0  <->  B
( y  e.  A  |->  ( ( ( ( S  Dn F ) `  N ) `
 y )  -  ( ( ( CC  Dn T ) `
 N ) `  y ) ) ) 0 ) )
9689, 95mpbid 214 . . . . . . . . 9  |-  ( ph  ->  B ( y  e.  A  |->  ( ( ( ( S  Dn
F ) `  N
) `  y )  -  ( ( ( CC  Dn T ) `  N ) `
 y ) ) ) 0 )
97 nnm1nn0 10911 . . . . . . . . . . . . . . 15  |-  ( N  e.  NN  ->  ( N  -  1 )  e.  NN0 )
981, 97syl 17 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( N  -  1 )  e.  NN0 )
99 dvnf 22881 . . . . . . . . . . . . . 14  |-  ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm  S
)  /\  ( N  -  1 )  e. 
NN0 )  ->  (
( S  Dn
F ) `  ( N  -  1 ) ) : dom  (
( S  Dn
F ) `  ( N  -  1 ) ) --> CC )
10068, 84, 98, 99syl3anc 1268 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( S  Dn F ) `  ( N  -  1
) ) : dom  ( ( S  Dn F ) `  ( N  -  1
) ) --> CC )
101 dvnbss 22882 . . . . . . . . . . . . . . . . 17  |-  ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm  S
)  /\  ( N  -  1 )  e. 
NN0 )  ->  dom  ( ( S  Dn F ) `  ( N  -  1
) )  C_  dom  F )
10268, 84, 98, 101syl3anc 1268 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  dom  ( ( S  Dn F ) `
 ( N  - 
1 ) )  C_  dom  F )
103 fdm 5733 . . . . . . . . . . . . . . . . 17  |-  ( F : A --> CC  ->  dom 
F  =  A )
10469, 103syl 17 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  dom  F  =  A )
105102, 104sseqtrd 3468 . . . . . . . . . . . . . . 15  |-  ( ph  ->  dom  ( ( S  Dn F ) `
 ( N  - 
1 ) )  C_  A )
106 fzo0end 12003 . . . . . . . . . . . . . . . . . 18  |-  ( N  e.  NN  ->  ( N  -  1 )  e.  ( 0..^ N ) )
107 elfzofz 11935 . . . . . . . . . . . . . . . . . 18  |-  ( ( N  -  1 )  e.  ( 0..^ N )  ->  ( N  -  1 )  e.  ( 0 ... N
) )
1081, 106, 1073syl 18 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( N  -  1 )  e.  ( 0 ... N ) )
109 dvn2bss 22884 . . . . . . . . . . . . . . . . 17  |-  ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm  S
)  /\  ( N  -  1 )  e.  ( 0 ... N
) )  ->  dom  ( ( S  Dn F ) `  N )  C_  dom  ( ( S  Dn F ) `  ( N  -  1
) ) )
11068, 84, 108, 109syl3anc 1268 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  dom  ( ( S  Dn F ) `
 N )  C_  dom  ( ( S  Dn F ) `  ( N  -  1
) ) )
11176, 110eqsstr3d 3467 . . . . . . . . . . . . . . 15  |-  ( ph  ->  A  C_  dom  ( ( S  Dn F ) `  ( N  -  1 ) ) )
112105, 111eqssd 3449 . . . . . . . . . . . . . 14  |-  ( ph  ->  dom  ( ( S  Dn F ) `
 ( N  - 
1 ) )  =  A )
113112feq2d 5715 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( ( S  Dn F ) `
 ( N  - 
1 ) ) : dom  ( ( S  Dn F ) `
 ( N  - 
1 ) ) --> CC  <->  ( ( S  Dn
F ) `  ( N  -  1 ) ) : A --> CC ) )
114100, 113mpbid 214 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( S  Dn F ) `  ( N  -  1
) ) : A --> CC )
115114ffvelrnda 6022 . . . . . . . . . . 11  |-  ( (
ph  /\  y  e.  A )  ->  (
( ( S  Dn F ) `  ( N  -  1
) ) `  y
)  e.  CC )
11676feq2d 5715 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( ( S  Dn F ) `
 N ) : dom  ( ( S  Dn F ) `
 N ) --> CC  <->  ( ( S  Dn
F ) `  N
) : A --> CC ) )
11786, 116mpbid 214 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( S  Dn F ) `  N ) : A --> CC )
118117ffvelrnda 6022 . . . . . . . . . . 11  |-  ( (
ph  /\  y  e.  A )  ->  (
( ( S  Dn F ) `  N ) `  y
)  e.  CC )
1191nncnd 10625 . . . . . . . . . . . . . . 15  |-  ( ph  ->  N  e.  CC )
120 1cnd 9659 . . . . . . . . . . . . . . 15  |-  ( ph  ->  1  e.  CC )
121119, 120npcand 9990 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( N  - 
1 )  +  1 )  =  N )
122121fveq2d 5869 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( S  Dn F ) `  ( ( N  - 
1 )  +  1 ) )  =  ( ( S  Dn
F ) `  N
) )
123 recnprss 22859 . . . . . . . . . . . . . . 15  |-  ( S  e.  { RR ,  CC }  ->  S  C_  CC )
12468, 123syl 17 . . . . . . . . . . . . . 14  |-  ( ph  ->  S  C_  CC )
125 dvnp1 22879 . . . . . . . . . . . . . 14  |-  ( ( S  C_  CC  /\  F  e.  ( CC  ^pm  S
)  /\  ( N  -  1 )  e. 
NN0 )  ->  (
( S  Dn
F ) `  (
( N  -  1 )  +  1 ) )  =  ( S  _D  ( ( S  Dn F ) `
 ( N  - 
1 ) ) ) )
126124, 84, 98, 125syl3anc 1268 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( S  Dn F ) `  ( ( N  - 
1 )  +  1 ) )  =  ( S  _D  ( ( S  Dn F ) `  ( N  -  1 ) ) ) )
127122, 126eqtr3d 2487 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( S  Dn F ) `  N )  =  ( S  _D  ( ( S  Dn F ) `  ( N  -  1 ) ) ) )
128117feqmptd 5918 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( S  Dn F ) `  N )  =  ( y  e.  A  |->  ( ( ( S  Dn F ) `  N ) `  y
) ) )
129114feqmptd 5918 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( S  Dn F ) `  ( N  -  1
) )  =  ( y  e.  A  |->  ( ( ( S  Dn F ) `  ( N  -  1
) ) `  y
) ) )
130129oveq2d 6306 . . . . . . . . . . . 12  |-  ( ph  ->  ( S  _D  (
( S  Dn
F ) `  ( N  -  1 ) ) )  =  ( S  _D  ( y  e.  A  |->  ( ( ( S  Dn
F ) `  ( N  -  1 ) ) `  y ) ) ) )
131127, 128, 1303eqtr3rd 2494 . . . . . . . . . . 11  |-  ( ph  ->  ( S  _D  (
y  e.  A  |->  ( ( ( S  Dn F ) `  ( N  -  1
) ) `  y
) ) )  =  ( y  e.  A  |->  ( ( ( S  Dn F ) `
 N ) `  y ) ) )
13270, 124sstrd 3442 . . . . . . . . . . . . 13  |-  ( ph  ->  A  C_  CC )
133132sselda 3432 . . . . . . . . . . . 12  |-  ( (
ph  /\  y  e.  A )  ->  y  e.  CC )
134 1nn0 10885 . . . . . . . . . . . . . . . 16  |-  1  e.  NN0
135134a1i 11 . . . . . . . . . . . . . . 15  |-  ( ph  ->  1  e.  NN0 )
136 elpm2r 7489 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( CC  e.  _V  /\  S  e.  { RR ,  CC } )  /\  ( ( ( S  Dn F ) `
 ( N  - 
1 ) ) : A --> CC  /\  A  C_  S ) )  -> 
( ( S  Dn F ) `  ( N  -  1
) )  e.  ( CC  ^pm  S )
)
13782, 68, 114, 70, 136syl22anc 1269 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( ( S  Dn F ) `  ( N  -  1
) )  e.  ( CC  ^pm  S )
)
138 dvn1 22880 . . . . . . . . . . . . . . . . . . 19  |-  ( ( S  C_  CC  /\  (
( S  Dn
F ) `  ( N  -  1 ) )  e.  ( CC 
^pm  S ) )  ->  ( ( S  Dn ( ( S  Dn F ) `  ( N  -  1 ) ) ) `  1 )  =  ( S  _D  ( ( S  Dn F ) `  ( N  -  1
) ) ) )
139124, 137, 138syl2anc 667 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( ( S  Dn ( ( S  Dn F ) `
 ( N  - 
1 ) ) ) `
 1 )  =  ( S  _D  (
( S  Dn
F ) `  ( N  -  1 ) ) ) )
140126, 122eqtr3d 2487 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( S  _D  (
( S  Dn
F ) `  ( N  -  1 ) ) )  =  ( ( S  Dn
F ) `  N
) )
141139, 140eqtrd 2485 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( ( S  Dn ( ( S  Dn F ) `
 ( N  - 
1 ) ) ) `
 1 )  =  ( ( S  Dn F ) `  N ) )
142141dmeqd 5037 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  dom  ( ( S  Dn ( ( S  Dn F ) `  ( N  -  1 ) ) ) `  1 )  =  dom  ( ( S  Dn F ) `  N ) )
14377, 142eleqtrrd 2532 . . . . . . . . . . . . . . 15  |-  ( ph  ->  B  e.  dom  (
( S  Dn
( ( S  Dn F ) `  ( N  -  1
) ) ) ` 
1 ) )
144 eqid 2451 . . . . . . . . . . . . . . 15  |-  ( 1 ( S Tayl  ( ( S  Dn F ) `  ( N  -  1 ) ) ) B )  =  ( 1 ( S Tayl  ( ( S  Dn F ) `  ( N  -  1
) ) ) B )
14568, 114, 70, 135, 143, 144taylpf 23321 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( 1 ( S Tayl  ( ( S  Dn F ) `  ( N  -  1
) ) ) B ) : CC --> CC )
146120, 119pncan3d 9989 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  ( 1  +  ( N  -  1 ) )  =  N )
147146oveq1d 6305 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( ( 1  +  ( N  -  1 ) ) ( S Tayl 
F ) B )  =  ( N ( S Tayl  F ) B ) )
148147, 78syl6reqr 2504 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  T  =  ( ( 1  +  ( N  -  1 ) ) ( S Tayl  F ) B ) )
149148oveq2d 6306 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( CC  Dn
T )  =  ( CC  Dn ( ( 1  +  ( N  -  1 ) ) ( S Tayl  F
) B ) ) )
150149fveq1d 5867 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( ( CC  Dn T ) `  ( N  -  1
) )  =  ( ( CC  Dn
( ( 1  +  ( N  -  1 ) ) ( S Tayl 
F ) B ) ) `  ( N  -  1 ) ) )
151146fveq2d 5869 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( ( S  Dn F ) `  ( 1  +  ( N  -  1 ) ) )  =  ( ( S  Dn
F ) `  N
) )
152151dmeqd 5037 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  dom  ( ( S  Dn F ) `
 ( 1  +  ( N  -  1 ) ) )  =  dom  ( ( S  Dn F ) `
 N ) )
15377, 152eleqtrrd 2532 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  B  e.  dom  (
( S  Dn
F ) `  (
1  +  ( N  -  1 ) ) ) )
15468, 69, 70, 98, 135, 153dvntaylp 23326 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( ( CC  Dn ( ( 1  +  ( N  - 
1 ) ) ( S Tayl  F ) B ) ) `  ( N  -  1 ) )  =  ( 1 ( S Tayl  ( ( S  Dn F ) `  ( N  -  1 ) ) ) B ) )
155150, 154eqtrd 2485 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( CC  Dn T ) `  ( N  -  1
) )  =  ( 1 ( S Tayl  (
( S  Dn
F ) `  ( N  -  1 ) ) ) B ) )
156155feq1d 5714 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( ( CC  Dn T ) `
 ( N  - 
1 ) ) : CC --> CC  <->  ( 1 ( S Tayl  ( ( S  Dn F ) `  ( N  -  1 ) ) ) B ) : CC --> CC ) )
157145, 156mpbird 236 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( CC  Dn T ) `  ( N  -  1
) ) : CC --> CC )
158157ffvelrnda 6022 . . . . . . . . . . . 12  |-  ( (
ph  /\  y  e.  CC )  ->  ( ( ( CC  Dn
T ) `  ( N  -  1 ) ) `  y )  e.  CC )
159133, 158syldan 473 . . . . . . . . . . 11  |-  ( (
ph  /\  y  e.  A )  ->  (
( ( CC  Dn T ) `  ( N  -  1
) ) `  y
)  e.  CC )
160 0nn0 10884 . . . . . . . . . . . . . . . 16  |-  0  e.  NN0
161160a1i 11 . . . . . . . . . . . . . . 15  |-  ( ph  ->  0  e.  NN0 )
162 elpm2r 7489 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( CC  e.  _V  /\  S  e.  { RR ,  CC } )  /\  ( ( ( S  Dn F ) `
 N ) : A --> CC  /\  A  C_  S ) )  -> 
( ( S  Dn F ) `  N )  e.  ( CC  ^pm  S )
)
16382, 68, 117, 70, 162syl22anc 1269 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( ( S  Dn F ) `  N )  e.  ( CC  ^pm  S )
)
164 dvn0 22878 . . . . . . . . . . . . . . . . . 18  |-  ( ( S  C_  CC  /\  (
( S  Dn
F ) `  N
)  e.  ( CC 
^pm  S ) )  ->  ( ( S  Dn ( ( S  Dn F ) `  N ) ) `  0 )  =  ( ( S  Dn F ) `
 N ) )
165124, 163, 164syl2anc 667 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( ( S  Dn ( ( S  Dn F ) `
 N ) ) `
 0 )  =  ( ( S  Dn F ) `  N ) )
166165dmeqd 5037 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  dom  ( ( S  Dn ( ( S  Dn F ) `  N ) ) `  0 )  =  dom  ( ( S  Dn F ) `  N ) )
16777, 166eleqtrrd 2532 . . . . . . . . . . . . . . 15  |-  ( ph  ->  B  e.  dom  (
( S  Dn
( ( S  Dn F ) `  N ) ) ` 
0 ) )
168 eqid 2451 . . . . . . . . . . . . . . 15  |-  ( 0 ( S Tayl  ( ( S  Dn F ) `  N ) ) B )  =  ( 0 ( S Tayl  ( ( S  Dn F ) `  N ) ) B )
16968, 117, 70, 161, 167, 168taylpf 23321 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( 0 ( S Tayl  ( ( S  Dn F ) `  N ) ) B ) : CC --> CC )
170119addid2d 9834 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  ( 0  +  N
)  =  N )
171170oveq1d 6305 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( ( 0  +  N ) ( S Tayl 
F ) B )  =  ( N ( S Tayl  F ) B ) )
172171, 78syl6eqr 2503 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( ( 0  +  N ) ( S Tayl 
F ) B )  =  T )
173172oveq2d 6306 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( CC  Dn
( ( 0  +  N ) ( S Tayl 
F ) B ) )  =  ( CC  Dn T ) )
174173fveq1d 5867 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( ( CC  Dn ( ( 0  +  N ) ( S Tayl  F ) B ) ) `  N
)  =  ( ( CC  Dn T ) `  N ) )
175170fveq2d 5869 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( ( S  Dn F ) `  ( 0  +  N
) )  =  ( ( S  Dn
F ) `  N
) )
176175dmeqd 5037 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  dom  ( ( S  Dn F ) `
 ( 0  +  N ) )  =  dom  ( ( S  Dn F ) `
 N ) )
17777, 176eleqtrrd 2532 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  B  e.  dom  (
( S  Dn
F ) `  (
0  +  N ) ) )
17868, 69, 70, 71, 161, 177dvntaylp 23326 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( ( CC  Dn ( ( 0  +  N ) ( S Tayl  F ) B ) ) `  N
)  =  ( 0 ( S Tayl  ( ( S  Dn F ) `  N ) ) B ) )
179174, 178eqtr3d 2487 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( CC  Dn T ) `  N )  =  ( 0 ( S Tayl  (
( S  Dn
F ) `  N
) ) B ) )
180179feq1d 5714 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( ( CC  Dn T ) `
 N ) : CC --> CC  <->  ( 0 ( S Tayl  ( ( S  Dn F ) `  N ) ) B ) : CC --> CC ) )
181169, 180mpbird 236 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( CC  Dn T ) `  N ) : CC --> CC )
182181ffvelrnda 6022 . . . . . . . . . . . 12  |-  ( (
ph  /\  y  e.  CC )  ->  ( ( ( CC  Dn
T ) `  N
) `  y )  e.  CC )
183133, 182syldan 473 . . . . . . . . . . 11  |-  ( (
ph  /\  y  e.  A )  ->  (
( ( CC  Dn T ) `  N ) `  y
)  e.  CC )
184124sselda 3432 . . . . . . . . . . . . 13  |-  ( (
ph  /\  y  e.  S )  ->  y  e.  CC )
185184, 158syldan 473 . . . . . . . . . . . 12  |-  ( (
ph  /\  y  e.  S )  ->  (
( ( CC  Dn T ) `  ( N  -  1
) ) `  y
)  e.  CC )
186184, 182syldan 473 . . . . . . . . . . . 12  |-  ( (
ph  /\  y  e.  S )  ->  (
( ( CC  Dn T ) `  N ) `  y
)  e.  CC )
187 eqid 2451 . . . . . . . . . . . . 13  |-  ( TopOpen ` fld )  =  ( TopOpen ` fld )
188187cnfldtopon 21803 . . . . . . . . . . . . . 14  |-  ( TopOpen ` fld )  e.  (TopOn `  CC )
189 toponmax 19943 . . . . . . . . . . . . . 14  |-  ( (
TopOpen ` fld )  e.  (TopOn `  CC )  ->  CC  e.  ( TopOpen ` fld ) )
190188, 189mp1i 13 . . . . . . . . . . . . 13  |-  ( ph  ->  CC  e.  ( TopOpen ` fld )
)
191 df-ss 3418 . . . . . . . . . . . . . 14  |-  ( S 
C_  CC  <->  ( S  i^i  CC )  =  S )
192124, 191sylib 200 . . . . . . . . . . . . 13  |-  ( ph  ->  ( S  i^i  CC )  =  S )
193 ssid 3451 . . . . . . . . . . . . . . . . 17  |-  CC  C_  CC
194193a1i 11 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  CC  C_  CC )
195 mapsspm 7505 . . . . . . . . . . . . . . . . 17  |-  ( CC 
^m  CC )  C_  ( CC  ^pm  CC )
19668, 69, 70, 71, 77, 78taylpf 23321 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  T : CC --> CC )
19781, 81elmap 7500 . . . . . . . . . . . . . . . . . 18  |-  ( T  e.  ( CC  ^m  CC )  <->  T : CC --> CC )
198196, 197sylibr 216 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  T  e.  ( CC 
^m  CC ) )
199195, 198sseldi 3430 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  T  e.  ( CC 
^pm  CC ) )
200 dvnp1 22879 . . . . . . . . . . . . . . . 16  |-  ( ( CC  C_  CC  /\  T  e.  ( CC  ^pm  CC )  /\  ( N  - 
1 )  e.  NN0 )  ->  ( ( CC  Dn T ) `
 ( ( N  -  1 )  +  1 ) )  =  ( CC  _D  (
( CC  Dn
T ) `  ( N  -  1 ) ) ) )
201194, 199, 98, 200syl3anc 1268 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( CC  Dn T ) `  ( ( N  - 
1 )  +  1 ) )  =  ( CC  _D  ( ( CC  Dn T ) `  ( N  -  1 ) ) ) )
202121fveq2d 5869 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( CC  Dn T ) `  ( ( N  - 
1 )  +  1 ) )  =  ( ( CC  Dn
T ) `  N
) )
203201, 202eqtr3d 2487 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( CC  _D  (
( CC  Dn
T ) `  ( N  -  1 ) ) )  =  ( ( CC  Dn
T ) `  N
) )
204157feqmptd 5918 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( CC  Dn T ) `  ( N  -  1
) )  =  ( y  e.  CC  |->  ( ( ( CC  Dn T ) `  ( N  -  1
) ) `  y
) ) )
205204oveq2d 6306 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( CC  _D  (
( CC  Dn
T ) `  ( N  -  1 ) ) )  =  ( CC  _D  ( y  e.  CC  |->  ( ( ( CC  Dn
T ) `  ( N  -  1 ) ) `  y ) ) ) )
206181feqmptd 5918 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( CC  Dn T ) `  N )  =  ( y  e.  CC  |->  ( ( ( CC  Dn T ) `  N ) `  y
) ) )
207203, 205, 2063eqtr3d 2493 . . . . . . . . . . . . 13  |-  ( ph  ->  ( CC  _D  (
y  e.  CC  |->  ( ( ( CC  Dn T ) `  ( N  -  1
) ) `  y
) ) )  =  ( y  e.  CC  |->  ( ( ( CC  Dn T ) `
 N ) `  y ) ) )
208187, 68, 190, 192, 158, 182, 207dvmptres3 22910 . . . . . . . . . . . 12  |-  ( ph  ->  ( S  _D  (
y  e.  S  |->  ( ( ( CC  Dn T ) `  ( N  -  1
) ) `  y
) ) )  =  ( y  e.  S  |->  ( ( ( CC  Dn T ) `
 N ) `  y ) ) )
209 eqid 2451 . . . . . . . . . . . 12  |-  ( (
TopOpen ` fld )t  S )  =  ( ( TopOpen ` fld )t  S )
210 resttopon 20177 . . . . . . . . . . . . . . . 16  |-  ( ( ( TopOpen ` fld )  e.  (TopOn `  CC )  /\  S  C_  CC )  ->  (
( TopOpen ` fld )t  S )  e.  (TopOn `  S ) )
211188, 124, 210sylancr 669 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( TopOpen ` fld )t  S )  e.  (TopOn `  S ) )
212 topontop 19941 . . . . . . . . . . . . . . 15  |-  ( ( ( TopOpen ` fld )t  S )  e.  (TopOn `  S )  ->  (
( TopOpen ` fld )t  S )  e.  Top )
213211, 212syl 17 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( TopOpen ` fld )t  S )  e.  Top )
214 toponuni 19942 . . . . . . . . . . . . . . . 16  |-  ( ( ( TopOpen ` fld )t  S )  e.  (TopOn `  S )  ->  S  =  U. ( ( TopOpen ` fld )t  S
) )
215211, 214syl 17 . . . . . . . . . . . . . . 15  |-  ( ph  ->  S  =  U. (
( TopOpen ` fld )t  S ) )
21670, 215sseqtrd 3468 . . . . . . . . . . . . . 14  |-  ( ph  ->  A  C_  U. (
( TopOpen ` fld )t  S ) )
217 eqid 2451 . . . . . . . . . . . . . . 15  |-  U. (
( TopOpen ` fld )t  S )  =  U. ( ( TopOpen ` fld )t  S )
218217ntrss2 20072 . . . . . . . . . . . . . 14  |-  ( ( ( ( TopOpen ` fld )t  S )  e.  Top  /\  A  C_  U. (
( TopOpen ` fld )t  S ) )  -> 
( ( int `  (
( TopOpen ` fld )t  S ) ) `  A )  C_  A
)
219213, 216, 218syl2anc 667 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( int `  (
( TopOpen ` fld )t  S ) ) `  A )  C_  A
)
220140dmeqd 5037 . . . . . . . . . . . . . . 15  |-  ( ph  ->  dom  ( S  _D  ( ( S  Dn F ) `  ( N  -  1
) ) )  =  dom  ( ( S  Dn F ) `
 N ) )
221220, 76eqtrd 2485 . . . . . . . . . . . . . 14  |-  ( ph  ->  dom  ( S  _D  ( ( S  Dn F ) `  ( N  -  1
) ) )  =  A )
222124, 114, 70, 209, 187dvbssntr 22855 . . . . . . . . . . . . . 14  |-  ( ph  ->  dom  ( S  _D  ( ( S  Dn F ) `  ( N  -  1
) ) )  C_  ( ( int `  (
( TopOpen ` fld )t  S ) ) `  A ) )
223221, 222eqsstr3d 3467 . . . . . . . . . . . . 13  |-  ( ph  ->  A  C_  ( ( int `  ( ( TopOpen ` fld )t  S
) ) `  A
) )
224219, 223eqssd 3449 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( int `  (
( TopOpen ` fld )t  S ) ) `  A )  =  A )
22568, 185, 186, 208, 70, 209, 187, 224dvmptres2 22916 . . . . . . . . . . 11  |-  ( ph  ->  ( S  _D  (
y  e.  A  |->  ( ( ( CC  Dn T ) `  ( N  -  1
) ) `  y
) ) )  =  ( y  e.  A  |->  ( ( ( CC  Dn T ) `
 N ) `  y ) ) )
22668, 115, 118, 131, 159, 183, 225dvmptsub 22921 . . . . . . . . . 10  |-  ( ph  ->  ( S  _D  (
y  e.  A  |->  ( ( ( ( S  Dn F ) `
 ( N  - 
1 ) ) `  y )  -  (
( ( CC  Dn T ) `  ( N  -  1
) ) `  y
) ) ) )  =  ( y  e.  A  |->  ( ( ( ( S  Dn
F ) `  N
) `  y )  -  ( ( ( CC  Dn T ) `  N ) `
 y ) ) ) )
227226breqd 4413 . . . . . . . . 9  |-  ( ph  ->  ( B ( S  _D  ( y  e.  A  |->  ( ( ( ( S  Dn
F ) `  ( N  -  1 ) ) `  y )  -  ( ( ( CC  Dn T ) `  ( N  -  1 ) ) `
 y ) ) ) ) 0  <->  B
( y  e.  A  |->  ( ( ( ( S  Dn F ) `  N ) `
 y )  -  ( ( ( CC  Dn T ) `
 N ) `  y ) ) ) 0 ) )
22896, 227mpbird 236 . . . . . . . 8  |-  ( ph  ->  B ( S  _D  ( y  e.  A  |->  ( ( ( ( S  Dn F ) `  ( N  -  1 ) ) `
 y )  -  ( ( ( CC  Dn T ) `
 ( N  - 
1 ) ) `  y ) ) ) ) 0 )
229 eqid 2451 . . . . . . . . 9  |-  ( x  e.  ( A  \  { B } )  |->  ( ( ( ( y  e.  A  |->  ( ( ( ( S  Dn F ) `  ( N  -  1
) ) `  y
)  -  ( ( ( CC  Dn
T ) `  ( N  -  1 ) ) `  y ) ) ) `  x
)  -  ( ( y  e.  A  |->  ( ( ( ( S  Dn F ) `
 ( N  - 
1 ) ) `  y )  -  (
( ( CC  Dn T ) `  ( N  -  1
) ) `  y
) ) ) `  B ) )  / 
( x  -  B
) ) )  =  ( x  e.  ( A  \  { B } )  |->  ( ( ( ( y  e.  A  |->  ( ( ( ( S  Dn
F ) `  ( N  -  1 ) ) `  y )  -  ( ( ( CC  Dn T ) `  ( N  -  1 ) ) `
 y ) ) ) `  x )  -  ( ( y  e.  A  |->  ( ( ( ( S  Dn F ) `  ( N  -  1
) ) `  y
)  -  ( ( ( CC  Dn
T ) `  ( N  -  1 ) ) `  y ) ) ) `  B
) )  /  (
x  -  B ) ) )
230115, 159subcld 9986 . . . . . . . . . 10  |-  ( (
ph  /\  y  e.  A )  ->  (
( ( ( S  Dn F ) `
 ( N  - 
1 ) ) `  y )  -  (
( ( CC  Dn T ) `  ( N  -  1
) ) `  y
) )  e.  CC )
231 eqid 2451 . . . . . . . . . 10  |-  ( y  e.  A  |->  ( ( ( ( S  Dn F ) `  ( N  -  1
) ) `  y
)  -  ( ( ( CC  Dn
T ) `  ( N  -  1 ) ) `  y ) ) )  =  ( y  e.  A  |->  ( ( ( ( S  Dn F ) `
 ( N  - 
1 ) ) `  y )  -  (
( ( CC  Dn T ) `  ( N  -  1
) ) `  y
) ) )
232230, 231fmptd 6046 . . . . . . . . 9  |-  ( ph  ->  ( y  e.  A  |->  ( ( ( ( S  Dn F ) `  ( N  -  1 ) ) `
 y )  -  ( ( ( CC  Dn T ) `
 ( N  - 
1 ) ) `  y ) ) ) : A --> CC )
233209, 187, 229, 124, 232, 70eldv 22853 . . . . . . . 8  |-  ( ph  ->  ( B ( S  _D  ( y  e.  A  |->  ( ( ( ( S  Dn
F ) `  ( N  -  1 ) ) `  y )  -  ( ( ( CC  Dn T ) `  ( N  -  1 ) ) `
 y ) ) ) ) 0  <->  ( B  e.  ( ( int `  ( ( TopOpen ` fld )t  S
) ) `  A
)  /\  0  e.  ( ( x  e.  ( A  \  { B } )  |->  ( ( ( ( y  e.  A  |->  ( ( ( ( S  Dn
F ) `  ( N  -  1 ) ) `  y )  -  ( ( ( CC  Dn T ) `  ( N  -  1 ) ) `
 y ) ) ) `  x )  -  ( ( y  e.  A  |->  ( ( ( ( S  Dn F ) `  ( N  -  1
) ) `  y
)  -  ( ( ( CC  Dn
T ) `  ( N  -  1 ) ) `  y ) ) ) `  B
) )  /  (
x  -  B ) ) ) lim CC  B
) ) ) )
234228, 233mpbid 214 . . . . . . 7  |-  ( ph  ->  ( B  e.  ( ( int `  (
( TopOpen ` fld )t  S ) ) `  A )  /\  0  e.  ( ( x  e.  ( A  \  { B } )  |->  ( ( ( ( y  e.  A  |->  ( ( ( ( S  Dn
F ) `  ( N  -  1 ) ) `  y )  -  ( ( ( CC  Dn T ) `  ( N  -  1 ) ) `
 y ) ) ) `  x )  -  ( ( y  e.  A  |->  ( ( ( ( S  Dn F ) `  ( N  -  1
) ) `  y
)  -  ( ( ( CC  Dn
T ) `  ( N  -  1 ) ) `  y ) ) ) `  B
) )  /  (
x  -  B ) ) ) lim CC  B
) ) )
235234simprd 465 . . . . . 6  |-  ( ph  ->  0  e.  ( ( x  e.  ( A 
\  { B }
)  |->  ( ( ( ( y  e.  A  |->  ( ( ( ( S  Dn F ) `  ( N  -  1 ) ) `
 y )  -  ( ( ( CC  Dn T ) `
 ( N  - 
1 ) ) `  y ) ) ) `
 x )  -  ( ( y  e.  A  |->  ( ( ( ( S  Dn
F ) `  ( N  -  1 ) ) `  y )  -  ( ( ( CC  Dn T ) `  ( N  -  1 ) ) `
 y ) ) ) `  B ) )  /  ( x  -  B ) ) ) lim CC  B ) )
236 eldifi 3555 . . . . . . . . . 10  |-  ( x  e.  ( A  \  { B } )  ->  x  e.  A )
237 fveq2 5865 . . . . . . . . . . . . . 14  |-  ( y  =  x  ->  (
( ( S  Dn F ) `  ( N  -  1
) ) `  y
)  =  ( ( ( S  Dn
F ) `  ( N  -  1 ) ) `  x ) )
238 fveq2 5865 . . . . . . . . . . . . . 14  |-  ( y  =  x  ->  (
( ( CC  Dn T ) `  ( N  -  1
) ) `  y
)  =  ( ( ( CC  Dn
T ) `  ( N  -  1 ) ) `  x ) )
239237, 238oveq12d 6308 . . . . . . . . . . . . 13  |-  ( y  =  x  ->  (
( ( ( S  Dn F ) `
 ( N  - 
1 ) ) `  y )  -  (
( ( CC  Dn T ) `  ( N  -  1
) ) `  y
) )  =  ( ( ( ( S  Dn F ) `
 ( N  - 
1 ) ) `  x )  -  (
( ( CC  Dn T ) `  ( N  -  1
) ) `  x
) ) )
240 ovex 6318 . . . . . . . . . . . . 13  |-  ( ( ( ( S  Dn F ) `  ( N  -  1
) ) `  x
)  -  ( ( ( CC  Dn
T ) `  ( N  -  1 ) ) `  x ) )  e.  _V
241239, 231, 240fvmpt 5948 . . . . . . . . . . . 12  |-  ( x  e.  A  ->  (
( y  e.  A  |->  ( ( ( ( S  Dn F ) `  ( N  -  1 ) ) `
 y )  -  ( ( ( CC  Dn T ) `
 ( N  - 
1 ) ) `  y ) ) ) `
 x )  =  ( ( ( ( S  Dn F ) `  ( N  -  1 ) ) `
 x )  -  ( ( ( CC  Dn T ) `
 ( N  - 
1 ) ) `  x ) ) )
242 fveq2 5865 . . . . . . . . . . . . . . . 16  |-  ( y  =  B  ->  (
( ( S  Dn F ) `  ( N  -  1
) ) `  y
)  =  ( ( ( S  Dn
F ) `  ( N  -  1 ) ) `  B ) )
243 fveq2 5865 . . . . . . . . . . . . . . . 16  |-  ( y  =  B  ->  (
( ( CC  Dn T ) `  ( N  -  1
) ) `  y
)  =  ( ( ( CC  Dn
T ) `  ( N  -  1 ) ) `  B ) )
244242, 243oveq12d 6308 . . . . . . . . . . . . . . 15  |-  ( y  =  B  ->  (
( ( ( S  Dn F ) `
 ( N  - 
1 ) ) `  y )  -  (
( ( CC  Dn T ) `  ( N  -  1
) ) `  y
) )  =  ( ( ( ( S  Dn F ) `
 ( N  - 
1 ) ) `  B )  -  (
( ( CC  Dn T ) `  ( N  -  1
) ) `  B
) ) )
245 ovex 6318 . . . . . . . . . . . . . . 15  |-  ( ( ( ( S  Dn F ) `  ( N  -  1
) ) `  B
)  -  ( ( ( CC  Dn
T ) `  ( N  -  1 ) ) `  B ) )  e.  _V
246244, 231, 245fvmpt 5948 . . . . . . . . . . . . . 14  |-  ( B  e.  A  ->  (
( y  e.  A  |->  ( ( ( ( S  Dn F ) `  ( N  -  1 ) ) `
 y )  -  ( ( ( CC  Dn T ) `
 ( N  - 
1 ) ) `  y ) ) ) `
 B )  =  ( ( ( ( S  Dn F ) `  ( N  -  1 ) ) `
 B )  -  ( ( ( CC  Dn T ) `
 ( N  - 
1 ) ) `  B ) ) )
24760, 246syl 17 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( y  e.  A  |->  ( ( ( ( S  Dn
F ) `  ( N  -  1 ) ) `  y )  -  ( ( ( CC  Dn T ) `  ( N  -  1 ) ) `
 y ) ) ) `  B )  =  ( ( ( ( S  Dn
F ) `  ( N  -  1 ) ) `  B )  -  ( ( ( CC  Dn T ) `  ( N  -  1 ) ) `
 B ) ) )
24868, 69, 70, 108, 77, 78dvntaylp0 23327 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( ( CC  Dn T ) `
 ( N  - 
1 ) ) `  B )  =  ( ( ( S  Dn F ) `  ( N  -  1
) ) `  B
) )
249248oveq2d 6306 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( ( ( S  Dn F ) `  ( N  -  1 ) ) `
 B )  -  ( ( ( CC  Dn T ) `
 ( N  - 
1 ) ) `  B ) )  =  ( ( ( ( S  Dn F ) `  ( N  -  1 ) ) `
 B )  -  ( ( ( S  Dn F ) `
 ( N  - 
1 ) ) `  B ) ) )
250114, 60ffvelrnd 6023 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( ( S  Dn F ) `
 ( N  - 
1 ) ) `  B )  e.  CC )
251250subidd 9974 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( ( ( S  Dn F ) `  ( N  -  1 ) ) `
 B )  -  ( ( ( S  Dn F ) `
 ( N  - 
1 ) ) `  B ) )  =  0 )
252247, 249, 2513eqtrd 2489 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( y  e.  A  |->  ( ( ( ( S  Dn
F ) `  ( N  -  1 ) ) `  y )  -  ( ( ( CC  Dn T ) `  ( N  -  1 ) ) `
 y ) ) ) `  B )  =  0 )
253241, 252oveqan12rd 6310 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  A )  ->  (
( ( y  e.  A  |->  ( ( ( ( S  Dn
F ) `  ( N  -  1 ) ) `  y )  -  ( ( ( CC  Dn T ) `  ( N  -  1 ) ) `
 y ) ) ) `  x )  -  ( ( y  e.  A  |->  ( ( ( ( S  Dn F ) `  ( N  -  1
) ) `  y
)  -  ( ( ( CC  Dn
T ) `  ( N  -  1 ) ) `  y ) ) ) `  B
) )  =  ( ( ( ( ( S  Dn F ) `  ( N  -  1 ) ) `
 x )  -  ( ( ( CC  Dn T ) `
 ( N  - 
1 ) ) `  x ) )  - 
0 ) )
254114ffvelrnda 6022 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  A )  ->  (
( ( S  Dn F ) `  ( N  -  1
) ) `  x
)  e.  CC )
255132sselda 3432 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  A )  ->  x  e.  CC )
256157ffvelrnda 6022 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  CC )  ->  ( ( ( CC  Dn
T ) `  ( N  -  1 ) ) `  x )  e.  CC )
257255, 256syldan 473 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  A )  ->  (
( ( CC  Dn T ) `  ( N  -  1
) ) `  x
)  e.  CC )
258254, 257subcld 9986 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  A )  ->  (
( ( ( S  Dn F ) `
 ( N  - 
1 ) ) `  x )  -  (
( ( CC  Dn T ) `  ( N  -  1
) ) `  x
) )  e.  CC )
259258subid1d 9975 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  A )  ->  (
( ( ( ( S  Dn F ) `  ( N  -  1 ) ) `
 x )  -  ( ( ( CC  Dn T ) `
 ( N  - 
1 ) ) `  x ) )  - 
0 )  =  ( ( ( ( S  Dn F ) `
 ( N  - 
1 ) ) `  x )  -  (
( ( CC  Dn T ) `  ( N  -  1
) ) `  x
) ) )
260253, 259eqtr2d 2486 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  A )  ->  (
( ( ( S  Dn F ) `
 ( N  - 
1 ) ) `  x )  -  (
( ( CC  Dn T ) `  ( N  -  1
) ) `  x
) )  =  ( ( ( y  e.  A  |->  ( ( ( ( S  Dn
F ) `  ( N  -  1 ) ) `  y )  -  ( ( ( CC  Dn T ) `  ( N  -  1 ) ) `
 y ) ) ) `  x )  -  ( ( y  e.  A  |->  ( ( ( ( S  Dn F ) `  ( N  -  1
) ) `  y
)  -  ( ( ( CC  Dn
T ) `  ( N  -  1 ) ) `  y ) ) ) `  B
) ) )
261236, 260sylan2 477 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( A  \  { B } ) )  -> 
( ( ( ( S  Dn F ) `  ( N  -  1 ) ) `
 x )  -  ( ( ( CC  Dn T ) `
 ( N  - 
1 ) ) `  x ) )  =  ( ( ( y  e.  A  |->  ( ( ( ( S  Dn F ) `  ( N  -  1
) ) `  y
)  -  ( ( ( CC  Dn
T ) `  ( N  -  1 ) ) `  y ) ) ) `  x
)  -  ( ( y  e.  A  |->  ( ( ( ( S  Dn F ) `
 ( N  - 
1 ) ) `  y )  -  (
( ( CC  Dn T ) `  ( N  -  1
) ) `  y
) ) ) `  B ) ) )
262132ssdifssd 3571 . . . . . . . . . . . 12  |-  ( ph  ->  ( A  \  { B } )  C_  CC )
263262sselda 3432 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( A  \  { B } ) )  ->  x  e.  CC )
264132, 60sseldd 3433 . . . . . . . . . . . 12  |-  ( ph  ->  B  e.  CC )
265264adantr 467 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( A  \  { B } ) )  ->  B  e.  CC )
266263, 265subcld 9986 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( A  \  { B } ) )  -> 
( x  -  B
)  e.  CC )
267266exp1d 12411 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( A  \  { B } ) )  -> 
( ( x  -  B ) ^ 1 )  =  ( x  -  B ) )
268261, 267oveq12d 6308 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( A  \  { B } ) )  -> 
( ( ( ( ( S  Dn
F ) `  ( N  -  1 ) ) `  x )  -  ( ( ( CC  Dn T ) `  ( N  -  1 ) ) `
 x ) )  /  ( ( x  -  B ) ^
1 ) )  =  ( ( ( ( y  e.  A  |->  ( ( ( ( S  Dn F ) `
 ( N  - 
1 ) ) `  y )  -  (
( ( CC  Dn T ) `  ( N  -  1
) ) `  y
) ) ) `  x )  -  (
( y  e.  A  |->  ( ( ( ( S  Dn F ) `  ( N  -  1 ) ) `
 y )  -  ( ( ( CC  Dn T ) `
 ( N  - 
1 ) ) `  y ) ) ) `
 B ) )  /  ( x  -  B ) ) )
269268mpteq2dva 4489 . . . . . . 7  |-  ( ph  ->  ( x  e.  ( A  \  { B } )  |->  ( ( ( ( ( S  Dn F ) `
 ( N  - 
1 ) ) `  x )  -  (
( ( CC  Dn T ) `  ( N  -  1
) ) `  x
) )  /  (
( x  -  B
) ^ 1 ) ) )  =  ( x  e.  ( A 
\  { B }
)  |->  ( ( ( ( y  e.  A  |->  ( ( ( ( S  Dn F ) `  ( N  -  1 ) ) `
 y )  -  ( ( ( CC  Dn T ) `
 ( N  - 
1 ) ) `  y ) ) ) `
 x )  -  ( ( y  e.  A  |->  ( ( ( ( S  Dn
F ) `  ( N  -  1 ) ) `  y )  -  ( ( ( CC  Dn T ) `  ( N  -  1 ) ) `
 y ) ) ) `  B ) )  /  ( x  -  B ) ) ) )
270269oveq1d 6305 . . . . . 6  |-  ( ph  ->  ( ( x  e.  ( A  \  { B } )  |->  ( ( ( ( ( S  Dn F ) `
 ( N  - 
1 ) ) `  x )  -  (
( ( CC  Dn T ) `  ( N  -  1
) ) `  x
) )  /  (
( x  -  B
) ^ 1 ) ) ) lim CC  B
)  =  ( ( x  e.  ( A 
\  { B }
)  |->  ( ( ( ( y  e.  A  |->  ( ( ( ( S  Dn F ) `  ( N  -  1 ) ) `
 y )  -  ( ( ( CC  Dn T ) `
 ( N  - 
1 ) ) `  y ) ) ) `
 x )  -  ( ( y  e.  A  |->  ( ( ( ( S  Dn
F ) `  ( N  -  1 ) ) `  y )  -  ( ( ( CC  Dn T ) `  ( N  -  1 ) ) `
 y ) ) ) `  B ) )  /  ( x  -  B ) ) ) lim CC  B ) )
271235, 270eleqtrrd 2532 . . . . 5  |-  ( ph  ->  0  e.  ( ( x  e.  ( A 
\  { B }
)  |->  ( ( ( ( ( S  Dn F ) `  ( N  -  1
) ) `  x
)  -  ( ( ( CC  Dn
T ) `  ( N  -  1 ) ) `  x ) )  /  ( ( x  -  B ) ^ 1 ) ) ) lim CC  B ) )
272271a1i 11 . . . 4  |-  ( N  e.  ( ZZ>= `  1
)  ->  ( ph  ->  0  e.  ( ( x  e.  ( A 
\  { B }
)  |->  ( ( ( ( ( S  Dn F ) `  ( N  -  1
) ) `  x
)  -  ( ( ( CC  Dn
T ) `  ( N  -  1 ) ) `  x ) )  /  ( ( x  -  B ) ^ 1 ) ) ) lim CC  B ) ) )
273 taylthlem1.i . . . . . . 7  |-  ( (
ph  /\  ( n  e.  ( 1..^ N )  /\  0  e.  ( ( y  e.  ( A  \  { B } )  |->  ( ( ( ( ( S  Dn F ) `
 ( N  -  n ) ) `  y )  -  (
( ( CC  Dn T ) `  ( N  -  n
) ) `  y
) )  /  (
( y  -  B
) ^ n ) ) ) lim CC  B
) ) )  -> 
0  e.  ( ( x  e.  ( A 
\  { B }
)  |->  ( ( ( ( ( S  Dn F ) `  ( N  -  (
n  +  1 ) ) ) `  x
)  -  ( ( ( CC  Dn
T ) `  ( N  -  ( n  +  1 ) ) ) `  x ) )  /  ( ( x  -  B ) ^ ( n  + 
1 ) ) ) ) lim CC  B ) )
274273expr 620 . . . . . 6  |-  ( (
ph  /\  n  e.  ( 1..^ N ) )  ->  ( 0  e.  ( ( y  e.  ( A  \  { B } )  |->  ( ( ( ( ( S  Dn F ) `
 ( N  -  n ) ) `  y )  -  (
( ( CC  Dn T ) `  ( N  -  n
) ) `  y
) )  /  (
( y  -  B
) ^ n ) ) ) lim CC  B
)  ->  0  e.  ( ( x  e.  ( A  \  { B } )  |->  ( ( ( ( ( S  Dn F ) `
 ( N  -  ( n  +  1
) ) ) `  x )  -  (
( ( CC  Dn T ) `  ( N  -  (
n  +  1 ) ) ) `  x
) )  /  (
( x  -  B
) ^ ( n  +  1 ) ) ) ) lim CC  B
) ) )
275274expcom 437 . . . . 5  |-  ( n  e.  ( 1..^ N )  ->  ( ph  ->  ( 0  e.  ( ( y  e.  ( A  \  { B } )  |->  ( ( ( ( ( S  Dn F ) `
 ( N  -  n ) ) `  y )  -  (
( ( CC  Dn T ) `  ( N  -  n
) ) `  y
) )  /  (
( y  -  B
) ^ n ) ) ) lim CC  B
)  ->  0  e.  ( ( x  e.  ( A  \  { B } )  |->  ( ( ( ( ( S  Dn F ) `
 ( N  -  ( n  +  1
) ) ) `  x )  -  (
( ( CC  Dn T ) `  ( N  -  (
n  +  1 ) ) ) `  x
) )  /  (
( x  -  B
) ^ ( n  +  1 ) ) ) ) lim CC  B
) ) ) )
276275a2d 29 . . . 4  |-  ( n  e.  ( 1..^ N )  ->  ( ( ph  ->  0  e.  ( ( y  e.  ( A  \  { B } )  |->  ( ( ( ( ( S  Dn F ) `
 ( N  -  n ) ) `  y )  -  (
( ( CC  Dn T ) `  ( N  -  n
) ) `  y
) )  /  (
( y  -  B
) ^ n ) ) ) lim CC  B
) )  ->  ( ph  ->  0  e.  ( ( x  e.  ( A  \  { B } )  |->  ( ( ( ( ( S  Dn F ) `
 ( N  -  ( n  +  1
) ) ) `  x )  -  (
( ( CC  Dn T ) `  ( N  -  (
n  +  1 ) ) ) `  x
) )  /  (
( x  -  B
) ^ ( n  +  1 ) ) ) ) lim CC  B
) ) ) )
27715, 35, 47, 59, 272, 276fzind2 12023 . . 3  |-  ( N  e.  ( 1 ... N )  ->  ( ph  ->  0  e.  ( ( x  e.  ( A  \  { B } )  |->  ( ( ( ( ( S  Dn F ) `
 ( N  -  N ) ) `  x )  -  (
( ( CC  Dn T ) `  ( N  -  N
) ) `  x
) )  /  (
( x  -  B
) ^ N ) ) ) lim CC  B
) ) )
2783, 277mpcom 37 . 2  |-  ( ph  ->  0  e.  ( ( x  e.  ( A 
\  { B }
)  |->  ( ( ( ( ( S  Dn F ) `  ( N  -  N
) ) `  x
)  -  ( ( ( CC  Dn
T ) `  ( N  -  N )
) `  x )
)  /  ( ( x  -  B ) ^ N ) ) ) lim CC  B ) )
279119subidd 9974 . . . . . . . . . 10  |-  ( ph  ->  ( N  -  N
)  =  0 )
280279fveq2d 5869 . . . . . . . . 9  |-  ( ph  ->  ( ( S  Dn F ) `  ( N  -  N
) )  =  ( ( S  Dn
F ) `  0
) )
281 dvn0 22878 . . . . . . . . . 10  |-  ( ( S  C_  CC  /\  F  e.  ( CC  ^pm  S
) )  ->  (
( S  Dn
F ) `  0
)  =  F )
282124, 84, 281syl2anc 667 . . . . . . . . 9  |-  ( ph  ->  ( ( S  Dn F ) ` 
0 )  =  F )
283280, 282eqtrd 2485 . . . . . . . 8  |-  ( ph  ->  ( ( S  Dn F ) `  ( N  -  N
) )  =  F )
284283fveq1d 5867 . . . . . . 7  |-  ( ph  ->  ( ( ( S  Dn F ) `
 ( N  -  N ) ) `  x )  =  ( F `  x ) )
285279fveq2d 5869 . . . . . . . . 9  |-  ( ph  ->  ( ( CC  Dn T ) `  ( N  -  N
) )  =  ( ( CC  Dn
T ) `  0
) )
286 dvn0 22878 . . . . . . . . . 10  |-  ( ( CC  C_  CC  /\  T  e.  ( CC  ^pm  CC ) )  ->  (
( CC  Dn
T ) `  0
)  =  T )
287193, 199, 286sylancr 669 . . . . . . . . 9  |-  ( ph  ->  ( ( CC  Dn T ) ` 
0 )  =  T )
288285, 287eqtrd 2485 . . . . . . . 8  |-  ( ph  ->  ( ( CC  Dn T ) `  ( N  -  N
) )  =  T )
289288fveq1d 5867 . . . . . . 7  |-  ( ph  ->  ( ( ( CC  Dn T ) `
 ( N  -  N ) ) `  x )  =  ( T `  x ) )
290284, 289oveq12d 6308 . . . . . 6  |-  ( ph  ->  ( ( ( ( S  Dn F ) `  ( N  -  N ) ) `
 x )  -  ( ( ( CC  Dn T ) `
 ( N  -  N ) ) `  x ) )  =  ( ( F `  x )  -  ( T `  x )
) )
291290oveq1d 6305 . . . . 5  |-  ( ph  ->  ( ( ( ( ( S  Dn
F ) `  ( N  -  N )
) `  x )  -  ( ( ( CC  Dn T ) `  ( N  -  N ) ) `
 x ) )  /  ( ( x  -  B ) ^ N ) )  =  ( ( ( F `
 x )  -  ( T `  x ) )  /  ( ( x  -  B ) ^ N ) ) )
292291mpteq2dv 4490 . . . 4  |-  ( ph  ->  ( x  e.  ( A  \  { B } )  |->  ( ( ( ( ( S  Dn F ) `
 ( N  -  N ) ) `  x )  -  (
( ( CC  Dn T ) `  ( N  -  N
) ) `  x
) )  /  (
( x  -  B
) ^ N ) ) )  =  ( x  e.  ( A 
\  { B }
)  |->  ( ( ( F `  x )  -  ( T `  x ) )  / 
( ( x  -  B ) ^ N
) ) ) )
293 taylthlem1.r . . . 4  |-  R  =  ( x  e.  ( A  \  { B } )  |->  ( ( ( F `  x
)  -  ( T `
 x ) )  /  ( ( x  -  B ) ^ N ) ) )
294292, 293syl6eqr 2503 . . 3  |-  ( ph  ->  ( x  e.  ( A  \  { B } )  |->  ( ( ( ( ( S  Dn F ) `
 ( N  -  N ) ) `  x )  -  (
( ( CC  Dn T ) `  ( N  -  N
) ) `  x
) )  /  (
( x  -  B
) ^ N ) ) )  =  R )
295294oveq1d 6305 . 2  |-  ( ph  ->  ( ( x  e.  ( A  \  { B } )  |->  ( ( ( ( ( S  Dn F ) `
 ( N  -  N ) ) `  x )  -  (
( ( CC  Dn T ) `  ( N  -  N
) ) `  x
) )  /  (
( x  -  B
) ^ N ) ) ) lim CC  B
)  =  ( R lim
CC  B ) )
296278, 295eleqtrd 2531 1  |-  ( ph  ->  0  e.  ( R lim
CC  B ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 188    /\ wa 371    = wceq 1444    e. wcel 1887   _Vcvv 3045    \ cdif 3401    i^i cin 3403    C_ wss 3404   {csn 3968   {cpr 3970   U.cuni 4198   class class class wbr 4402    |-> cmpt 4461   dom cdm 4834   Fun wfun 5576   -->wf 5578   ` cfv 5582  (class class class)co 6290    ^m cmap 7472    ^pm cpm 7473   CCcc 9537   RRcr 9538   0cc0 9539   1c1 9540    + caddc 9542    - cmin 9860    / cdiv 10269   NNcn 10609   NN0cn0 10869   ZZ>=cuz 11159   ...cfz 11784  ..^cfzo 11915   ^cexp 12272   ↾t crest 15319   TopOpenctopn 15320  ℂfldccnfld 18970   Topctop 19917  TopOnctopon 19918   intcnt 20032   lim CC climc 22817    _D cdv 22818    Dncdvn 22819   Tayl ctayl 23308
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1669  ax-4 1682  ax-5 1758  ax-6 1805  ax-7 1851  ax-8 1889  ax-9 1896  ax-10 1915  ax-11 1920  ax-12 1933  ax-13 2091  ax-ext 2431  ax-rep 4515  ax-sep 4525  ax-nul 4534  ax-pow 4581  ax-pr 4639  ax-un 6583  ax-inf2 8146  ax-cnex 9595  ax-resscn 9596  ax-1cn 9597  ax-icn 9598  ax-addcl 9599  ax-addrcl 9600  ax-mulcl 9601  ax-mulrcl 9602  ax-mulcom 9603  ax-addass 9604  ax-mulass 9605  ax-distr 9606  ax-i2m1 9607  ax-1ne0 9608  ax-1rid 9609  ax-rnegex 9610  ax-rrecex 9611  ax-cnre 9612  ax-pre-lttri 9613  ax-pre-lttrn 9614  ax-pre-ltadd 9615  ax-pre-mulgt0 9616  ax-pre-sup 9617  ax-addf 9618  ax-mulf 9619
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3or 986  df-3an 987  df-tru 1447  df-fal 1450  df-ex 1664  df-nf 1668  df-sb 1798  df-eu 2303  df-mo 2304  df-clab 2438  df-cleq 2444  df-clel 2447  df-nfc 2581  df-ne 2624  df-nel 2625  df-ral 2742  df-rex 2743  df-reu 2744  df-rmo 2745  df-rab 2746  df-v 3047  df-sbc 3268  df-csb 3364  df-dif 3407  df-un 3409  df-in 3411  df-ss 3418  df-pss 3420  df-nul 3732  df-if 3882  df-pw 3953  df-sn 3969  df-pr 3971  df-tp 3973  df-op 3975  df-uni 4199  df-int 4235  df-iun 4280  df-iin 4281  df-br 4403  df-opab 4462  df-mpt 4463  df-tr 4498  df-eprel 4745  df-id 4749  df-po 4755  df-so 4756  df-fr 4793  df-se 4794  df-we 4795  df-xp 4840  df-rel 4841  df-cnv 4842  df-co 4843  df-dm 4844  df-rn 4845  df-res 4846  df-ima 4847  df-pred 5380  df-ord 5426  df-on 5427  df-lim 5428  df-suc 5429  df-iota 5546  df-fun 5584  df-fn 5585  df-f 5586  df-f1 5587  df-fo 5588  df-f1o 5589  df-fv 5590  df-isom 5591  df-riota 6252  df-ov 6293  df-oprab 6294  df-mpt2 6295  df-of 6531  df-om 6693  df-1st 6793  df-2nd 6794  df-supp 6915  df-wrecs 7028  df-recs 7090  df-rdg 7128  df-1o 7182  df-2o 7183  df-oadd 7186  df-er 7363  df-map 7474  df-pm 7475  df-ixp 7523  df-en 7570  df-dom 7571  df-sdom 7572  df-fin 7573  df-fsupp 7884  df-fi 7925  df-sup 7956  df-inf 7957  df-oi 8025  df-card 8373  df-cda 8598  df-pnf 9677  df-mnf 9678  df-xr 9679  df-ltxr 9680  df-le 9681  df-sub 9862  df-neg 9863  df-div 10270  df-nn 10610  df-2 10668  df-3 10669  df-4 10670  df-5 10671  df-6 10672  df-7 10673  df-8 10674  df-9 10675  df-10 10676  df-n0 10870  df-z 10938  df-dec 11052  df-uz 11160  df-q 11265  df-rp 11303  df-xneg 11409  df-xadd 11410  df-xmul 11411  df-icc 11642  df-fz 11785  df-fzo 11916  df-seq 12214  df-exp 12273  df-fac 12460  df-hash 12516  df-cj 13162  df-re 13163  df-im 13164  df-sqrt 13298  df-abs 13299  df-clim 13552  df-sum 13753  df-struct 15123  df-ndx 15124  df-slot 15125  df-base 15126  df-sets 15127  df-ress 15128  df-plusg 15203  df-mulr 15204  df-starv 15205  df-sca 15206  df-vsca 15207  df-ip 15208  df-tset 15209  df-ple 15210  df-ds 15212  df-unif 15213  df-hom 15214  df-cco 15215  df-rest 15321  df-topn 15322  df-0g 15340  df-gsum 15341  df-topgen 15342  df-pt 15343  df-prds 15346  df-xrs 15400  df-qtop 15406  df-imas 15407  df-xps 15410  df-mre 15492  df-mrc 15493  df-acs 15495  df-mgm 16488  df-sgrp 16527  df-mnd 16537  df-submnd 16583  df-grp 16673  df-minusg 16674  df-mulg 16676  df-cntz 16971  df-cmn 17432  df-abl 17433  df-mgp 17724  df-ur 17736  df-ring 17782  df-cring 17783  df-psmet 18962  df-xmet 18963  df-met 18964  df-bl 18965  df-mopn 18966  df-fbas 18967  df-fg 18968  df-cnfld 18971  df-top 19921  df-bases 19922  df-topon 19923  df-topsp 19924  df-cld 20034  df-ntr 20035  df-cls 20036  df-nei 20114  df-lp 20152  df-perf 20153  df-cn 20243  df-cnp 20244  df-haus 20331  df-tx 20577  df-hmeo 20770  df-fil 20861  df-fm 20953  df-flim 20954  df-flf 20955  df-tsms 21141  df-xms 21335  df-ms 21336  df-tms 21337  df-cncf 21910  df-limc 22821  df-dv 22822  df-dvn 22823  df-tayl 23310
This theorem is referenced by:  taylth  23330
  Copyright terms: Public domain W3C validator