MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  taylplem1 Structured version   Unicode version

Theorem taylplem1 21803
Description: Lemma for taylpfval 21805 and similar theorems. (Contributed by Mario Carneiro, 31-Dec-2016.)
Hypotheses
Ref Expression
taylpfval.s  |-  ( ph  ->  S  e.  { RR ,  CC } )
taylpfval.f  |-  ( ph  ->  F : A --> CC )
taylpfval.a  |-  ( ph  ->  A  C_  S )
taylpfval.n  |-  ( ph  ->  N  e.  NN0 )
taylpfval.b  |-  ( ph  ->  B  e.  dom  (
( S  Dn
F ) `  N
) )
Assertion
Ref Expression
taylplem1  |-  ( (
ph  /\  k  e.  ( ( 0 [,] N )  i^i  ZZ ) )  ->  B  e.  dom  ( ( S  Dn F ) `
 k ) )
Distinct variable groups:    B, k    k, F    k, N    ph, k    S, k
Allowed substitution hint:    A( k)

Proof of Theorem taylplem1
StepHypRef Expression
1 0z 10649 . . . . 5  |-  0  e.  ZZ
2 taylpfval.n . . . . . 6  |-  ( ph  ->  N  e.  NN0 )
32nn0zd 10737 . . . . 5  |-  ( ph  ->  N  e.  ZZ )
4 fzval2 11432 . . . . 5  |-  ( ( 0  e.  ZZ  /\  N  e.  ZZ )  ->  ( 0 ... N
)  =  ( ( 0 [,] N )  i^i  ZZ ) )
51, 3, 4sylancr 663 . . . 4  |-  ( ph  ->  ( 0 ... N
)  =  ( ( 0 [,] N )  i^i  ZZ ) )
65eleq2d 2505 . . 3  |-  ( ph  ->  ( k  e.  ( 0 ... N )  <-> 
k  e.  ( ( 0 [,] N )  i^i  ZZ ) ) )
76biimpar 485 . 2  |-  ( (
ph  /\  k  e.  ( ( 0 [,] N )  i^i  ZZ ) )  ->  k  e.  ( 0 ... N
) )
8 taylpfval.s . . . . 5  |-  ( ph  ->  S  e.  { RR ,  CC } )
9 cnex 9355 . . . . . . 7  |-  CC  e.  _V
109a1i 11 . . . . . 6  |-  ( ph  ->  CC  e.  _V )
11 taylpfval.f . . . . . 6  |-  ( ph  ->  F : A --> CC )
12 taylpfval.a . . . . . 6  |-  ( ph  ->  A  C_  S )
13 elpm2r 7222 . . . . . 6  |-  ( ( ( CC  e.  _V  /\  S  e.  { RR ,  CC } )  /\  ( F : A --> CC  /\  A  C_  S ) )  ->  F  e.  ( CC  ^pm  S )
)
1410, 8, 11, 12, 13syl22anc 1219 . . . . 5  |-  ( ph  ->  F  e.  ( CC 
^pm  S ) )
158, 14jca 532 . . . 4  |-  ( ph  ->  ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm 
S ) ) )
16 dvn2bss 21379 . . . . 5  |-  ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm  S
)  /\  k  e.  ( 0 ... N
) )  ->  dom  ( ( S  Dn F ) `  N )  C_  dom  ( ( S  Dn F ) `  k ) )
17163expa 1187 . . . 4  |-  ( ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm 
S ) )  /\  k  e.  ( 0 ... N ) )  ->  dom  ( ( S  Dn F ) `
 N )  C_  dom  ( ( S  Dn F ) `  k ) )
1815, 17sylan 471 . . 3  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  dom  ( ( S  Dn F ) `  N )  C_  dom  ( ( S  Dn F ) `  k ) )
19 taylpfval.b . . . 4  |-  ( ph  ->  B  e.  dom  (
( S  Dn
F ) `  N
) )
2019adantr 465 . . 3  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  B  e.  dom  ( ( S  Dn F ) `
 N ) )
2118, 20sseldd 3352 . 2  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  B  e.  dom  ( ( S  Dn F ) `
 k ) )
227, 21syldan 470 1  |-  ( (
ph  /\  k  e.  ( ( 0 [,] N )  i^i  ZZ ) )  ->  B  e.  dom  ( ( S  Dn F ) `
 k ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1369    e. wcel 1756   _Vcvv 2967    i^i cin 3322    C_ wss 3323   {cpr 3874   dom cdm 4835   -->wf 5409   ` cfv 5413  (class class class)co 6086    ^pm cpm 7207   CCcc 9272   RRcr 9273   0cc0 9274   NN0cn0 10571   ZZcz 10638   [,]cicc 11295   ...cfz 11429    Dncdvn 21314
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2419  ax-rep 4398  ax-sep 4408  ax-nul 4416  ax-pow 4465  ax-pr 4526  ax-un 6367  ax-inf2 7839  ax-cnex 9330  ax-resscn 9331  ax-1cn 9332  ax-icn 9333  ax-addcl 9334  ax-addrcl 9335  ax-mulcl 9336  ax-mulrcl 9337  ax-mulcom 9338  ax-addass 9339  ax-mulass 9340  ax-distr 9341  ax-i2m1 9342  ax-1ne0 9343  ax-1rid 9344  ax-rnegex 9345  ax-rrecex 9346  ax-cnre 9347  ax-pre-lttri 9348  ax-pre-lttrn 9349  ax-pre-ltadd 9350  ax-pre-mulgt0 9351  ax-pre-sup 9352
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2256  df-mo 2257  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2715  df-rex 2716  df-reu 2717  df-rmo 2718  df-rab 2719  df-v 2969  df-sbc 3182  df-csb 3284  df-dif 3326  df-un 3328  df-in 3330  df-ss 3337  df-pss 3339  df-nul 3633  df-if 3787  df-pw 3857  df-sn 3873  df-pr 3875  df-tp 3877  df-op 3879  df-uni 4087  df-int 4124  df-iun 4168  df-iin 4169  df-br 4288  df-opab 4346  df-mpt 4347  df-tr 4381  df-eprel 4627  df-id 4631  df-po 4636  df-so 4637  df-fr 4674  df-we 4676  df-ord 4717  df-on 4718  df-lim 4719  df-suc 4720  df-xp 4841  df-rel 4842  df-cnv 4843  df-co 4844  df-dm 4845  df-rn 4846  df-res 4847  df-ima 4848  df-iota 5376  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-riota 6047  df-ov 6089  df-oprab 6090  df-mpt2 6091  df-om 6472  df-1st 6572  df-2nd 6573  df-recs 6824  df-rdg 6858  df-1o 6912  df-oadd 6916  df-er 7093  df-map 7208  df-pm 7209  df-en 7303  df-dom 7304  df-sdom 7305  df-fin 7306  df-fi 7653  df-sup 7683  df-pnf 9412  df-mnf 9413  df-xr 9414  df-ltxr 9415  df-le 9416  df-sub 9589  df-neg 9590  df-div 9986  df-nn 10315  df-2 10372  df-3 10373  df-4 10374  df-5 10375  df-6 10376  df-7 10377  df-8 10378  df-9 10379  df-10 10380  df-n0 10572  df-z 10639  df-dec 10748  df-uz 10854  df-q 10946  df-rp 10984  df-xneg 11081  df-xadd 11082  df-xmul 11083  df-icc 11299  df-fz 11430  df-seq 11799  df-exp 11858  df-cj 12580  df-re 12581  df-im 12582  df-sqr 12716  df-abs 12717  df-struct 14168  df-ndx 14169  df-slot 14170  df-base 14171  df-plusg 14243  df-mulr 14244  df-starv 14245  df-tset 14249  df-ple 14250  df-ds 14252  df-unif 14253  df-rest 14353  df-topn 14354  df-topgen 14374  df-psmet 17784  df-xmet 17785  df-met 17786  df-bl 17787  df-mopn 17788  df-fbas 17789  df-fg 17790  df-cnfld 17794  df-top 18478  df-bases 18480  df-topon 18481  df-topsp 18482  df-cld 18598  df-ntr 18599  df-cls 18600  df-nei 18677  df-lp 18715  df-perf 18716  df-cnp 18807  df-haus 18894  df-fil 19394  df-fm 19486  df-flim 19487  df-flf 19488  df-xms 19870  df-ms 19871  df-limc 21316  df-dv 21317  df-dvn 21318
This theorem is referenced by:  taylplem2  21804  taylpfval  21805  dvtaylp  21810  dvntaylp0  21812
  Copyright terms: Public domain W3C validator