MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  taylpfval Structured version   Unicode version

Theorem taylpfval 21715
Description: Define the Taylor polynomial of a function. The constant Tayl is a function of five arguments: 
S is the base set with respect to evaluate the derivatives (generally  RR or 
CC),  F is the function we are approximating, at point  B, to order  N. The result is a polynomial function of  x. (Contributed by Mario Carneiro, 31-Dec-2016.)
Hypotheses
Ref Expression
taylpfval.s  |-  ( ph  ->  S  e.  { RR ,  CC } )
taylpfval.f  |-  ( ph  ->  F : A --> CC )
taylpfval.a  |-  ( ph  ->  A  C_  S )
taylpfval.n  |-  ( ph  ->  N  e.  NN0 )
taylpfval.b  |-  ( ph  ->  B  e.  dom  (
( S  Dn
F ) `  N
) )
taylpfval.t  |-  T  =  ( N ( S Tayl 
F ) B )
Assertion
Ref Expression
taylpfval  |-  ( ph  ->  T  =  ( x  e.  CC  |->  sum_ k  e.  ( 0 ... N
) ( ( ( ( ( S  Dn F ) `  k ) `  B
)  /  ( ! `
 k ) )  x.  ( ( x  -  B ) ^
k ) ) ) )
Distinct variable groups:    x, k, B    k, F, x    k, N, x    ph, k, x    S, k, x    x, T
Allowed substitution hints:    A( x, k)    T( k)

Proof of Theorem taylpfval
StepHypRef Expression
1 taylpfval.s . . . 4  |-  ( ph  ->  S  e.  { RR ,  CC } )
2 taylpfval.f . . . 4  |-  ( ph  ->  F : A --> CC )
3 taylpfval.a . . . 4  |-  ( ph  ->  A  C_  S )
4 taylpfval.n . . . . 5  |-  ( ph  ->  N  e.  NN0 )
54orcd 392 . . . 4  |-  ( ph  ->  ( N  e.  NN0  \/  N  = +oo )
)
6 taylpfval.b . . . . 5  |-  ( ph  ->  B  e.  dom  (
( S  Dn
F ) `  N
) )
71, 2, 3, 4, 6taylplem1 21713 . . . 4  |-  ( (
ph  /\  k  e.  ( ( 0 [,] N )  i^i  ZZ ) )  ->  B  e.  dom  ( ( S  Dn F ) `
 k ) )
8 taylpfval.t . . . 4  |-  T  =  ( N ( S Tayl 
F ) B )
91, 2, 3, 5, 7, 8taylfval 21709 . . 3  |-  ( ph  ->  T  =  U_ x  e.  CC  ( { x }  X.  (fld tsums 
( k  e.  ( ( 0 [,] N
)  i^i  ZZ )  |->  ( ( ( ( ( S  Dn
F ) `  k
) `  B )  /  ( ! `  k ) )  x.  ( ( x  -  B ) ^ k
) ) ) ) ) )
10 cnfldbas 17666 . . . . . . 7  |-  CC  =  ( Base ` fld )
11 cnfld0 17684 . . . . . . 7  |-  0  =  ( 0g ` fld )
12 cnrng 17682 . . . . . . . 8  |-fld  e.  Ring
13 rngcmn 16611 . . . . . . . 8  |-  (fld  e.  Ring  ->fld  e. CMnd )
1412, 13mp1i 12 . . . . . . 7  |-  ( (
ph  /\  x  e.  CC )  ->fld  e. CMnd )
15 cnfldtps 20199 . . . . . . . 8  |-fld  e.  TopSp
1615a1i 11 . . . . . . 7  |-  ( (
ph  /\  x  e.  CC )  ->fld  e.  TopSp )
17 ovex 6105 . . . . . . . . 9  |-  ( 0 [,] N )  e. 
_V
1817inex1 4421 . . . . . . . 8  |-  ( ( 0 [,] N )  i^i  ZZ )  e. 
_V
1918a1i 11 . . . . . . 7  |-  ( (
ph  /\  x  e.  CC )  ->  ( ( 0 [,] N )  i^i  ZZ )  e. 
_V )
201, 2, 3, 5, 7taylfvallem1 21707 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  CC )  /\  k  e.  ( ( 0 [,] N )  i^i  ZZ ) )  ->  (
( ( ( ( S  Dn F ) `  k ) `
 B )  / 
( ! `  k
) )  x.  (
( x  -  B
) ^ k ) )  e.  CC )
21 eqid 2433 . . . . . . . 8  |-  ( k  e.  ( ( 0 [,] N )  i^i 
ZZ )  |->  ( ( ( ( ( S  Dn F ) `
 k ) `  B )  /  ( ! `  k )
)  x.  ( ( x  -  B ) ^ k ) ) )  =  ( k  e.  ( ( 0 [,] N )  i^i 
ZZ )  |->  ( ( ( ( ( S  Dn F ) `
 k ) `  B )  /  ( ! `  k )
)  x.  ( ( x  -  B ) ^ k ) ) )
2220, 21fmptd 5855 . . . . . . 7  |-  ( (
ph  /\  x  e.  CC )  ->  ( k  e.  ( ( 0 [,] N )  i^i 
ZZ )  |->  ( ( ( ( ( S  Dn F ) `
 k ) `  B )  /  ( ! `  k )
)  x.  ( ( x  -  B ) ^ k ) ) ) : ( ( 0 [,] N )  i^i  ZZ ) --> CC )
23 0z 10645 . . . . . . . . . . 11  |-  0  e.  ZZ
244nn0zd 10733 . . . . . . . . . . 11  |-  ( ph  ->  N  e.  ZZ )
25 fzval2 11427 . . . . . . . . . . 11  |-  ( ( 0  e.  ZZ  /\  N  e.  ZZ )  ->  ( 0 ... N
)  =  ( ( 0 [,] N )  i^i  ZZ ) )
2623, 24, 25sylancr 656 . . . . . . . . . 10  |-  ( ph  ->  ( 0 ... N
)  =  ( ( 0 [,] N )  i^i  ZZ ) )
2726adantr 462 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  CC )  ->  ( 0 ... N )  =  ( ( 0 [,] N )  i^i  ZZ ) )
28 fzfid 11779 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  CC )  ->  ( 0 ... N )  e. 
Fin )
2927, 28eqeltrrd 2508 . . . . . . . 8  |-  ( (
ph  /\  x  e.  CC )  ->  ( ( 0 [,] N )  i^i  ZZ )  e. 
Fin )
30 ovex 6105 . . . . . . . . 9  |-  ( ( ( ( ( S  Dn F ) `
 k ) `  B )  /  ( ! `  k )
)  x.  ( ( x  -  B ) ^ k ) )  e.  _V
3130a1i 11 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  CC )  /\  k  e.  ( ( 0 [,] N )  i^i  ZZ ) )  ->  (
( ( ( ( S  Dn F ) `  k ) `
 B )  / 
( ! `  k
) )  x.  (
( x  -  B
) ^ k ) )  e.  _V )
32 c0ex 9368 . . . . . . . . 9  |-  0  e.  _V
3332a1i 11 . . . . . . . 8  |-  ( (
ph  /\  x  e.  CC )  ->  0  e. 
_V )
3421, 29, 31, 33fsuppmptdm 7619 . . . . . . 7  |-  ( (
ph  /\  x  e.  CC )  ->  ( k  e.  ( ( 0 [,] N )  i^i 
ZZ )  |->  ( ( ( ( ( S  Dn F ) `
 k ) `  B )  /  ( ! `  k )
)  x.  ( ( x  -  B ) ^ k ) ) ) finSupp  0 )
35 eqid 2433 . . . . . . 7  |-  ( TopOpen ` fld )  =  ( TopOpen ` fld )
3635cnfldhaus 20206 . . . . . . . 8  |-  ( TopOpen ` fld )  e.  Haus
3736a1i 11 . . . . . . 7  |-  ( (
ph  /\  x  e.  CC )  ->  ( TopOpen ` fld )  e.  Haus )
3810, 11, 14, 16, 19, 22, 34, 35, 37haustsmsid 19553 . . . . . 6  |-  ( (
ph  /\  x  e.  CC )  ->  (fld tsums  ( k  e.  ( ( 0 [,] N )  i^i  ZZ )  |->  ( ( ( ( ( S  Dn F ) `  k ) `  B
)  /  ( ! `
 k ) )  x.  ( ( x  -  B ) ^
k ) ) ) )  =  { (fld  gsumg  ( k  e.  ( ( 0 [,] N )  i^i 
ZZ )  |->  ( ( ( ( ( S  Dn F ) `
 k ) `  B )  /  ( ! `  k )
)  x.  ( ( x  -  B ) ^ k ) ) ) ) } )
3929, 20gsumfsum 17723 . . . . . . . 8  |-  ( (
ph  /\  x  e.  CC )  ->  (fld  gsumg  ( k  e.  ( ( 0 [,] N
)  i^i  ZZ )  |->  ( ( ( ( ( S  Dn
F ) `  k
) `  B )  /  ( ! `  k ) )  x.  ( ( x  -  B ) ^ k
) ) ) )  =  sum_ k  e.  ( ( 0 [,] N
)  i^i  ZZ )
( ( ( ( ( S  Dn
F ) `  k
) `  B )  /  ( ! `  k ) )  x.  ( ( x  -  B ) ^ k
) ) )
4027sumeq1d 13162 . . . . . . . 8  |-  ( (
ph  /\  x  e.  CC )  ->  sum_ k  e.  ( 0 ... N
) ( ( ( ( ( S  Dn F ) `  k ) `  B
)  /  ( ! `
 k ) )  x.  ( ( x  -  B ) ^
k ) )  = 
sum_ k  e.  ( ( 0 [,] N
)  i^i  ZZ )
( ( ( ( ( S  Dn
F ) `  k
) `  B )  /  ( ! `  k ) )  x.  ( ( x  -  B ) ^ k
) ) )
4139, 40eqtr4d 2468 . . . . . . 7  |-  ( (
ph  /\  x  e.  CC )  ->  (fld  gsumg  ( k  e.  ( ( 0 [,] N
)  i^i  ZZ )  |->  ( ( ( ( ( S  Dn
F ) `  k
) `  B )  /  ( ! `  k ) )  x.  ( ( x  -  B ) ^ k
) ) ) )  =  sum_ k  e.  ( 0 ... N ) ( ( ( ( ( S  Dn
F ) `  k
) `  B )  /  ( ! `  k ) )  x.  ( ( x  -  B ) ^ k
) ) )
4241sneqd 3877 . . . . . 6  |-  ( (
ph  /\  x  e.  CC )  ->  { (fld  gsumg  ( k  e.  ( ( 0 [,] N )  i^i 
ZZ )  |->  ( ( ( ( ( S  Dn F ) `
 k ) `  B )  /  ( ! `  k )
)  x.  ( ( x  -  B ) ^ k ) ) ) ) }  =  { sum_ k  e.  ( 0 ... N ) ( ( ( ( ( S  Dn
F ) `  k
) `  B )  /  ( ! `  k ) )  x.  ( ( x  -  B ) ^ k
) ) } )
4338, 42eqtrd 2465 . . . . 5  |-  ( (
ph  /\  x  e.  CC )  ->  (fld tsums  ( k  e.  ( ( 0 [,] N )  i^i  ZZ )  |->  ( ( ( ( ( S  Dn F ) `  k ) `  B
)  /  ( ! `
 k ) )  x.  ( ( x  -  B ) ^
k ) ) ) )  =  { sum_ k  e.  ( 0 ... N ) ( ( ( ( ( S  Dn F ) `  k ) `
 B )  / 
( ! `  k
) )  x.  (
( x  -  B
) ^ k ) ) } )
4443xpeq2d 4851 . . . 4  |-  ( (
ph  /\  x  e.  CC )  ->  ( { x }  X.  (fld tsums  ( k  e.  ( ( 0 [,] N )  i^i 
ZZ )  |->  ( ( ( ( ( S  Dn F ) `
 k ) `  B )  /  ( ! `  k )
)  x.  ( ( x  -  B ) ^ k ) ) ) ) )  =  ( { x }  X.  { sum_ k  e.  ( 0 ... N ) ( ( ( ( ( S  Dn
F ) `  k
) `  B )  /  ( ! `  k ) )  x.  ( ( x  -  B ) ^ k
) ) } ) )
4544iuneq2dv 4180 . . 3  |-  ( ph  ->  U_ x  e.  CC  ( { x }  X.  (fld tsums  ( k  e.  ( ( 0 [,] N )  i^i  ZZ )  |->  ( ( ( ( ( S  Dn F ) `  k ) `
 B )  / 
( ! `  k
) )  x.  (
( x  -  B
) ^ k ) ) ) ) )  =  U_ x  e.  CC  ( { x }  X.  { sum_ k  e.  ( 0 ... N
) ( ( ( ( ( S  Dn F ) `  k ) `  B
)  /  ( ! `
 k ) )  x.  ( ( x  -  B ) ^
k ) ) } ) )
469, 45eqtrd 2465 . 2  |-  ( ph  ->  T  =  U_ x  e.  CC  ( { x }  X.  { sum_ k  e.  ( 0 ... N
) ( ( ( ( ( S  Dn F ) `  k ) `  B
)  /  ( ! `
 k ) )  x.  ( ( x  -  B ) ^
k ) ) } ) )
47 dfmpt3 5521 . 2  |-  ( x  e.  CC  |->  sum_ k  e.  ( 0 ... N
) ( ( ( ( ( S  Dn F ) `  k ) `  B
)  /  ( ! `
 k ) )  x.  ( ( x  -  B ) ^
k ) ) )  =  U_ x  e.  CC  ( { x }  X.  { sum_ k  e.  ( 0 ... N
) ( ( ( ( ( S  Dn F ) `  k ) `  B
)  /  ( ! `
 k ) )  x.  ( ( x  -  B ) ^
k ) ) } )
4846, 47syl6eqr 2483 1  |-  ( ph  ->  T  =  ( x  e.  CC  |->  sum_ k  e.  ( 0 ... N
) ( ( ( ( ( S  Dn F ) `  k ) `  B
)  /  ( ! `
 k ) )  x.  ( ( x  -  B ) ^
k ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1362    e. wcel 1755   _Vcvv 2962    i^i cin 3315    C_ wss 3316   {csn 3865   {cpr 3867   U_ciun 4159    e. cmpt 4338    X. cxp 4825   dom cdm 4827   -->wf 5402   ` cfv 5406  (class class class)co 6080   Fincfn 7298   CCcc 9268   RRcr 9269   0cc0 9270    x. cmul 9275   +oocpnf 9403    - cmin 9583    / cdiv 9981   NN0cn0 10567   ZZcz 10634   [,]cicc 11291   ...cfz 11424   ^cexp 11849   !cfa 12035   sum_csu 13147   TopOpenctopn 14343    gsumg cgsu 14362  CMndccmn 16257   Ringcrg 16577  ℂfldccnfld 17662   TopSpctps 18343   Hauscha 18754   tsums ctsu 19538    Dncdvn 21181   Tayl ctayl 21703
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1594  ax-4 1605  ax-5 1669  ax-6 1707  ax-7 1727  ax-8 1757  ax-9 1759  ax-10 1774  ax-11 1779  ax-12 1791  ax-13 1942  ax-ext 2414  ax-rep 4391  ax-sep 4401  ax-nul 4409  ax-pow 4458  ax-pr 4519  ax-un 6361  ax-inf2 7835  ax-cnex 9326  ax-resscn 9327  ax-1cn 9328  ax-icn 9329  ax-addcl 9330  ax-addrcl 9331  ax-mulcl 9332  ax-mulrcl 9333  ax-mulcom 9334  ax-addass 9335  ax-mulass 9336  ax-distr 9337  ax-i2m1 9338  ax-1ne0 9339  ax-1rid 9340  ax-rnegex 9341  ax-rrecex 9342  ax-cnre 9343  ax-pre-lttri 9344  ax-pre-lttrn 9345  ax-pre-ltadd 9346  ax-pre-mulgt0 9347  ax-pre-sup 9348  ax-addf 9349  ax-mulf 9350
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 959  df-3an 960  df-tru 1365  df-fal 1368  df-ex 1590  df-nf 1593  df-sb 1700  df-eu 2258  df-mo 2259  df-clab 2420  df-cleq 2426  df-clel 2429  df-nfc 2558  df-ne 2598  df-nel 2599  df-ral 2710  df-rex 2711  df-reu 2712  df-rmo 2713  df-rab 2714  df-v 2964  df-sbc 3176  df-csb 3277  df-dif 3319  df-un 3321  df-in 3323  df-ss 3330  df-pss 3332  df-nul 3626  df-if 3780  df-pw 3850  df-sn 3866  df-pr 3868  df-tp 3870  df-op 3872  df-uni 4080  df-int 4117  df-iun 4161  df-iin 4162  df-br 4281  df-opab 4339  df-mpt 4340  df-tr 4374  df-eprel 4619  df-id 4623  df-po 4628  df-so 4629  df-fr 4666  df-se 4667  df-we 4668  df-ord 4709  df-on 4710  df-lim 4711  df-suc 4712  df-xp 4833  df-rel 4834  df-cnv 4835  df-co 4836  df-dm 4837  df-rn 4838  df-res 4839  df-ima 4840  df-iota 5369  df-fun 5408  df-fn 5409  df-f 5410  df-f1 5411  df-fo 5412  df-f1o 5413  df-fv 5414  df-isom 5415  df-riota 6039  df-ov 6083  df-oprab 6084  df-mpt2 6085  df-om 6466  df-1st 6566  df-2nd 6567  df-supp 6680  df-recs 6818  df-rdg 6852  df-1o 6908  df-oadd 6912  df-er 7089  df-map 7204  df-pm 7205  df-en 7299  df-dom 7300  df-sdom 7301  df-fin 7302  df-fsupp 7609  df-fi 7649  df-sup 7679  df-oi 7712  df-card 8097  df-pnf 9408  df-mnf 9409  df-xr 9410  df-ltxr 9411  df-le 9412  df-sub 9585  df-neg 9586  df-div 9982  df-nn 10311  df-2 10368  df-3 10369  df-4 10370  df-5 10371  df-6 10372  df-7 10373  df-8 10374  df-9 10375  df-10 10376  df-n0 10568  df-z 10635  df-dec 10744  df-uz 10850  df-q 10942  df-rp 10980  df-xneg 11077  df-xadd 11078  df-xmul 11079  df-icc 11295  df-fz 11425  df-fzo 11533  df-seq 11791  df-exp 11850  df-fac 12036  df-hash 12088  df-cj 12572  df-re 12573  df-im 12574  df-sqr 12708  df-abs 12709  df-clim 12950  df-sum 13148  df-struct 14159  df-ndx 14160  df-slot 14161  df-base 14162  df-sets 14163  df-plusg 14234  df-mulr 14235  df-starv 14236  df-tset 14240  df-ple 14241  df-ds 14243  df-unif 14244  df-rest 14344  df-topn 14345  df-0g 14363  df-gsum 14364  df-topgen 14365  df-mnd 15398  df-grp 15525  df-minusg 15526  df-cntz 15815  df-cmn 16259  df-abl 16260  df-mgp 16566  df-rng 16580  df-cring 16581  df-ur 16582  df-psmet 17653  df-xmet 17654  df-met 17655  df-bl 17656  df-mopn 17657  df-fbas 17658  df-fg 17659  df-cnfld 17663  df-top 18345  df-bases 18347  df-topon 18348  df-topsp 18349  df-cld 18465  df-ntr 18466  df-cls 18467  df-nei 18544  df-lp 18582  df-perf 18583  df-cnp 18674  df-haus 18761  df-fil 19261  df-fm 19353  df-flim 19354  df-flf 19355  df-tsms 19539  df-xms 19737  df-ms 19738  df-limc 21183  df-dv 21184  df-dvn 21185  df-tayl 21705
This theorem is referenced by:  taylpf  21716  taylpval  21717  taylply2  21718  dvtaylp  21720
  Copyright terms: Public domain W3C validator