MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  taylpfval Unicode version

Theorem taylpfval 20234
Description: Define the Taylor polynomial of a function. The constant Tayl is a function of five arguments: 
S is the base set with respect to evaluate the derivatives (generally  RR or 
CC),  F is the function we are approximating, at point  B, to order  N. The result is a polynomial function of  x. (Contributed by Mario Carneiro, 31-Dec-2016.)
Hypotheses
Ref Expression
taylpfval.s  |-  ( ph  ->  S  e.  { RR ,  CC } )
taylpfval.f  |-  ( ph  ->  F : A --> CC )
taylpfval.a  |-  ( ph  ->  A  C_  S )
taylpfval.n  |-  ( ph  ->  N  e.  NN0 )
taylpfval.b  |-  ( ph  ->  B  e.  dom  (
( S  D n F ) `  N
) )
taylpfval.t  |-  T  =  ( N ( S Tayl 
F ) B )
Assertion
Ref Expression
taylpfval  |-  ( ph  ->  T  =  ( x  e.  CC  |->  sum_ k  e.  ( 0 ... N
) ( ( ( ( ( S  D n F ) `  k
) `  B )  /  ( ! `  k ) )  x.  ( ( x  -  B ) ^ k
) ) ) )
Distinct variable groups:    x, k, B    k, F, x    k, N, x    ph, k, x    S, k, x    x, T
Allowed substitution hints:    A( x, k)    T( k)

Proof of Theorem taylpfval
StepHypRef Expression
1 taylpfval.s . . . 4  |-  ( ph  ->  S  e.  { RR ,  CC } )
2 taylpfval.f . . . 4  |-  ( ph  ->  F : A --> CC )
3 taylpfval.a . . . 4  |-  ( ph  ->  A  C_  S )
4 taylpfval.n . . . . 5  |-  ( ph  ->  N  e.  NN0 )
54orcd 382 . . . 4  |-  ( ph  ->  ( N  e.  NN0  \/  N  =  +oo )
)
6 taylpfval.b . . . . 5  |-  ( ph  ->  B  e.  dom  (
( S  D n F ) `  N
) )
71, 2, 3, 4, 6taylplem1 20232 . . . 4  |-  ( (
ph  /\  k  e.  ( ( 0 [,] N )  i^i  ZZ ) )  ->  B  e.  dom  ( ( S  D n F ) `
 k ) )
8 taylpfval.t . . . 4  |-  T  =  ( N ( S Tayl 
F ) B )
91, 2, 3, 5, 7, 8taylfval 20228 . . 3  |-  ( ph  ->  T  =  U_ x  e.  CC  ( { x }  X.  (fld tsums 
( k  e.  ( ( 0 [,] N
)  i^i  ZZ )  |->  ( ( ( ( ( S  D n F ) `  k
) `  B )  /  ( ! `  k ) )  x.  ( ( x  -  B ) ^ k
) ) ) ) ) )
10 cnfldbas 16662 . . . . . . 7  |-  CC  =  ( Base ` fld )
11 cnfld0 16680 . . . . . . 7  |-  0  =  ( 0g ` fld )
12 cnrng 16678 . . . . . . . 8  |-fld  e.  Ring
13 rngcmn 15649 . . . . . . . 8  |-  (fld  e.  Ring  ->fld  e. CMnd )
1412, 13mp1i 12 . . . . . . 7  |-  ( (
ph  /\  x  e.  CC )  ->fld  e. CMnd )
15 cnfldtps 18765 . . . . . . . 8  |-fld  e.  TopSp
1615a1i 11 . . . . . . 7  |-  ( (
ph  /\  x  e.  CC )  ->fld  e.  TopSp )
17 ovex 6065 . . . . . . . . 9  |-  ( 0 [,] N )  e. 
_V
1817inex1 4304 . . . . . . . 8  |-  ( ( 0 [,] N )  i^i  ZZ )  e. 
_V
1918a1i 11 . . . . . . 7  |-  ( (
ph  /\  x  e.  CC )  ->  ( ( 0 [,] N )  i^i  ZZ )  e. 
_V )
201, 2, 3, 5, 7taylfvallem1 20226 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  CC )  /\  k  e.  ( ( 0 [,] N )  i^i  ZZ ) )  ->  (
( ( ( ( S  D n F ) `  k ) `
 B )  / 
( ! `  k
) )  x.  (
( x  -  B
) ^ k ) )  e.  CC )
21 eqid 2404 . . . . . . . 8  |-  ( k  e.  ( ( 0 [,] N )  i^i 
ZZ )  |->  ( ( ( ( ( S  D n F ) `
 k ) `  B )  /  ( ! `  k )
)  x.  ( ( x  -  B ) ^ k ) ) )  =  ( k  e.  ( ( 0 [,] N )  i^i 
ZZ )  |->  ( ( ( ( ( S  D n F ) `
 k ) `  B )  /  ( ! `  k )
)  x.  ( ( x  -  B ) ^ k ) ) )
2220, 21fmptd 5852 . . . . . . 7  |-  ( (
ph  /\  x  e.  CC )  ->  ( k  e.  ( ( 0 [,] N )  i^i 
ZZ )  |->  ( ( ( ( ( S  D n F ) `
 k ) `  B )  /  ( ! `  k )
)  x.  ( ( x  -  B ) ^ k ) ) ) : ( ( 0 [,] N )  i^i  ZZ ) --> CC )
23 0z 10249 . . . . . . . . . . 11  |-  0  e.  ZZ
244nn0zd 10329 . . . . . . . . . . 11  |-  ( ph  ->  N  e.  ZZ )
25 fzval2 11002 . . . . . . . . . . 11  |-  ( ( 0  e.  ZZ  /\  N  e.  ZZ )  ->  ( 0 ... N
)  =  ( ( 0 [,] N )  i^i  ZZ ) )
2623, 24, 25sylancr 645 . . . . . . . . . 10  |-  ( ph  ->  ( 0 ... N
)  =  ( ( 0 [,] N )  i^i  ZZ ) )
2726adantr 452 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  CC )  ->  ( 0 ... N )  =  ( ( 0 [,] N )  i^i  ZZ ) )
28 fzfid 11267 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  CC )  ->  ( 0 ... N )  e. 
Fin )
2927, 28eqeltrrd 2479 . . . . . . . 8  |-  ( (
ph  /\  x  e.  CC )  ->  ( ( 0 [,] N )  i^i  ZZ )  e. 
Fin )
3029, 22fisuppfi 14728 . . . . . . 7  |-  ( (
ph  /\  x  e.  CC )  ->  ( `' ( k  e.  ( ( 0 [,] N
)  i^i  ZZ )  |->  ( ( ( ( ( S  D n F ) `  k
) `  B )  /  ( ! `  k ) )  x.  ( ( x  -  B ) ^ k
) ) ) "
( _V  \  {
0 } ) )  e.  Fin )
31 eqid 2404 . . . . . . 7  |-  ( TopOpen ` fld )  =  ( TopOpen ` fld )
3231cnfldhaus 18772 . . . . . . . 8  |-  ( TopOpen ` fld )  e.  Haus
3332a1i 11 . . . . . . 7  |-  ( (
ph  /\  x  e.  CC )  ->  ( TopOpen ` fld )  e.  Haus )
3410, 11, 14, 16, 19, 22, 30, 31, 33haustsmsid 18123 . . . . . 6  |-  ( (
ph  /\  x  e.  CC )  ->  (fld tsums  ( k  e.  ( ( 0 [,] N )  i^i  ZZ )  |->  ( ( ( ( ( S  D n F ) `  k
) `  B )  /  ( ! `  k ) )  x.  ( ( x  -  B ) ^ k
) ) ) )  =  { (fld  gsumg  ( k  e.  ( ( 0 [,] N
)  i^i  ZZ )  |->  ( ( ( ( ( S  D n F ) `  k
) `  B )  /  ( ! `  k ) )  x.  ( ( x  -  B ) ^ k
) ) ) ) } )
3529, 20gsumfsum 16721 . . . . . . . 8  |-  ( (
ph  /\  x  e.  CC )  ->  (fld  gsumg  ( k  e.  ( ( 0 [,] N
)  i^i  ZZ )  |->  ( ( ( ( ( S  D n F ) `  k
) `  B )  /  ( ! `  k ) )  x.  ( ( x  -  B ) ^ k
) ) ) )  =  sum_ k  e.  ( ( 0 [,] N
)  i^i  ZZ )
( ( ( ( ( S  D n F ) `  k
) `  B )  /  ( ! `  k ) )  x.  ( ( x  -  B ) ^ k
) ) )
3627sumeq1d 12450 . . . . . . . 8  |-  ( (
ph  /\  x  e.  CC )  ->  sum_ k  e.  ( 0 ... N
) ( ( ( ( ( S  D n F ) `  k
) `  B )  /  ( ! `  k ) )  x.  ( ( x  -  B ) ^ k
) )  =  sum_ k  e.  ( (
0 [,] N )  i^i  ZZ ) ( ( ( ( ( S  D n F ) `  k ) `
 B )  / 
( ! `  k
) )  x.  (
( x  -  B
) ^ k ) ) )
3735, 36eqtr4d 2439 . . . . . . 7  |-  ( (
ph  /\  x  e.  CC )  ->  (fld  gsumg  ( k  e.  ( ( 0 [,] N
)  i^i  ZZ )  |->  ( ( ( ( ( S  D n F ) `  k
) `  B )  /  ( ! `  k ) )  x.  ( ( x  -  B ) ^ k
) ) ) )  =  sum_ k  e.  ( 0 ... N ) ( ( ( ( ( S  D n F ) `  k
) `  B )  /  ( ! `  k ) )  x.  ( ( x  -  B ) ^ k
) ) )
3837sneqd 3787 . . . . . 6  |-  ( (
ph  /\  x  e.  CC )  ->  { (fld  gsumg  ( k  e.  ( ( 0 [,] N )  i^i 
ZZ )  |->  ( ( ( ( ( S  D n F ) `
 k ) `  B )  /  ( ! `  k )
)  x.  ( ( x  -  B ) ^ k ) ) ) ) }  =  { sum_ k  e.  ( 0 ... N ) ( ( ( ( ( S  D n F ) `  k
) `  B )  /  ( ! `  k ) )  x.  ( ( x  -  B ) ^ k
) ) } )
3934, 38eqtrd 2436 . . . . 5  |-  ( (
ph  /\  x  e.  CC )  ->  (fld tsums  ( k  e.  ( ( 0 [,] N )  i^i  ZZ )  |->  ( ( ( ( ( S  D n F ) `  k
) `  B )  /  ( ! `  k ) )  x.  ( ( x  -  B ) ^ k
) ) ) )  =  { sum_ k  e.  ( 0 ... N
) ( ( ( ( ( S  D n F ) `  k
) `  B )  /  ( ! `  k ) )  x.  ( ( x  -  B ) ^ k
) ) } )
4039xpeq2d 4861 . . . 4  |-  ( (
ph  /\  x  e.  CC )  ->  ( { x }  X.  (fld tsums  ( k  e.  ( ( 0 [,] N )  i^i 
ZZ )  |->  ( ( ( ( ( S  D n F ) `
 k ) `  B )  /  ( ! `  k )
)  x.  ( ( x  -  B ) ^ k ) ) ) ) )  =  ( { x }  X.  { sum_ k  e.  ( 0 ... N ) ( ( ( ( ( S  D n F ) `  k
) `  B )  /  ( ! `  k ) )  x.  ( ( x  -  B ) ^ k
) ) } ) )
4140iuneq2dv 4074 . . 3  |-  ( ph  ->  U_ x  e.  CC  ( { x }  X.  (fld tsums  ( k  e.  ( ( 0 [,] N )  i^i  ZZ )  |->  ( ( ( ( ( S  D n F ) `  k ) `
 B )  / 
( ! `  k
) )  x.  (
( x  -  B
) ^ k ) ) ) ) )  =  U_ x  e.  CC  ( { x }  X.  { sum_ k  e.  ( 0 ... N
) ( ( ( ( ( S  D n F ) `  k
) `  B )  /  ( ! `  k ) )  x.  ( ( x  -  B ) ^ k
) ) } ) )
429, 41eqtrd 2436 . 2  |-  ( ph  ->  T  =  U_ x  e.  CC  ( { x }  X.  { sum_ k  e.  ( 0 ... N
) ( ( ( ( ( S  D n F ) `  k
) `  B )  /  ( ! `  k ) )  x.  ( ( x  -  B ) ^ k
) ) } ) )
43 dfmpt3 5526 . 2  |-  ( x  e.  CC  |->  sum_ k  e.  ( 0 ... N
) ( ( ( ( ( S  D n F ) `  k
) `  B )  /  ( ! `  k ) )  x.  ( ( x  -  B ) ^ k
) ) )  = 
U_ x  e.  CC  ( { x }  X.  { sum_ k  e.  ( 0 ... N ) ( ( ( ( ( S  D n F ) `  k
) `  B )  /  ( ! `  k ) )  x.  ( ( x  -  B ) ^ k
) ) } )
4442, 43syl6eqr 2454 1  |-  ( ph  ->  T  =  ( x  e.  CC  |->  sum_ k  e.  ( 0 ... N
) ( ( ( ( ( S  D n F ) `  k
) `  B )  /  ( ! `  k ) )  x.  ( ( x  -  B ) ^ k
) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1649    e. wcel 1721   _Vcvv 2916    \ cdif 3277    i^i cin 3279    C_ wss 3280   {csn 3774   {cpr 3775   U_ciun 4053    e. cmpt 4226    X. cxp 4835   dom cdm 4837   -->wf 5409   ` cfv 5413  (class class class)co 6040   Fincfn 7068   CCcc 8944   RRcr 8945   0cc0 8946    x. cmul 8951    +oocpnf 9073    - cmin 9247    / cdiv 9633   NN0cn0 10177   ZZcz 10238   [,]cicc 10875   ...cfz 10999   ^cexp 11337   !cfa 11521   sum_csu 12434   TopOpenctopn 13604    gsumg cgsu 13679  CMndccmn 15367   Ringcrg 15615  ℂfldccnfld 16658   TopSpctps 16916   Hauscha 17326   tsums ctsu 18108    D ncdvn 19704   Tayl ctayl 20222
This theorem is referenced by:  taylpf  20235  taylpval  20236  taylply2  20237  dvtaylp  20239
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-rep 4280  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-inf2 7552  ax-cnex 9002  ax-resscn 9003  ax-1cn 9004  ax-icn 9005  ax-addcl 9006  ax-addrcl 9007  ax-mulcl 9008  ax-mulrcl 9009  ax-mulcom 9010  ax-addass 9011  ax-mulass 9012  ax-distr 9013  ax-i2m1 9014  ax-1ne0 9015  ax-1rid 9016  ax-rnegex 9017  ax-rrecex 9018  ax-cnre 9019  ax-pre-lttri 9020  ax-pre-lttrn 9021  ax-pre-ltadd 9022  ax-pre-mulgt0 9023  ax-pre-sup 9024  ax-addf 9025  ax-mulf 9026
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rmo 2674  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-int 4011  df-iun 4055  df-iin 4056  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-se 4502  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-isom 5422  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-1st 6308  df-2nd 6309  df-riota 6508  df-recs 6592  df-rdg 6627  df-1o 6683  df-oadd 6687  df-er 6864  df-map 6979  df-pm 6980  df-en 7069  df-dom 7070  df-sdom 7071  df-fin 7072  df-fi 7374  df-sup 7404  df-oi 7435  df-card 7782  df-pnf 9078  df-mnf 9079  df-xr 9080  df-ltxr 9081  df-le 9082  df-sub 9249  df-neg 9250  df-div 9634  df-nn 9957  df-2 10014  df-3 10015  df-4 10016  df-5 10017  df-6 10018  df-7 10019  df-8 10020  df-9 10021  df-10 10022  df-n0 10178  df-z 10239  df-dec 10339  df-uz 10445  df-q 10531  df-rp 10569  df-xneg 10666  df-xadd 10667  df-xmul 10668  df-icc 10879  df-fz 11000  df-fzo 11091  df-seq 11279  df-exp 11338  df-fac 11522  df-hash 11574  df-cj 11859  df-re 11860  df-im 11861  df-sqr 11995  df-abs 11996  df-clim 12237  df-sum 12435  df-struct 13426  df-ndx 13427  df-slot 13428  df-base 13429  df-sets 13430  df-plusg 13497  df-mulr 13498  df-starv 13499  df-tset 13503  df-ple 13504  df-ds 13506  df-unif 13507  df-rest 13605  df-topn 13606  df-topgen 13622  df-0g 13682  df-gsum 13683  df-mnd 14645  df-grp 14767  df-minusg 14768  df-cntz 15071  df-cmn 15369  df-abl 15370  df-mgp 15604  df-rng 15618  df-cring 15619  df-ur 15620  df-psmet 16649  df-xmet 16650  df-met 16651  df-bl 16652  df-mopn 16653  df-fbas 16654  df-fg 16655  df-cnfld 16659  df-top 16918  df-bases 16920  df-topon 16921  df-topsp 16922  df-cld 17038  df-ntr 17039  df-cls 17040  df-nei 17117  df-lp 17155  df-perf 17156  df-cnp 17246  df-haus 17333  df-fil 17831  df-fm 17923  df-flim 17924  df-flf 17925  df-tsms 18109  df-xms 18303  df-ms 18304  df-limc 19706  df-dv 19707  df-dvn 19708  df-tayl 20224
  Copyright terms: Public domain W3C validator