MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  taylpf Structured version   Unicode version

Theorem taylpf 21774
Description: The Taylor polynomial is a function on the complex numbers (even if the base set of the original function is the reals). (Contributed by Mario Carneiro, 31-Dec-2016.)
Hypotheses
Ref Expression
taylpfval.s  |-  ( ph  ->  S  e.  { RR ,  CC } )
taylpfval.f  |-  ( ph  ->  F : A --> CC )
taylpfval.a  |-  ( ph  ->  A  C_  S )
taylpfval.n  |-  ( ph  ->  N  e.  NN0 )
taylpfval.b  |-  ( ph  ->  B  e.  dom  (
( S  Dn
F ) `  N
) )
taylpfval.t  |-  T  =  ( N ( S Tayl 
F ) B )
Assertion
Ref Expression
taylpf  |-  ( ph  ->  T : CC --> CC )

Proof of Theorem taylpf
Dummy variables  k  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fzfid 11791 . . . 4  |-  ( (
ph  /\  x  e.  CC )  ->  ( 0 ... N )  e. 
Fin )
2 taylpfval.s . . . . 5  |-  ( ph  ->  S  e.  { RR ,  CC } )
3 taylpfval.f . . . . 5  |-  ( ph  ->  F : A --> CC )
4 taylpfval.a . . . . 5  |-  ( ph  ->  A  C_  S )
5 taylpfval.n . . . . 5  |-  ( ph  ->  N  e.  NN0 )
6 taylpfval.b . . . . 5  |-  ( ph  ->  B  e.  dom  (
( S  Dn
F ) `  N
) )
72, 3, 4, 5, 6taylplem2 21772 . . . 4  |-  ( ( ( ph  /\  x  e.  CC )  /\  k  e.  ( 0 ... N
) )  ->  (
( ( ( ( S  Dn F ) `  k ) `
 B )  / 
( ! `  k
) )  x.  (
( x  -  B
) ^ k ) )  e.  CC )
81, 7fsumcl 13206 . . 3  |-  ( (
ph  /\  x  e.  CC )  ->  sum_ k  e.  ( 0 ... N
) ( ( ( ( ( S  Dn F ) `  k ) `  B
)  /  ( ! `
 k ) )  x.  ( ( x  -  B ) ^
k ) )  e.  CC )
9 eqid 2441 . . 3  |-  ( x  e.  CC  |->  sum_ k  e.  ( 0 ... N
) ( ( ( ( ( S  Dn F ) `  k ) `  B
)  /  ( ! `
 k ) )  x.  ( ( x  -  B ) ^
k ) ) )  =  ( x  e.  CC  |->  sum_ k  e.  ( 0 ... N ) ( ( ( ( ( S  Dn
F ) `  k
) `  B )  /  ( ! `  k ) )  x.  ( ( x  -  B ) ^ k
) ) )
108, 9fmptd 5864 . 2  |-  ( ph  ->  ( x  e.  CC  |->  sum_ k  e.  ( 0 ... N ) ( ( ( ( ( S  Dn F ) `  k ) `
 B )  / 
( ! `  k
) )  x.  (
( x  -  B
) ^ k ) ) ) : CC --> CC )
11 taylpfval.t . . . 4  |-  T  =  ( N ( S Tayl 
F ) B )
122, 3, 4, 5, 6, 11taylpfval 21773 . . 3  |-  ( ph  ->  T  =  ( x  e.  CC  |->  sum_ k  e.  ( 0 ... N
) ( ( ( ( ( S  Dn F ) `  k ) `  B
)  /  ( ! `
 k ) )  x.  ( ( x  -  B ) ^
k ) ) ) )
1312feq1d 5543 . 2  |-  ( ph  ->  ( T : CC --> CC 
<->  ( x  e.  CC  |->  sum_ k  e.  ( 0 ... N ) ( ( ( ( ( S  Dn F ) `  k ) `
 B )  / 
( ! `  k
) )  x.  (
( x  -  B
) ^ k ) ) ) : CC --> CC ) )
1410, 13mpbird 232 1  |-  ( ph  ->  T : CC --> CC )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1364    e. wcel 1761    C_ wss 3325   {cpr 3876    e. cmpt 4347   dom cdm 4836   -->wf 5411   ` cfv 5415  (class class class)co 6090   CCcc 9276   RRcr 9277   0cc0 9278    x. cmul 9283    - cmin 9591    / cdiv 9989   NN0cn0 10575   ...cfz 11433   ^cexp 11861   !cfa 12047   sum_csu 13159    Dncdvn 21239   Tayl ctayl 21761
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1713  ax-7 1733  ax-8 1763  ax-9 1765  ax-10 1780  ax-11 1785  ax-12 1797  ax-13 1948  ax-ext 2422  ax-rep 4400  ax-sep 4410  ax-nul 4418  ax-pow 4467  ax-pr 4528  ax-un 6371  ax-inf2 7843  ax-cnex 9334  ax-resscn 9335  ax-1cn 9336  ax-icn 9337  ax-addcl 9338  ax-addrcl 9339  ax-mulcl 9340  ax-mulrcl 9341  ax-mulcom 9342  ax-addass 9343  ax-mulass 9344  ax-distr 9345  ax-i2m1 9346  ax-1ne0 9347  ax-1rid 9348  ax-rnegex 9349  ax-rrecex 9350  ax-cnre 9351  ax-pre-lttri 9352  ax-pre-lttrn 9353  ax-pre-ltadd 9354  ax-pre-mulgt0 9355  ax-pre-sup 9356  ax-addf 9357  ax-mulf 9358
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 961  df-3an 962  df-tru 1367  df-fal 1370  df-ex 1592  df-nf 1595  df-sb 1706  df-eu 2263  df-mo 2264  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-nel 2607  df-ral 2718  df-rex 2719  df-reu 2720  df-rmo 2721  df-rab 2722  df-v 2972  df-sbc 3184  df-csb 3286  df-dif 3328  df-un 3330  df-in 3332  df-ss 3339  df-pss 3341  df-nul 3635  df-if 3789  df-pw 3859  df-sn 3875  df-pr 3877  df-tp 3879  df-op 3881  df-uni 4089  df-int 4126  df-iun 4170  df-iin 4171  df-br 4290  df-opab 4348  df-mpt 4349  df-tr 4383  df-eprel 4628  df-id 4632  df-po 4637  df-so 4638  df-fr 4675  df-se 4676  df-we 4677  df-ord 4718  df-on 4719  df-lim 4720  df-suc 4721  df-xp 4842  df-rel 4843  df-cnv 4844  df-co 4845  df-dm 4846  df-rn 4847  df-res 4848  df-ima 4849  df-iota 5378  df-fun 5417  df-fn 5418  df-f 5419  df-f1 5420  df-fo 5421  df-f1o 5422  df-fv 5423  df-isom 5424  df-riota 6049  df-ov 6093  df-oprab 6094  df-mpt2 6095  df-om 6476  df-1st 6576  df-2nd 6577  df-supp 6690  df-recs 6828  df-rdg 6862  df-1o 6916  df-oadd 6920  df-er 7097  df-map 7212  df-pm 7213  df-en 7307  df-dom 7308  df-sdom 7309  df-fin 7310  df-fsupp 7617  df-fi 7657  df-sup 7687  df-oi 7720  df-card 8105  df-pnf 9416  df-mnf 9417  df-xr 9418  df-ltxr 9419  df-le 9420  df-sub 9593  df-neg 9594  df-div 9990  df-nn 10319  df-2 10376  df-3 10377  df-4 10378  df-5 10379  df-6 10380  df-7 10381  df-8 10382  df-9 10383  df-10 10384  df-n0 10576  df-z 10643  df-dec 10752  df-uz 10858  df-q 10950  df-rp 10988  df-xneg 11085  df-xadd 11086  df-xmul 11087  df-icc 11303  df-fz 11434  df-fzo 11545  df-seq 11803  df-exp 11862  df-fac 12048  df-hash 12100  df-cj 12584  df-re 12585  df-im 12586  df-sqr 12720  df-abs 12721  df-clim 12962  df-sum 13160  df-struct 14172  df-ndx 14173  df-slot 14174  df-base 14175  df-sets 14176  df-plusg 14247  df-mulr 14248  df-starv 14249  df-tset 14253  df-ple 14254  df-ds 14256  df-unif 14257  df-rest 14357  df-topn 14358  df-0g 14376  df-gsum 14377  df-topgen 14378  df-mnd 15411  df-grp 15538  df-minusg 15539  df-cntz 15828  df-cmn 16272  df-abl 16273  df-mgp 16582  df-ur 16594  df-rng 16637  df-cring 16638  df-psmet 17709  df-xmet 17710  df-met 17711  df-bl 17712  df-mopn 17713  df-fbas 17714  df-fg 17715  df-cnfld 17719  df-top 18403  df-bases 18405  df-topon 18406  df-topsp 18407  df-cld 18523  df-ntr 18524  df-cls 18525  df-nei 18602  df-lp 18640  df-perf 18641  df-cnp 18732  df-haus 18819  df-fil 19319  df-fm 19411  df-flim 19412  df-flf 19413  df-tsms 19597  df-xms 19795  df-ms 19796  df-limc 21241  df-dv 21242  df-dvn 21243  df-tayl 21763
This theorem is referenced by:  dvntaylp  21779  taylthlem1  21781
  Copyright terms: Public domain W3C validator