MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  taylf Structured version   Unicode version

Theorem taylf 23303
Description: The Taylor series defines a function on a subset of the complex numbers. (Contributed by Mario Carneiro, 30-Dec-2016.)
Hypotheses
Ref Expression
taylfval.s  |-  ( ph  ->  S  e.  { RR ,  CC } )
taylfval.f  |-  ( ph  ->  F : A --> CC )
taylfval.a  |-  ( ph  ->  A  C_  S )
taylfval.n  |-  ( ph  ->  ( N  e.  NN0  \/  N  = +oo )
)
taylfval.b  |-  ( (
ph  /\  k  e.  ( ( 0 [,] N )  i^i  ZZ ) )  ->  B  e.  dom  ( ( S  Dn F ) `
 k ) )
taylfval.t  |-  T  =  ( N ( S Tayl 
F ) B )
Assertion
Ref Expression
taylf  |-  ( ph  ->  T : dom  T --> CC )
Distinct variable groups:    B, k    k, F    ph, k    k, N    S, k
Allowed substitution hints:    A( k)    T( k)

Proof of Theorem taylf
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 taylfval.s . . . . . . 7  |-  ( ph  ->  S  e.  { RR ,  CC } )
2 taylfval.f . . . . . . 7  |-  ( ph  ->  F : A --> CC )
3 taylfval.a . . . . . . 7  |-  ( ph  ->  A  C_  S )
4 taylfval.n . . . . . . 7  |-  ( ph  ->  ( N  e.  NN0  \/  N  = +oo )
)
5 taylfval.b . . . . . . 7  |-  ( (
ph  /\  k  e.  ( ( 0 [,] N )  i^i  ZZ ) )  ->  B  e.  dom  ( ( S  Dn F ) `
 k ) )
6 taylfval.t . . . . . . 7  |-  T  =  ( N ( S Tayl 
F ) B )
71, 2, 3, 4, 5, 6taylfval 23301 . . . . . 6  |-  ( ph  ->  T  =  U_ x  e.  CC  ( { x }  X.  (fld tsums 
( k  e.  ( ( 0 [,] N
)  i^i  ZZ )  |->  ( ( ( ( ( S  Dn
F ) `  k
) `  B )  /  ( ! `  k ) )  x.  ( ( x  -  B ) ^ k
) ) ) ) ) )
8 simpr 462 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  CC )  ->  x  e.  CC )
98snssd 4142 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  CC )  ->  { x }  C_  CC )
101, 2, 3, 4, 5taylfvallem 23300 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  CC )  ->  (fld tsums  ( k  e.  ( ( 0 [,] N )  i^i  ZZ )  |->  ( ( ( ( ( S  Dn F ) `  k ) `  B
)  /  ( ! `
 k ) )  x.  ( ( x  -  B ) ^
k ) ) ) )  C_  CC )
11 xpss12 4956 . . . . . . . . 9  |-  ( ( { x }  C_  CC  /\  (fld tsums 
( k  e.  ( ( 0 [,] N
)  i^i  ZZ )  |->  ( ( ( ( ( S  Dn
F ) `  k
) `  B )  /  ( ! `  k ) )  x.  ( ( x  -  B ) ^ k
) ) ) ) 
C_  CC )  -> 
( { x }  X.  (fld tsums 
( k  e.  ( ( 0 [,] N
)  i^i  ZZ )  |->  ( ( ( ( ( S  Dn
F ) `  k
) `  B )  /  ( ! `  k ) )  x.  ( ( x  -  B ) ^ k
) ) ) ) )  C_  ( CC  X.  CC ) )
129, 10, 11syl2anc 665 . . . . . . . 8  |-  ( (
ph  /\  x  e.  CC )  ->  ( { x }  X.  (fld tsums  ( k  e.  ( ( 0 [,] N )  i^i 
ZZ )  |->  ( ( ( ( ( S  Dn F ) `
 k ) `  B )  /  ( ! `  k )
)  x.  ( ( x  -  B ) ^ k ) ) ) ) )  C_  ( CC  X.  CC ) )
1312ralrimiva 2839 . . . . . . 7  |-  ( ph  ->  A. x  e.  CC  ( { x }  X.  (fld tsums  ( k  e.  ( ( 0 [,] N )  i^i  ZZ )  |->  ( ( ( ( ( S  Dn F ) `  k ) `
 B )  / 
( ! `  k
) )  x.  (
( x  -  B
) ^ k ) ) ) ) ) 
C_  ( CC  X.  CC ) )
14 iunss 4337 . . . . . . 7  |-  ( U_ x  e.  CC  ( { x }  X.  (fld tsums  ( k  e.  ( ( 0 [,] N )  i^i  ZZ )  |->  ( ( ( ( ( S  Dn F ) `  k ) `
 B )  / 
( ! `  k
) )  x.  (
( x  -  B
) ^ k ) ) ) ) ) 
C_  ( CC  X.  CC )  <->  A. x  e.  CC  ( { x }  X.  (fld tsums  ( k  e.  ( ( 0 [,] N )  i^i  ZZ )  |->  ( ( ( ( ( S  Dn F ) `  k ) `
 B )  / 
( ! `  k
) )  x.  (
( x  -  B
) ^ k ) ) ) ) ) 
C_  ( CC  X.  CC ) )
1513, 14sylibr 215 . . . . . 6  |-  ( ph  ->  U_ x  e.  CC  ( { x }  X.  (fld tsums  ( k  e.  ( ( 0 [,] N )  i^i  ZZ )  |->  ( ( ( ( ( S  Dn F ) `  k ) `
 B )  / 
( ! `  k
) )  x.  (
( x  -  B
) ^ k ) ) ) ) ) 
C_  ( CC  X.  CC ) )
167, 15eqsstrd 3498 . . . . 5  |-  ( ph  ->  T  C_  ( CC  X.  CC ) )
17 relxp 4958 . . . . 5  |-  Rel  ( CC  X.  CC )
18 relss 4938 . . . . 5  |-  ( T 
C_  ( CC  X.  CC )  ->  ( Rel  ( CC  X.  CC )  ->  Rel  T )
)
1916, 17, 18mpisyl 22 . . . 4  |-  ( ph  ->  Rel  T )
201, 2, 3, 4, 5, 6eltayl 23302 . . . . . . . 8  |-  ( ph  ->  ( x T y  <-> 
( x  e.  CC  /\  y  e.  (fld tsums  ( k  e.  ( ( 0 [,] N )  i^i  ZZ )  |->  ( ( ( ( ( S  Dn F ) `  k ) `  B
)  /  ( ! `
 k ) )  x.  ( ( x  -  B ) ^
k ) ) ) ) ) ) )
2120biimpd 210 . . . . . . 7  |-  ( ph  ->  ( x T y  ->  ( x  e.  CC  /\  y  e.  (fld tsums 
( k  e.  ( ( 0 [,] N
)  i^i  ZZ )  |->  ( ( ( ( ( S  Dn
F ) `  k
) `  B )  /  ( ! `  k ) )  x.  ( ( x  -  B ) ^ k
) ) ) ) ) ) )
2221alrimiv 1763 . . . . . 6  |-  ( ph  ->  A. y ( x T y  ->  (
x  e.  CC  /\  y  e.  (fld tsums  ( k  e.  ( ( 0 [,] N )  i^i  ZZ )  |->  ( ( ( ( ( S  Dn F ) `  k ) `  B
)  /  ( ! `
 k ) )  x.  ( ( x  -  B ) ^
k ) ) ) ) ) ) )
23 cnfldbas 18962 . . . . . . . . 9  |-  CC  =  ( Base ` fld )
24 cnring 18978 . . . . . . . . . 10  |-fld  e.  Ring
25 ringcmn 17799 . . . . . . . . . 10  |-  (fld  e.  Ring  ->fld  e. CMnd )
2624, 25mp1i 13 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  CC )  ->fld  e. CMnd )
27 cnfldtps 21785 . . . . . . . . . 10  |-fld  e.  TopSp
2827a1i 11 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  CC )  ->fld  e.  TopSp )
29 ovex 6330 . . . . . . . . . . 11  |-  ( 0 [,] N )  e. 
_V
3029inex1 4562 . . . . . . . . . 10  |-  ( ( 0 [,] N )  i^i  ZZ )  e. 
_V
3130a1i 11 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  CC )  ->  ( ( 0 [,] N )  i^i  ZZ )  e. 
_V )
321, 2, 3, 4, 5taylfvallem1 23299 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  CC )  /\  k  e.  ( ( 0 [,] N )  i^i  ZZ ) )  ->  (
( ( ( ( S  Dn F ) `  k ) `
 B )  / 
( ! `  k
) )  x.  (
( x  -  B
) ^ k ) )  e.  CC )
33 eqid 2422 . . . . . . . . . 10  |-  ( k  e.  ( ( 0 [,] N )  i^i 
ZZ )  |->  ( ( ( ( ( S  Dn F ) `
 k ) `  B )  /  ( ! `  k )
)  x.  ( ( x  -  B ) ^ k ) ) )  =  ( k  e.  ( ( 0 [,] N )  i^i 
ZZ )  |->  ( ( ( ( ( S  Dn F ) `
 k ) `  B )  /  ( ! `  k )
)  x.  ( ( x  -  B ) ^ k ) ) )
3432, 33fmptd 6058 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  CC )  ->  ( k  e.  ( ( 0 [,] N )  i^i 
ZZ )  |->  ( ( ( ( ( S  Dn F ) `
 k ) `  B )  /  ( ! `  k )
)  x.  ( ( x  -  B ) ^ k ) ) ) : ( ( 0 [,] N )  i^i  ZZ ) --> CC )
35 eqid 2422 . . . . . . . . 9  |-  ( TopOpen ` fld )  =  ( TopOpen ` fld )
3635cnfldhaus 21792 . . . . . . . . . 10  |-  ( TopOpen ` fld )  e.  Haus
3736a1i 11 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  CC )  ->  ( TopOpen ` fld )  e.  Haus )
3823, 26, 28, 31, 34, 35, 37haustsms 21137 . . . . . . . 8  |-  ( (
ph  /\  x  e.  CC )  ->  E* y 
y  e.  (fld tsums  ( k  e.  ( ( 0 [,] N )  i^i  ZZ )  |->  ( ( ( ( ( S  Dn F ) `  k ) `  B
)  /  ( ! `
 k ) )  x.  ( ( x  -  B ) ^
k ) ) ) ) )
3938ex 435 . . . . . . 7  |-  ( ph  ->  ( x  e.  CC  ->  E* y  y  e.  (fld tsums 
( k  e.  ( ( 0 [,] N
)  i^i  ZZ )  |->  ( ( ( ( ( S  Dn
F ) `  k
) `  B )  /  ( ! `  k ) )  x.  ( ( x  -  B ) ^ k
) ) ) ) ) )
40 moanimv 2327 . . . . . . 7  |-  ( E* y ( x  e.  CC  /\  y  e.  (fld tsums 
( k  e.  ( ( 0 [,] N
)  i^i  ZZ )  |->  ( ( ( ( ( S  Dn
F ) `  k
) `  B )  /  ( ! `  k ) )  x.  ( ( x  -  B ) ^ k
) ) ) ) )  <->  ( x  e.  CC  ->  E* y 
y  e.  (fld tsums  ( k  e.  ( ( 0 [,] N )  i^i  ZZ )  |->  ( ( ( ( ( S  Dn F ) `  k ) `  B
)  /  ( ! `
 k ) )  x.  ( ( x  -  B ) ^
k ) ) ) ) ) )
4139, 40sylibr 215 . . . . . 6  |-  ( ph  ->  E* y ( x  e.  CC  /\  y  e.  (fld tsums 
( k  e.  ( ( 0 [,] N
)  i^i  ZZ )  |->  ( ( ( ( ( S  Dn
F ) `  k
) `  B )  /  ( ! `  k ) )  x.  ( ( x  -  B ) ^ k
) ) ) ) ) )
42 moim 2315 . . . . . 6  |-  ( A. y ( x T y  ->  ( x  e.  CC  /\  y  e.  (fld tsums 
( k  e.  ( ( 0 [,] N
)  i^i  ZZ )  |->  ( ( ( ( ( S  Dn
F ) `  k
) `  B )  /  ( ! `  k ) )  x.  ( ( x  -  B ) ^ k
) ) ) ) ) )  ->  ( E* y ( x  e.  CC  /\  y  e.  (fld tsums 
( k  e.  ( ( 0 [,] N
)  i^i  ZZ )  |->  ( ( ( ( ( S  Dn
F ) `  k
) `  B )  /  ( ! `  k ) )  x.  ( ( x  -  B ) ^ k
) ) ) ) )  ->  E* y  x T y ) )
4322, 41, 42sylc 62 . . . . 5  |-  ( ph  ->  E* y  x T y )
4443alrimiv 1763 . . . 4  |-  ( ph  ->  A. x E* y  x T y )
45 dffun6 5613 . . . 4  |-  ( Fun 
T  <->  ( Rel  T  /\  A. x E* y  x T y ) )
4619, 44, 45sylanbrc 668 . . 3  |-  ( ph  ->  Fun  T )
47 funfn 5627 . . 3  |-  ( Fun 
T  <->  T  Fn  dom  T )
4846, 47sylib 199 . 2  |-  ( ph  ->  T  Fn  dom  T
)
49 rnss 5079 . . . 4  |-  ( T 
C_  ( CC  X.  CC )  ->  ran  T  C_ 
ran  ( CC  X.  CC ) )
5016, 49syl 17 . . 3  |-  ( ph  ->  ran  T  C_  ran  ( CC  X.  CC ) )
51 rnxpss 5285 . . 3  |-  ran  ( CC  X.  CC )  C_  CC
5250, 51syl6ss 3476 . 2  |-  ( ph  ->  ran  T  C_  CC )
53 df-f 5602 . 2  |-  ( T : dom  T --> CC  <->  ( T  Fn  dom  T  /\  ran  T 
C_  CC ) )
5448, 52, 53sylanbrc 668 1  |-  ( ph  ->  T : dom  T --> CC )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    \/ wo 369    /\ wa 370   A.wal 1435    = wceq 1437    e. wcel 1868   E*wmo 2266   A.wral 2775   _Vcvv 3081    i^i cin 3435    C_ wss 3436   {csn 3996   {cpr 3998   U_ciun 4296   class class class wbr 4420    |-> cmpt 4479    X. cxp 4848   dom cdm 4850   ran crn 4851   Rel wrel 4855   Fun wfun 5592    Fn wfn 5593   -->wf 5594   ` cfv 5598  (class class class)co 6302   CCcc 9538   RRcr 9539   0cc0 9540    x. cmul 9545   +oocpnf 9673    - cmin 9861    / cdiv 10270   NN0cn0 10870   ZZcz 10938   [,]cicc 11639   ^cexp 12272   !cfa 12459   TopOpenctopn 15308  CMndccmn 17418   Ringcrg 17768  ℂfldccnfld 18958   TopSpctps 19906   Hauscha 20311   tsums ctsu 21127    Dncdvn 22806   Tayl ctayl 23295
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1748  ax-6 1794  ax-7 1839  ax-8 1870  ax-9 1872  ax-10 1887  ax-11 1892  ax-12 1905  ax-13 2053  ax-ext 2400  ax-rep 4533  ax-sep 4543  ax-nul 4552  ax-pow 4599  ax-pr 4657  ax-un 6594  ax-inf2 8149  ax-cnex 9596  ax-resscn 9597  ax-1cn 9598  ax-icn 9599  ax-addcl 9600  ax-addrcl 9601  ax-mulcl 9602  ax-mulrcl 9603  ax-mulcom 9604  ax-addass 9605  ax-mulass 9606  ax-distr 9607  ax-i2m1 9608  ax-1ne0 9609  ax-1rid 9610  ax-rnegex 9611  ax-rrecex 9612  ax-cnre 9613  ax-pre-lttri 9614  ax-pre-lttrn 9615  ax-pre-ltadd 9616  ax-pre-mulgt0 9617  ax-pre-sup 9618  ax-addf 9619  ax-mulf 9620
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1787  df-eu 2269  df-mo 2270  df-clab 2408  df-cleq 2414  df-clel 2417  df-nfc 2572  df-ne 2620  df-nel 2621  df-ral 2780  df-rex 2781  df-reu 2782  df-rmo 2783  df-rab 2784  df-v 3083  df-sbc 3300  df-csb 3396  df-dif 3439  df-un 3441  df-in 3443  df-ss 3450  df-pss 3452  df-nul 3762  df-if 3910  df-pw 3981  df-sn 3997  df-pr 3999  df-tp 4001  df-op 4003  df-uni 4217  df-int 4253  df-iun 4298  df-iin 4299  df-br 4421  df-opab 4480  df-mpt 4481  df-tr 4516  df-eprel 4761  df-id 4765  df-po 4771  df-so 4772  df-fr 4809  df-se 4810  df-we 4811  df-xp 4856  df-rel 4857  df-cnv 4858  df-co 4859  df-dm 4860  df-rn 4861  df-res 4862  df-ima 4863  df-pred 5396  df-ord 5442  df-on 5443  df-lim 5444  df-suc 5445  df-iota 5562  df-fun 5600  df-fn 5601  df-f 5602  df-f1 5603  df-fo 5604  df-f1o 5605  df-fv 5606  df-isom 5607  df-riota 6264  df-ov 6305  df-oprab 6306  df-mpt2 6307  df-om 6704  df-1st 6804  df-2nd 6805  df-supp 6923  df-wrecs 7033  df-recs 7095  df-rdg 7133  df-1o 7187  df-oadd 7191  df-er 7368  df-map 7479  df-pm 7480  df-en 7575  df-dom 7576  df-sdom 7577  df-fin 7578  df-fsupp 7887  df-fi 7928  df-sup 7959  df-inf 7960  df-oi 8028  df-card 8375  df-pnf 9678  df-mnf 9679  df-xr 9680  df-ltxr 9681  df-le 9682  df-sub 9863  df-neg 9864  df-div 10271  df-nn 10611  df-2 10669  df-3 10670  df-4 10671  df-5 10672  df-6 10673  df-7 10674  df-8 10675  df-9 10676  df-10 10677  df-n0 10871  df-z 10939  df-dec 11053  df-uz 11161  df-q 11266  df-rp 11304  df-xneg 11410  df-xadd 11411  df-xmul 11412  df-icc 11643  df-fz 11786  df-fzo 11917  df-seq 12214  df-exp 12273  df-fac 12460  df-hash 12516  df-cj 13151  df-re 13152  df-im 13153  df-sqrt 13287  df-abs 13288  df-struct 15111  df-ndx 15112  df-slot 15113  df-base 15114  df-sets 15115  df-plusg 15191  df-mulr 15192  df-starv 15193  df-tset 15197  df-ple 15198  df-ds 15200  df-unif 15201  df-rest 15309  df-topn 15310  df-0g 15328  df-gsum 15329  df-topgen 15330  df-mgm 16476  df-sgrp 16515  df-mnd 16525  df-grp 16661  df-minusg 16662  df-cntz 16959  df-cmn 17420  df-abl 17421  df-mgp 17712  df-ur 17724  df-ring 17770  df-cring 17771  df-psmet 18950  df-xmet 18951  df-met 18952  df-bl 18953  df-mopn 18954  df-fbas 18955  df-fg 18956  df-cnfld 18959  df-top 19908  df-bases 19909  df-topon 19910  df-topsp 19911  df-cld 20021  df-ntr 20022  df-cls 20023  df-nei 20101  df-lp 20139  df-perf 20140  df-cnp 20231  df-haus 20318  df-fil 20848  df-fm 20940  df-flim 20941  df-flf 20942  df-tsms 21128  df-xms 21322  df-ms 21323  df-limc 22808  df-dv 22809  df-dvn 22810  df-tayl 23297
This theorem is referenced by:  tayl0  23304
  Copyright terms: Public domain W3C validator