MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tayl0 Structured version   Unicode version

Theorem tayl0 23304
Description: The Taylor series is always defined at the basepoint, with value equal to the value of the function. (Contributed by Mario Carneiro, 30-Dec-2016.)
Hypotheses
Ref Expression
taylfval.s  |-  ( ph  ->  S  e.  { RR ,  CC } )
taylfval.f  |-  ( ph  ->  F : A --> CC )
taylfval.a  |-  ( ph  ->  A  C_  S )
taylfval.n  |-  ( ph  ->  ( N  e.  NN0  \/  N  = +oo )
)
taylfval.b  |-  ( (
ph  /\  k  e.  ( ( 0 [,] N )  i^i  ZZ ) )  ->  B  e.  dom  ( ( S  Dn F ) `
 k ) )
taylfval.t  |-  T  =  ( N ( S Tayl 
F ) B )
Assertion
Ref Expression
tayl0  |-  ( ph  ->  ( B  e.  dom  T  /\  ( T `  B )  =  ( F `  B ) ) )
Distinct variable groups:    B, k    k, F    ph, k    k, N    S, k
Allowed substitution hints:    A( k)    T( k)

Proof of Theorem tayl0
StepHypRef Expression
1 taylfval.a . . . . 5  |-  ( ph  ->  A  C_  S )
2 taylfval.s . . . . . 6  |-  ( ph  ->  S  e.  { RR ,  CC } )
3 recnprss 22846 . . . . . 6  |-  ( S  e.  { RR ,  CC }  ->  S  C_  CC )
42, 3syl 17 . . . . 5  |-  ( ph  ->  S  C_  CC )
51, 4sstrd 3474 . . . 4  |-  ( ph  ->  A  C_  CC )
6 0xr 9688 . . . . . . . . 9  |-  0  e.  RR*
76a1i 11 . . . . . . . 8  |-  ( ph  ->  0  e.  RR* )
8 taylfval.n . . . . . . . . 9  |-  ( ph  ->  ( N  e.  NN0  \/  N  = +oo )
)
9 nn0re 10879 . . . . . . . . . . 11  |-  ( N  e.  NN0  ->  N  e.  RR )
109rexrd 9691 . . . . . . . . . 10  |-  ( N  e.  NN0  ->  N  e. 
RR* )
11 id 23 . . . . . . . . . . 11  |-  ( N  = +oo  ->  N  = +oo )
12 pnfxr 11413 . . . . . . . . . . 11  |- +oo  e.  RR*
1311, 12syl6eqel 2518 . . . . . . . . . 10  |-  ( N  = +oo  ->  N  e.  RR* )
1410, 13jaoi 380 . . . . . . . . 9  |-  ( ( N  e.  NN0  \/  N  = +oo )  ->  N  e.  RR* )
158, 14syl 17 . . . . . . . 8  |-  ( ph  ->  N  e.  RR* )
16 nn0pnfge0 11435 . . . . . . . . 9  |-  ( ( N  e.  NN0  \/  N  = +oo )  ->  0  <_  N )
178, 16syl 17 . . . . . . . 8  |-  ( ph  ->  0  <_  N )
18 lbicc2 11749 . . . . . . . 8  |-  ( ( 0  e.  RR*  /\  N  e.  RR*  /\  0  <_  N )  ->  0  e.  ( 0 [,] N
) )
197, 15, 17, 18syl3anc 1264 . . . . . . 7  |-  ( ph  ->  0  e.  ( 0 [,] N ) )
20 0zd 10950 . . . . . . 7  |-  ( ph  ->  0  e.  ZZ )
2119, 20elind 3650 . . . . . 6  |-  ( ph  ->  0  e.  ( ( 0 [,] N )  i^i  ZZ ) )
22 taylfval.b . . . . . . 7  |-  ( (
ph  /\  k  e.  ( ( 0 [,] N )  i^i  ZZ ) )  ->  B  e.  dom  ( ( S  Dn F ) `
 k ) )
2322ralrimiva 2839 . . . . . 6  |-  ( ph  ->  A. k  e.  ( ( 0 [,] N
)  i^i  ZZ ) B  e.  dom  ( ( S  Dn F ) `  k ) )
24 fveq2 5878 . . . . . . . . 9  |-  ( k  =  0  ->  (
( S  Dn
F ) `  k
)  =  ( ( S  Dn F ) `  0 ) )
2524dmeqd 5053 . . . . . . . 8  |-  ( k  =  0  ->  dom  ( ( S  Dn F ) `  k )  =  dom  ( ( S  Dn F ) ` 
0 ) )
2625eleq2d 2492 . . . . . . 7  |-  ( k  =  0  ->  ( B  e.  dom  ( ( S  Dn F ) `  k )  <-> 
B  e.  dom  (
( S  Dn
F ) `  0
) ) )
2726rspcv 3178 . . . . . 6  |-  ( 0  e.  ( ( 0 [,] N )  i^i 
ZZ )  ->  ( A. k  e.  (
( 0 [,] N
)  i^i  ZZ ) B  e.  dom  ( ( S  Dn F ) `  k )  ->  B  e.  dom  ( ( S  Dn F ) ` 
0 ) ) )
2821, 23, 27sylc 62 . . . . 5  |-  ( ph  ->  B  e.  dom  (
( S  Dn
F ) `  0
) )
29 cnex 9621 . . . . . . . . . 10  |-  CC  e.  _V
3029a1i 11 . . . . . . . . 9  |-  ( ph  ->  CC  e.  _V )
31 taylfval.f . . . . . . . . 9  |-  ( ph  ->  F : A --> CC )
32 elpm2r 7494 . . . . . . . . 9  |-  ( ( ( CC  e.  _V  /\  S  e.  { RR ,  CC } )  /\  ( F : A --> CC  /\  A  C_  S ) )  ->  F  e.  ( CC  ^pm  S )
)
3330, 2, 31, 1, 32syl22anc 1265 . . . . . . . 8  |-  ( ph  ->  F  e.  ( CC 
^pm  S ) )
34 dvn0 22865 . . . . . . . 8  |-  ( ( S  C_  CC  /\  F  e.  ( CC  ^pm  S
) )  ->  (
( S  Dn
F ) `  0
)  =  F )
354, 33, 34syl2anc 665 . . . . . . 7  |-  ( ph  ->  ( ( S  Dn F ) ` 
0 )  =  F )
3635dmeqd 5053 . . . . . 6  |-  ( ph  ->  dom  ( ( S  Dn F ) `
 0 )  =  dom  F )
37 fdm 5747 . . . . . . 7  |-  ( F : A --> CC  ->  dom 
F  =  A )
3831, 37syl 17 . . . . . 6  |-  ( ph  ->  dom  F  =  A )
3936, 38eqtrd 2463 . . . . 5  |-  ( ph  ->  dom  ( ( S  Dn F ) `
 0 )  =  A )
4028, 39eleqtrd 2512 . . . 4  |-  ( ph  ->  B  e.  A )
415, 40sseldd 3465 . . 3  |-  ( ph  ->  B  e.  CC )
42 cnfldbas 18962 . . . . . . 7  |-  CC  =  ( Base ` fld )
43 cnfld0 18980 . . . . . . 7  |-  0  =  ( 0g ` fld )
44 cnring 18978 . . . . . . . 8  |-fld  e.  Ring
45 ringmnd 17777 . . . . . . . 8  |-  (fld  e.  Ring  ->fld  e.  Mnd )
4644, 45mp1i 13 . . . . . . 7  |-  ( ph  ->fld  e. 
Mnd )
47 ovex 6330 . . . . . . . . 9  |-  ( 0 [,] N )  e. 
_V
4847inex1 4562 . . . . . . . 8  |-  ( ( 0 [,] N )  i^i  ZZ )  e. 
_V
4948a1i 11 . . . . . . 7  |-  ( ph  ->  ( ( 0 [,] N )  i^i  ZZ )  e.  _V )
502adantr 466 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  ( ( 0 [,] N )  i^i  ZZ ) )  ->  S  e.  { RR ,  CC } )
5133adantr 466 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  ( ( 0 [,] N )  i^i  ZZ ) )  ->  F  e.  ( CC  ^pm  S
) )
52 inss2 3683 . . . . . . . . . . . . . 14  |-  ( ( 0 [,] N )  i^i  ZZ )  C_  ZZ
53 simpr 462 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  k  e.  ( ( 0 [,] N )  i^i  ZZ ) )  ->  k  e.  ( ( 0 [,] N )  i^i  ZZ ) )
5452, 53sseldi 3462 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  ( ( 0 [,] N )  i^i  ZZ ) )  ->  k  e.  ZZ )
55 inss1 3682 . . . . . . . . . . . . . . . 16  |-  ( ( 0 [,] N )  i^i  ZZ )  C_  ( 0 [,] N
)
5655, 53sseldi 3462 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  k  e.  ( ( 0 [,] N )  i^i  ZZ ) )  ->  k  e.  ( 0 [,] N
) )
5715adantr 466 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  k  e.  ( ( 0 [,] N )  i^i  ZZ ) )  ->  N  e.  RR* )
58 elicc1 11681 . . . . . . . . . . . . . . . 16  |-  ( ( 0  e.  RR*  /\  N  e.  RR* )  ->  (
k  e.  ( 0 [,] N )  <->  ( k  e.  RR*  /\  0  <_ 
k  /\  k  <_  N ) ) )
596, 57, 58sylancr 667 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  k  e.  ( ( 0 [,] N )  i^i  ZZ ) )  ->  (
k  e.  ( 0 [,] N )  <->  ( k  e.  RR*  /\  0  <_ 
k  /\  k  <_  N ) ) )
6056, 59mpbid 213 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  k  e.  ( ( 0 [,] N )  i^i  ZZ ) )  ->  (
k  e.  RR*  /\  0  <_  k  /\  k  <_  N ) )
6160simp2d 1018 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  ( ( 0 [,] N )  i^i  ZZ ) )  ->  0  <_  k )
62 elnn0z 10951 . . . . . . . . . . . . 13  |-  ( k  e.  NN0  <->  ( k  e.  ZZ  /\  0  <_ 
k ) )
6354, 61, 62sylanbrc 668 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  ( ( 0 [,] N )  i^i  ZZ ) )  ->  k  e.  NN0 )
64 dvnf 22868 . . . . . . . . . . . 12  |-  ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm  S
)  /\  k  e.  NN0 )  ->  ( ( S  Dn F ) `
 k ) : dom  ( ( S  Dn F ) `
 k ) --> CC )
6550, 51, 63, 64syl3anc 1264 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  ( ( 0 [,] N )  i^i  ZZ ) )  ->  (
( S  Dn
F ) `  k
) : dom  (
( S  Dn
F ) `  k
) --> CC )
6665, 22ffvelrnd 6035 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( ( 0 [,] N )  i^i  ZZ ) )  ->  (
( ( S  Dn F ) `  k ) `  B
)  e.  CC )
67 faccl 12469 . . . . . . . . . . . 12  |-  ( k  e.  NN0  ->  ( ! `
 k )  e.  NN )
6863, 67syl 17 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  ( ( 0 [,] N )  i^i  ZZ ) )  ->  ( ! `  k )  e.  NN )
6968nncnd 10626 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( ( 0 [,] N )  i^i  ZZ ) )  ->  ( ! `  k )  e.  CC )
7068nnne0d 10655 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( ( 0 [,] N )  i^i  ZZ ) )  ->  ( ! `  k )  =/=  0 )
7166, 69, 70divcld 10384 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( ( 0 [,] N )  i^i  ZZ ) )  ->  (
( ( ( S  Dn F ) `
 k ) `  B )  /  ( ! `  k )
)  e.  CC )
72 0cnd 9637 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( ( 0 [,] N )  i^i  ZZ ) )  ->  0  e.  CC )
7372, 63expcld 12416 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( ( 0 [,] N )  i^i  ZZ ) )  ->  (
0 ^ k )  e.  CC )
7471, 73mulcld 9664 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( ( 0 [,] N )  i^i  ZZ ) )  ->  (
( ( ( ( S  Dn F ) `  k ) `
 B )  / 
( ! `  k
) )  x.  (
0 ^ k ) )  e.  CC )
75 eqid 2422 . . . . . . . 8  |-  ( k  e.  ( ( 0 [,] N )  i^i 
ZZ )  |->  ( ( ( ( ( S  Dn F ) `
 k ) `  B )  /  ( ! `  k )
)  x.  ( 0 ^ k ) ) )  =  ( k  e.  ( ( 0 [,] N )  i^i 
ZZ )  |->  ( ( ( ( ( S  Dn F ) `
 k ) `  B )  /  ( ! `  k )
)  x.  ( 0 ^ k ) ) )
7674, 75fmptd 6058 . . . . . . 7  |-  ( ph  ->  ( k  e.  ( ( 0 [,] N
)  i^i  ZZ )  |->  ( ( ( ( ( S  Dn
F ) `  k
) `  B )  /  ( ! `  k ) )  x.  ( 0 ^ k
) ) ) : ( ( 0 [,] N )  i^i  ZZ )
--> CC )
77 eldifi 3587 . . . . . . . . . . . . 13  |-  ( k  e.  ( ( ( 0 [,] N )  i^i  ZZ )  \  { 0 } )  ->  k  e.  ( ( 0 [,] N
)  i^i  ZZ )
)
7877, 63sylan2 476 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  ( ( ( 0 [,] N )  i^i 
ZZ )  \  {
0 } ) )  ->  k  e.  NN0 )
79 eldifsni 4123 . . . . . . . . . . . . 13  |-  ( k  e.  ( ( ( 0 [,] N )  i^i  ZZ )  \  { 0 } )  ->  k  =/=  0
)
8079adantl 467 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  ( ( ( 0 [,] N )  i^i 
ZZ )  \  {
0 } ) )  ->  k  =/=  0
)
81 elnnne0 10884 . . . . . . . . . . . 12  |-  ( k  e.  NN  <->  ( k  e.  NN0  /\  k  =/=  0 ) )
8278, 80, 81sylanbrc 668 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  ( ( ( 0 [,] N )  i^i 
ZZ )  \  {
0 } ) )  ->  k  e.  NN )
83820expd 12432 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( ( ( 0 [,] N )  i^i 
ZZ )  \  {
0 } ) )  ->  ( 0 ^ k )  =  0 )
8483oveq2d 6318 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( ( ( 0 [,] N )  i^i 
ZZ )  \  {
0 } ) )  ->  ( ( ( ( ( S  Dn F ) `  k ) `  B
)  /  ( ! `
 k ) )  x.  ( 0 ^ k ) )  =  ( ( ( ( ( S  Dn
F ) `  k
) `  B )  /  ( ! `  k ) )  x.  0 ) )
8571mul01d 9833 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( ( 0 [,] N )  i^i  ZZ ) )  ->  (
( ( ( ( S  Dn F ) `  k ) `
 B )  / 
( ! `  k
) )  x.  0 )  =  0 )
8677, 85sylan2 476 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( ( ( 0 [,] N )  i^i 
ZZ )  \  {
0 } ) )  ->  ( ( ( ( ( S  Dn F ) `  k ) `  B
)  /  ( ! `
 k ) )  x.  0 )  =  0 )
8784, 86eqtrd 2463 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( ( ( 0 [,] N )  i^i 
ZZ )  \  {
0 } ) )  ->  ( ( ( ( ( S  Dn F ) `  k ) `  B
)  /  ( ! `
 k ) )  x.  ( 0 ^ k ) )  =  0 )
88 zex 10947 . . . . . . . . . 10  |-  ZZ  e.  _V
8988inex2 4563 . . . . . . . . 9  |-  ( ( 0 [,] N )  i^i  ZZ )  e. 
_V
9089a1i 11 . . . . . . . 8  |-  ( ph  ->  ( ( 0 [,] N )  i^i  ZZ )  e.  _V )
9187, 90suppss2 6957 . . . . . . 7  |-  ( ph  ->  ( ( k  e.  ( ( 0 [,] N )  i^i  ZZ )  |->  ( ( ( ( ( S  Dn F ) `  k ) `  B
)  /  ( ! `
 k ) )  x.  ( 0 ^ k ) ) ) supp  0 )  C_  { 0 } )
9242, 43, 46, 49, 21, 76, 91gsumpt 17582 . . . . . 6  |-  ( ph  ->  (fld 
gsumg  ( k  e.  ( ( 0 [,] N
)  i^i  ZZ )  |->  ( ( ( ( ( S  Dn
F ) `  k
) `  B )  /  ( ! `  k ) )  x.  ( 0 ^ k
) ) ) )  =  ( ( k  e.  ( ( 0 [,] N )  i^i 
ZZ )  |->  ( ( ( ( ( S  Dn F ) `
 k ) `  B )  /  ( ! `  k )
)  x.  ( 0 ^ k ) ) ) `  0 ) )
9324fveq1d 5880 . . . . . . . . . 10  |-  ( k  =  0  ->  (
( ( S  Dn F ) `  k ) `  B
)  =  ( ( ( S  Dn
F ) `  0
) `  B )
)
94 fveq2 5878 . . . . . . . . . . 11  |-  ( k  =  0  ->  ( ! `  k )  =  ( ! ` 
0 ) )
95 fac0 12462 . . . . . . . . . . 11  |-  ( ! `
 0 )  =  1
9694, 95syl6eq 2479 . . . . . . . . . 10  |-  ( k  =  0  ->  ( ! `  k )  =  1 )
9793, 96oveq12d 6320 . . . . . . . . 9  |-  ( k  =  0  ->  (
( ( ( S  Dn F ) `
 k ) `  B )  /  ( ! `  k )
)  =  ( ( ( ( S  Dn F ) ` 
0 ) `  B
)  /  1 ) )
98 oveq2 6310 . . . . . . . . . 10  |-  ( k  =  0  ->  (
0 ^ k )  =  ( 0 ^ 0 ) )
99 0exp0e1 12277 . . . . . . . . . 10  |-  ( 0 ^ 0 )  =  1
10098, 99syl6eq 2479 . . . . . . . . 9  |-  ( k  =  0  ->  (
0 ^ k )  =  1 )
10197, 100oveq12d 6320 . . . . . . . 8  |-  ( k  =  0  ->  (
( ( ( ( S  Dn F ) `  k ) `
 B )  / 
( ! `  k
) )  x.  (
0 ^ k ) )  =  ( ( ( ( ( S  Dn F ) `
 0 ) `  B )  /  1
)  x.  1 ) )
102 ovex 6330 . . . . . . . 8  |-  ( ( ( ( ( S  Dn F ) `
 0 ) `  B )  /  1
)  x.  1 )  e.  _V
103101, 75, 102fvmpt 5961 . . . . . . 7  |-  ( 0  e.  ( ( 0 [,] N )  i^i 
ZZ )  ->  (
( k  e.  ( ( 0 [,] N
)  i^i  ZZ )  |->  ( ( ( ( ( S  Dn
F ) `  k
) `  B )  /  ( ! `  k ) )  x.  ( 0 ^ k
) ) ) ` 
0 )  =  ( ( ( ( ( S  Dn F ) `  0 ) `
 B )  / 
1 )  x.  1 ) )
10421, 103syl 17 . . . . . 6  |-  ( ph  ->  ( ( k  e.  ( ( 0 [,] N )  i^i  ZZ )  |->  ( ( ( ( ( S  Dn F ) `  k ) `  B
)  /  ( ! `
 k ) )  x.  ( 0 ^ k ) ) ) `
 0 )  =  ( ( ( ( ( S  Dn
F ) `  0
) `  B )  /  1 )  x.  1 ) )
10535fveq1d 5880 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( S  Dn F ) `
 0 ) `  B )  =  ( F `  B ) )
106105oveq1d 6317 . . . . . . . . 9  |-  ( ph  ->  ( ( ( ( S  Dn F ) `  0 ) `
 B )  / 
1 )  =  ( ( F `  B
)  /  1 ) )
10731, 40ffvelrnd 6035 . . . . . . . . . 10  |-  ( ph  ->  ( F `  B
)  e.  CC )
108107div1d 10376 . . . . . . . . 9  |-  ( ph  ->  ( ( F `  B )  /  1
)  =  ( F `
 B ) )
109106, 108eqtrd 2463 . . . . . . . 8  |-  ( ph  ->  ( ( ( ( S  Dn F ) `  0 ) `
 B )  / 
1 )  =  ( F `  B ) )
110109oveq1d 6317 . . . . . . 7  |-  ( ph  ->  ( ( ( ( ( S  Dn
F ) `  0
) `  B )  /  1 )  x.  1 )  =  ( ( F `  B
)  x.  1 ) )
111107mulid1d 9661 . . . . . . 7  |-  ( ph  ->  ( ( F `  B )  x.  1 )  =  ( F `
 B ) )
112110, 111eqtrd 2463 . . . . . 6  |-  ( ph  ->  ( ( ( ( ( S  Dn
F ) `  0
) `  B )  /  1 )  x.  1 )  =  ( F `  B ) )
11392, 104, 1123eqtrd 2467 . . . . 5  |-  ( ph  ->  (fld 
gsumg  ( k  e.  ( ( 0 [,] N
)  i^i  ZZ )  |->  ( ( ( ( ( S  Dn
F ) `  k
) `  B )  /  ( ! `  k ) )  x.  ( 0 ^ k
) ) ) )  =  ( F `  B ) )
114 ringcmn 17799 . . . . . . 7  |-  (fld  e.  Ring  ->fld  e. CMnd )
11544, 114mp1i 13 . . . . . 6  |-  ( ph  ->fld  e. CMnd
)
116 cnfldtps 21785 . . . . . . 7  |-fld  e.  TopSp
117116a1i 11 . . . . . 6  |-  ( ph  ->fld  e. 
TopSp )
118 mptexg 6147 . . . . . . . 8  |-  ( ( ( 0 [,] N
)  i^i  ZZ )  e.  _V  ->  ( k  e.  ( ( 0 [,] N )  i^i  ZZ )  |->  ( ( ( ( ( S  Dn F ) `  k ) `  B
)  /  ( ! `
 k ) )  x.  ( 0 ^ k ) ) )  e.  _V )
11989, 118mp1i 13 . . . . . . 7  |-  ( ph  ->  ( k  e.  ( ( 0 [,] N
)  i^i  ZZ )  |->  ( ( ( ( ( S  Dn
F ) `  k
) `  B )  /  ( ! `  k ) )  x.  ( 0 ^ k
) ) )  e. 
_V )
120 funmpt 5634 . . . . . . . 8  |-  Fun  (
k  e.  ( ( 0 [,] N )  i^i  ZZ )  |->  ( ( ( ( ( S  Dn F ) `  k ) `
 B )  / 
( ! `  k
) )  x.  (
0 ^ k ) ) )
121120a1i 11 . . . . . . 7  |-  ( ph  ->  Fun  ( k  e.  ( ( 0 [,] N )  i^i  ZZ )  |->  ( ( ( ( ( S  Dn F ) `  k ) `  B
)  /  ( ! `
 k ) )  x.  ( 0 ^ k ) ) ) )
122 c0ex 9638 . . . . . . . 8  |-  0  e.  _V
123122a1i 11 . . . . . . 7  |-  ( ph  ->  0  e.  _V )
124 snfi 7654 . . . . . . . 8  |-  { 0 }  e.  Fin
125124a1i 11 . . . . . . 7  |-  ( ph  ->  { 0 }  e.  Fin )
126 suppssfifsupp 7901 . . . . . . 7  |-  ( ( ( ( k  e.  ( ( 0 [,] N )  i^i  ZZ )  |->  ( ( ( ( ( S  Dn F ) `  k ) `  B
)  /  ( ! `
 k ) )  x.  ( 0 ^ k ) ) )  e.  _V  /\  Fun  ( k  e.  ( ( 0 [,] N
)  i^i  ZZ )  |->  ( ( ( ( ( S  Dn
F ) `  k
) `  B )  /  ( ! `  k ) )  x.  ( 0 ^ k
) ) )  /\  0  e.  _V )  /\  ( { 0 }  e.  Fin  /\  (
( k  e.  ( ( 0 [,] N
)  i^i  ZZ )  |->  ( ( ( ( ( S  Dn
F ) `  k
) `  B )  /  ( ! `  k ) )  x.  ( 0 ^ k
) ) ) supp  0
)  C_  { 0 } ) )  -> 
( k  e.  ( ( 0 [,] N
)  i^i  ZZ )  |->  ( ( ( ( ( S  Dn
F ) `  k
) `  B )  /  ( ! `  k ) )  x.  ( 0 ^ k
) ) ) finSupp  0
)
127119, 121, 123, 125, 91, 126syl32anc 1272 . . . . . 6  |-  ( ph  ->  ( k  e.  ( ( 0 [,] N
)  i^i  ZZ )  |->  ( ( ( ( ( S  Dn
F ) `  k
) `  B )  /  ( ! `  k ) )  x.  ( 0 ^ k
) ) ) finSupp  0
)
12842, 43, 115, 117, 49, 76, 127tsmsid 21141 . . . . 5  |-  ( ph  ->  (fld 
gsumg  ( k  e.  ( ( 0 [,] N
)  i^i  ZZ )  |->  ( ( ( ( ( S  Dn
F ) `  k
) `  B )  /  ( ! `  k ) )  x.  ( 0 ^ k
) ) ) )  e.  (fld tsums 
( k  e.  ( ( 0 [,] N
)  i^i  ZZ )  |->  ( ( ( ( ( S  Dn
F ) `  k
) `  B )  /  ( ! `  k ) )  x.  ( 0 ^ k
) ) ) ) )
129113, 128eqeltrrd 2511 . . . 4  |-  ( ph  ->  ( F `  B
)  e.  (fld tsums  ( k  e.  ( ( 0 [,] N )  i^i  ZZ )  |->  ( ( ( ( ( S  Dn F ) `  k ) `  B
)  /  ( ! `
 k ) )  x.  ( 0 ^ k ) ) ) ) )
13041subidd 9975 . . . . . . . 8  |-  ( ph  ->  ( B  -  B
)  =  0 )
131130oveq1d 6317 . . . . . . 7  |-  ( ph  ->  ( ( B  -  B ) ^ k
)  =  ( 0 ^ k ) )
132131oveq2d 6318 . . . . . 6  |-  ( ph  ->  ( ( ( ( ( S  Dn
F ) `  k
) `  B )  /  ( ! `  k ) )  x.  ( ( B  -  B ) ^ k
) )  =  ( ( ( ( ( S  Dn F ) `  k ) `
 B )  / 
( ! `  k
) )  x.  (
0 ^ k ) ) )
133132mpteq2dv 4508 . . . . 5  |-  ( ph  ->  ( k  e.  ( ( 0 [,] N
)  i^i  ZZ )  |->  ( ( ( ( ( S  Dn
F ) `  k
) `  B )  /  ( ! `  k ) )  x.  ( ( B  -  B ) ^ k
) ) )  =  ( k  e.  ( ( 0 [,] N
)  i^i  ZZ )  |->  ( ( ( ( ( S  Dn
F ) `  k
) `  B )  /  ( ! `  k ) )  x.  ( 0 ^ k
) ) ) )
134133oveq2d 6318 . . . 4  |-  ( ph  ->  (fld tsums 
( k  e.  ( ( 0 [,] N
)  i^i  ZZ )  |->  ( ( ( ( ( S  Dn
F ) `  k
) `  B )  /  ( ! `  k ) )  x.  ( ( B  -  B ) ^ k
) ) ) )  =  (fld tsums 
( k  e.  ( ( 0 [,] N
)  i^i  ZZ )  |->  ( ( ( ( ( S  Dn
F ) `  k
) `  B )  /  ( ! `  k ) )  x.  ( 0 ^ k
) ) ) ) )
135129, 134eleqtrrd 2513 . . 3  |-  ( ph  ->  ( F `  B
)  e.  (fld tsums  ( k  e.  ( ( 0 [,] N )  i^i  ZZ )  |->  ( ( ( ( ( S  Dn F ) `  k ) `  B
)  /  ( ! `
 k ) )  x.  ( ( B  -  B ) ^
k ) ) ) ) )
136 taylfval.t . . . 4  |-  T  =  ( N ( S Tayl 
F ) B )
1372, 31, 1, 8, 22, 136eltayl 23302 . . 3  |-  ( ph  ->  ( B T ( F `  B )  <-> 
( B  e.  CC  /\  ( F `  B
)  e.  (fld tsums  ( k  e.  ( ( 0 [,] N )  i^i  ZZ )  |->  ( ( ( ( ( S  Dn F ) `  k ) `  B
)  /  ( ! `
 k ) )  x.  ( ( B  -  B ) ^
k ) ) ) ) ) ) )
13841, 135, 137mpbir2and 930 . 2  |-  ( ph  ->  B T ( F `
 B ) )
1392, 31, 1, 8, 22, 136taylf 23303 . . 3  |-  ( ph  ->  T : dom  T --> CC )
140 ffun 5745 . . 3  |-  ( T : dom  T --> CC  ->  Fun 
T )
141 funbrfv2b 5922 . . 3  |-  ( Fun 
T  ->  ( B T ( F `  B )  <->  ( B  e.  dom  T  /\  ( T `  B )  =  ( F `  B ) ) ) )
142139, 140, 1413syl 18 . 2  |-  ( ph  ->  ( B T ( F `  B )  <-> 
( B  e.  dom  T  /\  ( T `  B )  =  ( F `  B ) ) ) )
143138, 142mpbid 213 1  |-  ( ph  ->  ( B  e.  dom  T  /\  ( T `  B )  =  ( F `  B ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 187    \/ wo 369    /\ wa 370    /\ w3a 982    = wceq 1437    e. wcel 1868    =/= wne 2618   A.wral 2775   _Vcvv 3081    \ cdif 3433    i^i cin 3435    C_ wss 3436   {csn 3996   {cpr 3998   class class class wbr 4420    |-> cmpt 4479   dom cdm 4850   Fun wfun 5592   -->wf 5594   ` cfv 5598  (class class class)co 6302   supp csupp 6922    ^pm cpm 7478   Fincfn 7574   finSupp cfsupp 7886   CCcc 9538   RRcr 9539   0cc0 9540   1c1 9541    x. cmul 9545   +oocpnf 9673   RR*cxr 9675    <_ cle 9677    - cmin 9861    / cdiv 10270   NNcn 10610   NN0cn0 10870   ZZcz 10938   [,]cicc 11639   ^cexp 12272   !cfa 12459    gsumg cgsu 15327   Mndcmnd 16523  CMndccmn 17418   Ringcrg 17768  ℂfldccnfld 18958   TopSpctps 19906   tsums ctsu 21127    Dncdvn 22806   Tayl ctayl 23295
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1748  ax-6 1794  ax-7 1839  ax-8 1870  ax-9 1872  ax-10 1887  ax-11 1892  ax-12 1905  ax-13 2053  ax-ext 2400  ax-rep 4533  ax-sep 4543  ax-nul 4552  ax-pow 4599  ax-pr 4657  ax-un 6594  ax-inf2 8149  ax-cnex 9596  ax-resscn 9597  ax-1cn 9598  ax-icn 9599  ax-addcl 9600  ax-addrcl 9601  ax-mulcl 9602  ax-mulrcl 9603  ax-mulcom 9604  ax-addass 9605  ax-mulass 9606  ax-distr 9607  ax-i2m1 9608  ax-1ne0 9609  ax-1rid 9610  ax-rnegex 9611  ax-rrecex 9612  ax-cnre 9613  ax-pre-lttri 9614  ax-pre-lttrn 9615  ax-pre-ltadd 9616  ax-pre-mulgt0 9617  ax-pre-sup 9618  ax-addf 9619  ax-mulf 9620
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1787  df-eu 2269  df-mo 2270  df-clab 2408  df-cleq 2414  df-clel 2417  df-nfc 2572  df-ne 2620  df-nel 2621  df-ral 2780  df-rex 2781  df-reu 2782  df-rmo 2783  df-rab 2784  df-v 3083  df-sbc 3300  df-csb 3396  df-dif 3439  df-un 3441  df-in 3443  df-ss 3450  df-pss 3452  df-nul 3762  df-if 3910  df-pw 3981  df-sn 3997  df-pr 3999  df-tp 4001  df-op 4003  df-uni 4217  df-int 4253  df-iun 4298  df-iin 4299  df-br 4421  df-opab 4480  df-mpt 4481  df-tr 4516  df-eprel 4761  df-id 4765  df-po 4771  df-so 4772  df-fr 4809  df-se 4810  df-we 4811  df-xp 4856  df-rel 4857  df-cnv 4858  df-co 4859  df-dm 4860  df-rn 4861  df-res 4862  df-ima 4863  df-pred 5396  df-ord 5442  df-on 5443  df-lim 5444  df-suc 5445  df-iota 5562  df-fun 5600  df-fn 5601  df-f 5602  df-f1 5603  df-fo 5604  df-f1o 5605  df-fv 5606  df-isom 5607  df-riota 6264  df-ov 6305  df-oprab 6306  df-mpt2 6307  df-om 6704  df-1st 6804  df-2nd 6805  df-supp 6923  df-wrecs 7033  df-recs 7095  df-rdg 7133  df-1o 7187  df-oadd 7191  df-er 7368  df-map 7479  df-pm 7480  df-en 7575  df-dom 7576  df-sdom 7577  df-fin 7578  df-fsupp 7887  df-fi 7928  df-sup 7959  df-inf 7960  df-oi 8028  df-card 8375  df-pnf 9678  df-mnf 9679  df-xr 9680  df-ltxr 9681  df-le 9682  df-sub 9863  df-neg 9864  df-div 10271  df-nn 10611  df-2 10669  df-3 10670  df-4 10671  df-5 10672  df-6 10673  df-7 10674  df-8 10675  df-9 10676  df-10 10677  df-n0 10871  df-z 10939  df-dec 11053  df-uz 11161  df-q 11266  df-rp 11304  df-xneg 11410  df-xadd 11411  df-xmul 11412  df-icc 11643  df-fz 11786  df-fzo 11917  df-seq 12214  df-exp 12273  df-fac 12460  df-hash 12516  df-cj 13151  df-re 13152  df-im 13153  df-sqrt 13287  df-abs 13288  df-struct 15111  df-ndx 15112  df-slot 15113  df-base 15114  df-sets 15115  df-ress 15116  df-plusg 15191  df-mulr 15192  df-starv 15193  df-tset 15197  df-ple 15198  df-ds 15200  df-unif 15201  df-rest 15309  df-topn 15310  df-0g 15328  df-gsum 15329  df-topgen 15330  df-mre 15480  df-mrc 15481  df-acs 15483  df-mgm 16476  df-sgrp 16515  df-mnd 16525  df-submnd 16571  df-grp 16661  df-minusg 16662  df-mulg 16664  df-cntz 16959  df-cmn 17420  df-abl 17421  df-mgp 17712  df-ur 17724  df-ring 17770  df-cring 17771  df-psmet 18950  df-xmet 18951  df-met 18952  df-bl 18953  df-mopn 18954  df-fbas 18955  df-fg 18956  df-cnfld 18959  df-top 19908  df-bases 19909  df-topon 19910  df-topsp 19911  df-cld 20021  df-ntr 20022  df-cls 20023  df-nei 20101  df-lp 20139  df-perf 20140  df-cnp 20231  df-haus 20318  df-fil 20848  df-fm 20940  df-flim 20941  df-flf 20942  df-tsms 21128  df-xms 21322  df-ms 21323  df-limc 22808  df-dv 22809  df-dvn 22810  df-tayl 23297
This theorem is referenced by:  dvntaylp0  23314
  Copyright terms: Public domain W3C validator