MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tanord1 Structured version   Unicode version

Theorem tanord1 23351
Description: The tangent function is strictly increasing on the nonnegative part of its principal domain. (Lemma for tanord 23352.) (Contributed by Mario Carneiro, 29-Jul-2014.) Revised to replace an OLD theorem. (Revised by Wolf Lammen, 20-Sep-2020.)
Assertion
Ref Expression
tanord1  |-  ( ( A  e.  ( 0 [,) ( pi  / 
2 ) )  /\  B  e.  ( 0 [,) ( pi  / 
2 ) ) )  ->  ( A  < 
B  <->  ( tan `  A
)  <  ( tan `  B ) ) )

Proof of Theorem tanord1
Dummy variables  x  w  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tru 1441 . 2  |- T.
2 fveq2 5881 . . 3  |-  ( x  =  y  ->  ( tan `  x )  =  ( tan `  y
) )
3 fveq2 5881 . . 3  |-  ( x  =  A  ->  ( tan `  x )  =  ( tan `  A
) )
4 fveq2 5881 . . 3  |-  ( x  =  B  ->  ( tan `  x )  =  ( tan `  B
) )
5 0re 9642 . . . 4  |-  0  e.  RR
6 halfpire 23284 . . . . 5  |-  ( pi 
/  2 )  e.  RR
76rexri 9692 . . . 4  |-  ( pi 
/  2 )  e. 
RR*
8 icossre 11715 . . . 4  |-  ( ( 0  e.  RR  /\  ( pi  /  2
)  e.  RR* )  ->  ( 0 [,) (
pi  /  2 ) )  C_  RR )
95, 7, 8mp2an 676 . . 3  |-  ( 0 [,) ( pi  / 
2 ) )  C_  RR
109sseli 3466 . . . . 5  |-  ( x  e.  ( 0 [,) ( pi  /  2
) )  ->  x  e.  RR )
11 neghalfpirx 23286 . . . . . . . . 9  |-  -u (
pi  /  2 )  e.  RR*
12 pire 23278 . . . . . . . . . . 11  |-  pi  e.  RR
13 2re 10679 . . . . . . . . . . 11  |-  2  e.  RR
14 pipos 23280 . . . . . . . . . . 11  |-  0  <  pi
15 2pos 10701 . . . . . . . . . . 11  |-  0  <  2
1612, 13, 14, 15divgt0ii 10524 . . . . . . . . . 10  |-  0  <  ( pi  /  2
)
17 lt0neg2 10120 . . . . . . . . . . 11  |-  ( ( pi  /  2 )  e.  RR  ->  (
0  <  ( pi  /  2 )  <->  -u ( pi 
/  2 )  <  0 ) )
186, 17ax-mp 5 . . . . . . . . . 10  |-  ( 0  <  ( pi  / 
2 )  <->  -u ( pi 
/  2 )  <  0 )
1916, 18mpbi 211 . . . . . . . . 9  |-  -u (
pi  /  2 )  <  0
20 df-ioo 11639 . . . . . . . . . 10  |-  (,)  =  ( x  e.  RR* ,  y  e.  RR*  |->  { z  e.  RR*  |  (
x  <  z  /\  z  <  y ) } )
21 df-ico 11641 . . . . . . . . . 10  |-  [,)  =  ( x  e.  RR* ,  y  e.  RR*  |->  { z  e.  RR*  |  (
x  <_  z  /\  z  <  y ) } )
22 xrltletr 11454 . . . . . . . . . 10  |-  ( (
-u ( pi  / 
2 )  e.  RR*  /\  0  e.  RR*  /\  w  e.  RR* )  ->  (
( -u ( pi  / 
2 )  <  0  /\  0  <_  w )  ->  -u ( pi  / 
2 )  <  w
) )
2320, 21, 22ixxss1 11653 . . . . . . . . 9  |-  ( (
-u ( pi  / 
2 )  e.  RR*  /\  -u ( pi  /  2
)  <  0 )  ->  ( 0 [,) ( pi  /  2
) )  C_  ( -u ( pi  /  2
) (,) ( pi 
/  2 ) ) )
2411, 19, 23mp2an 676 . . . . . . . 8  |-  ( 0 [,) ( pi  / 
2 ) )  C_  ( -u ( pi  / 
2 ) (,) (
pi  /  2 ) )
2524sseli 3466 . . . . . . 7  |-  ( x  e.  ( 0 [,) ( pi  /  2
) )  ->  x  e.  ( -u ( pi 
/  2 ) (,) ( pi  /  2
) ) )
26 cosq14gt0 23330 . . . . . . 7  |-  ( x  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) )  -> 
0  <  ( cos `  x ) )
2725, 26syl 17 . . . . . 6  |-  ( x  e.  ( 0 [,) ( pi  /  2
) )  ->  0  <  ( cos `  x
) )
2827gt0ne0d 10177 . . . . 5  |-  ( x  e.  ( 0 [,) ( pi  /  2
) )  ->  ( cos `  x )  =/=  0 )
2910, 28retancld 14177 . . . 4  |-  ( x  e.  ( 0 [,) ( pi  /  2
) )  ->  ( tan `  x )  e.  RR )
3029adantl 467 . . 3  |-  ( ( T.  /\  x  e.  ( 0 [,) (
pi  /  2 ) ) )  ->  ( tan `  x )  e.  RR )
3110resincld 14175 . . . . . . . . 9  |-  ( x  e.  ( 0 [,) ( pi  /  2
) )  ->  ( sin `  x )  e.  RR )
3210recoscld 14176 . . . . . . . . 9  |-  ( x  e.  ( 0 [,) ( pi  /  2
) )  ->  ( cos `  x )  e.  RR )
3331, 32, 28redivcld 10434 . . . . . . . 8  |-  ( x  e.  ( 0 [,) ( pi  /  2
) )  ->  (
( sin `  x
)  /  ( cos `  x ) )  e.  RR )
34333ad2ant1 1026 . . . . . . 7  |-  ( ( x  e.  ( 0 [,) ( pi  / 
2 ) )  /\  y  e.  ( 0 [,) ( pi  / 
2 ) )  /\  x  <  y )  -> 
( ( sin `  x
)  /  ( cos `  x ) )  e.  RR )
359sseli 3466 . . . . . . . . . 10  |-  ( y  e.  ( 0 [,) ( pi  /  2
) )  ->  y  e.  RR )
36353ad2ant2 1027 . . . . . . . . 9  |-  ( ( x  e.  ( 0 [,) ( pi  / 
2 ) )  /\  y  e.  ( 0 [,) ( pi  / 
2 ) )  /\  x  <  y )  -> 
y  e.  RR )
3736resincld 14175 . . . . . . . 8  |-  ( ( x  e.  ( 0 [,) ( pi  / 
2 ) )  /\  y  e.  ( 0 [,) ( pi  / 
2 ) )  /\  x  <  y )  -> 
( sin `  y
)  e.  RR )
38323ad2ant1 1026 . . . . . . . 8  |-  ( ( x  e.  ( 0 [,) ( pi  / 
2 ) )  /\  y  e.  ( 0 [,) ( pi  / 
2 ) )  /\  x  <  y )  -> 
( cos `  x
)  e.  RR )
39283ad2ant1 1026 . . . . . . . 8  |-  ( ( x  e.  ( 0 [,) ( pi  / 
2 ) )  /\  y  e.  ( 0 [,) ( pi  / 
2 ) )  /\  x  <  y )  -> 
( cos `  x
)  =/=  0 )
4037, 38, 39redivcld 10434 . . . . . . 7  |-  ( ( x  e.  ( 0 [,) ( pi  / 
2 ) )  /\  y  e.  ( 0 [,) ( pi  / 
2 ) )  /\  x  <  y )  -> 
( ( sin `  y
)  /  ( cos `  x ) )  e.  RR )
4136recoscld 14176 . . . . . . . 8  |-  ( ( x  e.  ( 0 [,) ( pi  / 
2 ) )  /\  y  e.  ( 0 [,) ( pi  / 
2 ) )  /\  x  <  y )  -> 
( cos `  y
)  e.  RR )
4224sseli 3466 . . . . . . . . . . 11  |-  ( y  e.  ( 0 [,) ( pi  /  2
) )  ->  y  e.  ( -u ( pi 
/  2 ) (,) ( pi  /  2
) ) )
43 cosq14gt0 23330 . . . . . . . . . . 11  |-  ( y  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) )  -> 
0  <  ( cos `  y ) )
4442, 43syl 17 . . . . . . . . . 10  |-  ( y  e.  ( 0 [,) ( pi  /  2
) )  ->  0  <  ( cos `  y
) )
4544gt0ne0d 10177 . . . . . . . . 9  |-  ( y  e.  ( 0 [,) ( pi  /  2
) )  ->  ( cos `  y )  =/=  0 )
46453ad2ant2 1027 . . . . . . . 8  |-  ( ( x  e.  ( 0 [,) ( pi  / 
2 ) )  /\  y  e.  ( 0 [,) ( pi  / 
2 ) )  /\  x  <  y )  -> 
( cos `  y
)  =/=  0 )
4737, 41, 46redivcld 10434 . . . . . . 7  |-  ( ( x  e.  ( 0 [,) ( pi  / 
2 ) )  /\  y  e.  ( 0 [,) ( pi  / 
2 ) )  /\  x  <  y )  -> 
( ( sin `  y
)  /  ( cos `  y ) )  e.  RR )
48 ioossicc 11720 . . . . . . . . . . . 12  |-  ( -u ( pi  /  2
) (,) ( pi 
/  2 ) ) 
C_  ( -u (
pi  /  2 ) [,] ( pi  / 
2 ) )
4924, 48sstri 3479 . . . . . . . . . . 11  |-  ( 0 [,) ( pi  / 
2 ) )  C_  ( -u ( pi  / 
2 ) [,] (
pi  /  2 ) )
5049sseli 3466 . . . . . . . . . 10  |-  ( x  e.  ( 0 [,) ( pi  /  2
) )  ->  x  e.  ( -u ( pi 
/  2 ) [,] ( pi  /  2
) ) )
5149sseli 3466 . . . . . . . . . 10  |-  ( y  e.  ( 0 [,) ( pi  /  2
) )  ->  y  e.  ( -u ( pi 
/  2 ) [,] ( pi  /  2
) ) )
52 sinord 23348 . . . . . . . . . 10  |-  ( ( x  e.  ( -u ( pi  /  2
) [,] ( pi 
/  2 ) )  /\  y  e.  (
-u ( pi  / 
2 ) [,] (
pi  /  2 ) ) )  ->  (
x  <  y  <->  ( sin `  x )  <  ( sin `  y ) ) )
5350, 51, 52syl2an 479 . . . . . . . . 9  |-  ( ( x  e.  ( 0 [,) ( pi  / 
2 ) )  /\  y  e.  ( 0 [,) ( pi  / 
2 ) ) )  ->  ( x  < 
y  <->  ( sin `  x
)  <  ( sin `  y ) ) )
5453biimp3a 1364 . . . . . . . 8  |-  ( ( x  e.  ( 0 [,) ( pi  / 
2 ) )  /\  y  e.  ( 0 [,) ( pi  / 
2 ) )  /\  x  <  y )  -> 
( sin `  x
)  <  ( sin `  y ) )
55103ad2ant1 1026 . . . . . . . . . 10  |-  ( ( x  e.  ( 0 [,) ( pi  / 
2 ) )  /\  y  e.  ( 0 [,) ( pi  / 
2 ) )  /\  x  <  y )  ->  x  e.  RR )
5655resincld 14175 . . . . . . . . 9  |-  ( ( x  e.  ( 0 [,) ( pi  / 
2 ) )  /\  y  e.  ( 0 [,) ( pi  / 
2 ) )  /\  x  <  y )  -> 
( sin `  x
)  e.  RR )
57273ad2ant1 1026 . . . . . . . . 9  |-  ( ( x  e.  ( 0 [,) ( pi  / 
2 ) )  /\  y  e.  ( 0 [,) ( pi  / 
2 ) )  /\  x  <  y )  -> 
0  <  ( cos `  x ) )
58 ltdiv1 10468 . . . . . . . . 9  |-  ( ( ( sin `  x
)  e.  RR  /\  ( sin `  y )  e.  RR  /\  (
( cos `  x
)  e.  RR  /\  0  <  ( cos `  x
) ) )  -> 
( ( sin `  x
)  <  ( sin `  y )  <->  ( ( sin `  x )  / 
( cos `  x
) )  <  (
( sin `  y
)  /  ( cos `  x ) ) ) )
5956, 37, 38, 57, 58syl112anc 1268 . . . . . . . 8  |-  ( ( x  e.  ( 0 [,) ( pi  / 
2 ) )  /\  y  e.  ( 0 [,) ( pi  / 
2 ) )  /\  x  <  y )  -> 
( ( sin `  x
)  <  ( sin `  y )  <->  ( ( sin `  x )  / 
( cos `  x
) )  <  (
( sin `  y
)  /  ( cos `  x ) ) ) )
6054, 59mpbid 213 . . . . . . 7  |-  ( ( x  e.  ( 0 [,) ( pi  / 
2 ) )  /\  y  e.  ( 0 [,) ( pi  / 
2 ) )  /\  x  <  y )  -> 
( ( sin `  x
)  /  ( cos `  x ) )  < 
( ( sin `  y
)  /  ( cos `  x ) ) )
6112rexri 9692 . . . . . . . . . . . 12  |-  pi  e.  RR*
62 pirp 23281 . . . . . . . . . . . . 13  |-  pi  e.  RR+
63 rphalflt 11329 . . . . . . . . . . . . 13  |-  ( pi  e.  RR+  ->  ( pi 
/  2 )  < 
pi )
6462, 63ax-mp 5 . . . . . . . . . . . 12  |-  ( pi 
/  2 )  < 
pi
65 df-icc 11642 . . . . . . . . . . . . 13  |-  [,]  =  ( x  e.  RR* ,  y  e.  RR*  |->  { z  e.  RR*  |  (
x  <_  z  /\  z  <_  y ) } )
66 xrlttr 11439 . . . . . . . . . . . . . 14  |-  ( ( w  e.  RR*  /\  (
pi  /  2 )  e.  RR*  /\  pi  e.  RR* )  ->  (
( w  <  (
pi  /  2 )  /\  ( pi  / 
2 )  <  pi )  ->  w  <  pi ) )
67 xrltle 11448 . . . . . . . . . . . . . . 15  |-  ( ( w  e.  RR*  /\  pi  e.  RR* )  ->  (
w  <  pi  ->  w  <_  pi ) )
68673adant2 1024 . . . . . . . . . . . . . 14  |-  ( ( w  e.  RR*  /\  (
pi  /  2 )  e.  RR*  /\  pi  e.  RR* )  ->  (
w  <  pi  ->  w  <_  pi ) )
6966, 68syld 45 . . . . . . . . . . . . 13  |-  ( ( w  e.  RR*  /\  (
pi  /  2 )  e.  RR*  /\  pi  e.  RR* )  ->  (
( w  <  (
pi  /  2 )  /\  ( pi  / 
2 )  <  pi )  ->  w  <_  pi ) )
7065, 21, 69ixxss2 11654 . . . . . . . . . . . 12  |-  ( ( pi  e.  RR*  /\  (
pi  /  2 )  <  pi )  -> 
( 0 [,) (
pi  /  2 ) )  C_  ( 0 [,] pi ) )
7161, 64, 70mp2an 676 . . . . . . . . . . 11  |-  ( 0 [,) ( pi  / 
2 ) )  C_  ( 0 [,] pi )
7271sseli 3466 . . . . . . . . . 10  |-  ( x  e.  ( 0 [,) ( pi  /  2
) )  ->  x  e.  ( 0 [,] pi ) )
7371sseli 3466 . . . . . . . . . 10  |-  ( y  e.  ( 0 [,) ( pi  /  2
) )  ->  y  e.  ( 0 [,] pi ) )
74 cosord 23346 . . . . . . . . . 10  |-  ( ( x  e.  ( 0 [,] pi )  /\  y  e.  ( 0 [,] pi ) )  ->  ( x  < 
y  <->  ( cos `  y
)  <  ( cos `  x ) ) )
7572, 73, 74syl2an 479 . . . . . . . . 9  |-  ( ( x  e.  ( 0 [,) ( pi  / 
2 ) )  /\  y  e.  ( 0 [,) ( pi  / 
2 ) ) )  ->  ( x  < 
y  <->  ( cos `  y
)  <  ( cos `  x ) ) )
7675biimp3a 1364 . . . . . . . 8  |-  ( ( x  e.  ( 0 [,) ( pi  / 
2 ) )  /\  y  e.  ( 0 [,) ( pi  / 
2 ) )  /\  x  <  y )  -> 
( cos `  y
)  <  ( cos `  x ) )
77 0red 9643 . . . . . . . . . . . . 13  |-  ( ( x  e.  ( 0 [,) ( pi  / 
2 ) )  /\  y  e.  ( 0 [,) ( pi  / 
2 ) )  /\  x  <  y )  -> 
0  e.  RR )
78 simp1 1005 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  ( 0 [,) ( pi  / 
2 ) )  /\  y  e.  ( 0 [,) ( pi  / 
2 ) )  /\  x  <  y )  ->  x  e.  ( 0 [,) ( pi  / 
2 ) ) )
79 elico2 11698 . . . . . . . . . . . . . . . 16  |-  ( ( 0  e.  RR  /\  ( pi  /  2
)  e.  RR* )  ->  ( x  e.  ( 0 [,) ( pi 
/  2 ) )  <-> 
( x  e.  RR  /\  0  <_  x  /\  x  <  ( pi  / 
2 ) ) ) )
805, 7, 79mp2an 676 . . . . . . . . . . . . . . 15  |-  ( x  e.  ( 0 [,) ( pi  /  2
) )  <->  ( x  e.  RR  /\  0  <_  x  /\  x  <  (
pi  /  2 ) ) )
8178, 80sylib 199 . . . . . . . . . . . . . 14  |-  ( ( x  e.  ( 0 [,) ( pi  / 
2 ) )  /\  y  e.  ( 0 [,) ( pi  / 
2 ) )  /\  x  <  y )  -> 
( x  e.  RR  /\  0  <_  x  /\  x  <  ( pi  / 
2 ) ) )
8281simp2d 1018 . . . . . . . . . . . . 13  |-  ( ( x  e.  ( 0 [,) ( pi  / 
2 ) )  /\  y  e.  ( 0 [,) ( pi  / 
2 ) )  /\  x  <  y )  -> 
0  <_  x )
83 simp3 1007 . . . . . . . . . . . . 13  |-  ( ( x  e.  ( 0 [,) ( pi  / 
2 ) )  /\  y  e.  ( 0 [,) ( pi  / 
2 ) )  /\  x  <  y )  ->  x  <  y )
8477, 55, 36, 82, 83lelttrd 9792 . . . . . . . . . . . 12  |-  ( ( x  e.  ( 0 [,) ( pi  / 
2 ) )  /\  y  e.  ( 0 [,) ( pi  / 
2 ) )  /\  x  <  y )  -> 
0  <  y )
85 simp2 1006 . . . . . . . . . . . . . 14  |-  ( ( x  e.  ( 0 [,) ( pi  / 
2 ) )  /\  y  e.  ( 0 [,) ( pi  / 
2 ) )  /\  x  <  y )  -> 
y  e.  ( 0 [,) ( pi  / 
2 ) ) )
86 elico2 11698 . . . . . . . . . . . . . . 15  |-  ( ( 0  e.  RR  /\  ( pi  /  2
)  e.  RR* )  ->  ( y  e.  ( 0 [,) ( pi 
/  2 ) )  <-> 
( y  e.  RR  /\  0  <_  y  /\  y  <  ( pi  / 
2 ) ) ) )
875, 7, 86mp2an 676 . . . . . . . . . . . . . 14  |-  ( y  e.  ( 0 [,) ( pi  /  2
) )  <->  ( y  e.  RR  /\  0  <_ 
y  /\  y  <  ( pi  /  2 ) ) )
8885, 87sylib 199 . . . . . . . . . . . . 13  |-  ( ( x  e.  ( 0 [,) ( pi  / 
2 ) )  /\  y  e.  ( 0 [,) ( pi  / 
2 ) )  /\  x  <  y )  -> 
( y  e.  RR  /\  0  <_  y  /\  y  <  ( pi  / 
2 ) ) )
8988simp3d 1019 . . . . . . . . . . . 12  |-  ( ( x  e.  ( 0 [,) ( pi  / 
2 ) )  /\  y  e.  ( 0 [,) ( pi  / 
2 ) )  /\  x  <  y )  -> 
y  <  ( pi  /  2 ) )
90 0xr 9686 . . . . . . . . . . . . 13  |-  0  e.  RR*
91 elioo2 11677 . . . . . . . . . . . . 13  |-  ( ( 0  e.  RR*  /\  (
pi  /  2 )  e.  RR* )  ->  (
y  e.  ( 0 (,) ( pi  / 
2 ) )  <->  ( y  e.  RR  /\  0  < 
y  /\  y  <  ( pi  /  2 ) ) ) )
9290, 7, 91mp2an 676 . . . . . . . . . . . 12  |-  ( y  e.  ( 0 (,) ( pi  /  2
) )  <->  ( y  e.  RR  /\  0  < 
y  /\  y  <  ( pi  /  2 ) ) )
9336, 84, 89, 92syl3anbrc 1189 . . . . . . . . . . 11  |-  ( ( x  e.  ( 0 [,) ( pi  / 
2 ) )  /\  y  e.  ( 0 [,) ( pi  / 
2 ) )  /\  x  <  y )  -> 
y  e.  ( 0 (,) ( pi  / 
2 ) ) )
94 sincosq1sgn 23318 . . . . . . . . . . 11  |-  ( y  e.  ( 0 (,) ( pi  /  2
) )  ->  (
0  <  ( sin `  y )  /\  0  <  ( cos `  y
) ) )
9593, 94syl 17 . . . . . . . . . 10  |-  ( ( x  e.  ( 0 [,) ( pi  / 
2 ) )  /\  y  e.  ( 0 [,) ( pi  / 
2 ) )  /\  x  <  y )  -> 
( 0  <  ( sin `  y )  /\  0  <  ( cos `  y
) ) )
9695simprd 464 . . . . . . . . 9  |-  ( ( x  e.  ( 0 [,) ( pi  / 
2 ) )  /\  y  e.  ( 0 [,) ( pi  / 
2 ) )  /\  x  <  y )  -> 
0  <  ( cos `  y ) )
9795simpld 460 . . . . . . . . 9  |-  ( ( x  e.  ( 0 [,) ( pi  / 
2 ) )  /\  y  e.  ( 0 [,) ( pi  / 
2 ) )  /\  x  <  y )  -> 
0  <  ( sin `  y ) )
98 ltdiv2 10491 . . . . . . . . 9  |-  ( ( ( ( cos `  y
)  e.  RR  /\  0  <  ( cos `  y
) )  /\  (
( cos `  x
)  e.  RR  /\  0  <  ( cos `  x
) )  /\  (
( sin `  y
)  e.  RR  /\  0  <  ( sin `  y
) ) )  -> 
( ( cos `  y
)  <  ( cos `  x )  <->  ( ( sin `  y )  / 
( cos `  x
) )  <  (
( sin `  y
)  /  ( cos `  y ) ) ) )
9941, 96, 38, 57, 37, 97, 98syl222anc 1280 . . . . . . . 8  |-  ( ( x  e.  ( 0 [,) ( pi  / 
2 ) )  /\  y  e.  ( 0 [,) ( pi  / 
2 ) )  /\  x  <  y )  -> 
( ( cos `  y
)  <  ( cos `  x )  <->  ( ( sin `  y )  / 
( cos `  x
) )  <  (
( sin `  y
)  /  ( cos `  y ) ) ) )
10076, 99mpbid 213 . . . . . . 7  |-  ( ( x  e.  ( 0 [,) ( pi  / 
2 ) )  /\  y  e.  ( 0 [,) ( pi  / 
2 ) )  /\  x  <  y )  -> 
( ( sin `  y
)  /  ( cos `  x ) )  < 
( ( sin `  y
)  /  ( cos `  y ) ) )
10134, 40, 47, 60, 100lttrd 9795 . . . . . 6  |-  ( ( x  e.  ( 0 [,) ( pi  / 
2 ) )  /\  y  e.  ( 0 [,) ( pi  / 
2 ) )  /\  x  <  y )  -> 
( ( sin `  x
)  /  ( cos `  x ) )  < 
( ( sin `  y
)  /  ( cos `  y ) ) )
10210recnd 9668 . . . . . . . 8  |-  ( x  e.  ( 0 [,) ( pi  /  2
) )  ->  x  e.  CC )
103 tanval 14160 . . . . . . . 8  |-  ( ( x  e.  CC  /\  ( cos `  x )  =/=  0 )  -> 
( tan `  x
)  =  ( ( sin `  x )  /  ( cos `  x
) ) )
104102, 28, 103syl2anc 665 . . . . . . 7  |-  ( x  e.  ( 0 [,) ( pi  /  2
) )  ->  ( tan `  x )  =  ( ( sin `  x
)  /  ( cos `  x ) ) )
1051043ad2ant1 1026 . . . . . 6  |-  ( ( x  e.  ( 0 [,) ( pi  / 
2 ) )  /\  y  e.  ( 0 [,) ( pi  / 
2 ) )  /\  x  <  y )  -> 
( tan `  x
)  =  ( ( sin `  x )  /  ( cos `  x
) ) )
10635recnd 9668 . . . . . . . 8  |-  ( y  e.  ( 0 [,) ( pi  /  2
) )  ->  y  e.  CC )
1071063ad2ant2 1027 . . . . . . 7  |-  ( ( x  e.  ( 0 [,) ( pi  / 
2 ) )  /\  y  e.  ( 0 [,) ( pi  / 
2 ) )  /\  x  <  y )  -> 
y  e.  CC )
108 tanval 14160 . . . . . . 7  |-  ( ( y  e.  CC  /\  ( cos `  y )  =/=  0 )  -> 
( tan `  y
)  =  ( ( sin `  y )  /  ( cos `  y
) ) )
109107, 46, 108syl2anc 665 . . . . . 6  |-  ( ( x  e.  ( 0 [,) ( pi  / 
2 ) )  /\  y  e.  ( 0 [,) ( pi  / 
2 ) )  /\  x  <  y )  -> 
( tan `  y
)  =  ( ( sin `  y )  /  ( cos `  y
) ) )
110101, 105, 1093brtr4d 4456 . . . . 5  |-  ( ( x  e.  ( 0 [,) ( pi  / 
2 ) )  /\  y  e.  ( 0 [,) ( pi  / 
2 ) )  /\  x  <  y )  -> 
( tan `  x
)  <  ( tan `  y ) )
1111103expia 1207 . . . 4  |-  ( ( x  e.  ( 0 [,) ( pi  / 
2 ) )  /\  y  e.  ( 0 [,) ( pi  / 
2 ) ) )  ->  ( x  < 
y  ->  ( tan `  x )  <  ( tan `  y ) ) )
112111adantl 467 . . 3  |-  ( ( T.  /\  ( x  e.  ( 0 [,) ( pi  /  2
) )  /\  y  e.  ( 0 [,) (
pi  /  2 ) ) ) )  -> 
( x  <  y  ->  ( tan `  x
)  <  ( tan `  y ) ) )
1132, 3, 4, 9, 30, 112ltord1 10139 . 2  |-  ( ( T.  /\  ( A  e.  ( 0 [,) ( pi  /  2
) )  /\  B  e.  ( 0 [,) (
pi  /  2 ) ) ) )  -> 
( A  <  B  <->  ( tan `  A )  <  ( tan `  B
) ) )
1141, 113mpan 674 1  |-  ( ( A  e.  ( 0 [,) ( pi  / 
2 ) )  /\  B  e.  ( 0 [,) ( pi  / 
2 ) ) )  ->  ( A  < 
B  <->  ( tan `  A
)  <  ( tan `  B ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 187    /\ wa 370    /\ w3a 982    = wceq 1437   T. wtru 1438    e. wcel 1870    =/= wne 2625    C_ wss 3442   class class class wbr 4426   ` cfv 5601  (class class class)co 6305   CCcc 9536   RRcr 9537   0cc0 9538   RR*cxr 9673    < clt 9674    <_ cle 9675   -ucneg 9860    / cdiv 10268   2c2 10659   RR+crp 11302   (,)cioo 11635   [,)cico 11637   [,]cicc 11638   sincsin 14094   cosccos 14095   tanctan 14096   picpi 14097
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1751  ax-6 1797  ax-7 1841  ax-8 1872  ax-9 1874  ax-10 1889  ax-11 1894  ax-12 1907  ax-13 2055  ax-ext 2407  ax-rep 4538  ax-sep 4548  ax-nul 4556  ax-pow 4603  ax-pr 4661  ax-un 6597  ax-inf2 8146  ax-cnex 9594  ax-resscn 9595  ax-1cn 9596  ax-icn 9597  ax-addcl 9598  ax-addrcl 9599  ax-mulcl 9600  ax-mulrcl 9601  ax-mulcom 9602  ax-addass 9603  ax-mulass 9604  ax-distr 9605  ax-i2m1 9606  ax-1ne0 9607  ax-1rid 9608  ax-rnegex 9609  ax-rrecex 9610  ax-cnre 9611  ax-pre-lttri 9612  ax-pre-lttrn 9613  ax-pre-ltadd 9614  ax-pre-mulgt0 9615  ax-pre-sup 9616  ax-addf 9617  ax-mulf 9618
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-fal 1443  df-ex 1660  df-nf 1664  df-sb 1790  df-eu 2270  df-mo 2271  df-clab 2415  df-cleq 2421  df-clel 2424  df-nfc 2579  df-ne 2627  df-nel 2628  df-ral 2787  df-rex 2788  df-reu 2789  df-rmo 2790  df-rab 2791  df-v 3089  df-sbc 3306  df-csb 3402  df-dif 3445  df-un 3447  df-in 3449  df-ss 3456  df-pss 3458  df-nul 3768  df-if 3916  df-pw 3987  df-sn 4003  df-pr 4005  df-tp 4007  df-op 4009  df-uni 4223  df-int 4259  df-iun 4304  df-iin 4305  df-br 4427  df-opab 4485  df-mpt 4486  df-tr 4521  df-eprel 4765  df-id 4769  df-po 4775  df-so 4776  df-fr 4813  df-se 4814  df-we 4815  df-xp 4860  df-rel 4861  df-cnv 4862  df-co 4863  df-dm 4864  df-rn 4865  df-res 4866  df-ima 4867  df-pred 5399  df-ord 5445  df-on 5446  df-lim 5447  df-suc 5448  df-iota 5565  df-fun 5603  df-fn 5604  df-f 5605  df-f1 5606  df-fo 5607  df-f1o 5608  df-fv 5609  df-isom 5610  df-riota 6267  df-ov 6308  df-oprab 6309  df-mpt2 6310  df-of 6545  df-om 6707  df-1st 6807  df-2nd 6808  df-supp 6926  df-wrecs 7036  df-recs 7098  df-rdg 7136  df-1o 7190  df-2o 7191  df-oadd 7194  df-er 7371  df-map 7482  df-pm 7483  df-ixp 7531  df-en 7578  df-dom 7579  df-sdom 7580  df-fin 7581  df-fsupp 7890  df-fi 7931  df-sup 7962  df-inf 7963  df-oi 8025  df-card 8372  df-cda 8596  df-pnf 9676  df-mnf 9677  df-xr 9678  df-ltxr 9679  df-le 9680  df-sub 9861  df-neg 9862  df-div 10269  df-nn 10610  df-2 10668  df-3 10669  df-4 10670  df-5 10671  df-6 10672  df-7 10673  df-8 10674  df-9 10675  df-10 10676  df-n0 10870  df-z 10938  df-dec 11052  df-uz 11160  df-q 11265  df-rp 11303  df-xneg 11409  df-xadd 11410  df-xmul 11411  df-ioo 11639  df-ioc 11640  df-ico 11641  df-icc 11642  df-fz 11783  df-fzo 11914  df-fl 12025  df-seq 12211  df-exp 12270  df-fac 12457  df-bc 12485  df-hash 12513  df-shft 13109  df-cj 13141  df-re 13142  df-im 13143  df-sqrt 13277  df-abs 13278  df-limsup 13504  df-clim 13530  df-rlim 13531  df-sum 13731  df-ef 14099  df-sin 14101  df-cos 14102  df-tan 14103  df-pi 14104  df-struct 15086  df-ndx 15087  df-slot 15088  df-base 15089  df-sets 15090  df-ress 15091  df-plusg 15165  df-mulr 15166  df-starv 15167  df-sca 15168  df-vsca 15169  df-ip 15170  df-tset 15171  df-ple 15172  df-ds 15174  df-unif 15175  df-hom 15176  df-cco 15177  df-rest 15280  df-topn 15281  df-0g 15299  df-gsum 15300  df-topgen 15301  df-pt 15302  df-prds 15305  df-xrs 15359  df-qtop 15364  df-imas 15365  df-xps 15367  df-mre 15443  df-mrc 15444  df-acs 15446  df-mgm 16439  df-sgrp 16478  df-mnd 16488  df-submnd 16534  df-mulg 16627  df-cntz 16922  df-cmn 17367  df-psmet 18897  df-xmet 18898  df-met 18899  df-bl 18900  df-mopn 18901  df-fbas 18902  df-fg 18903  df-cnfld 18906  df-top 19852  df-bases 19853  df-topon 19854  df-topsp 19855  df-cld 19965  df-ntr 19966  df-cls 19967  df-nei 20045  df-lp 20083  df-perf 20084  df-cn 20174  df-cnp 20175  df-haus 20262  df-tx 20508  df-hmeo 20701  df-fil 20792  df-fm 20884  df-flim 20885  df-flf 20886  df-xms 21266  df-ms 21267  df-tms 21268  df-cncf 21806  df-limc 22698  df-dv 22699
This theorem is referenced by:  tanord  23352
  Copyright terms: Public domain W3C validator