MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tanord1 Structured version   Unicode version

Theorem tanord1 22673
Description: The tangent function is strictly increasing on the nonnegative part of its principal domain. (Lemma for tanord 22674.) (Contributed by Mario Carneiro, 29-Jul-2014.)
Assertion
Ref Expression
tanord1  |-  ( ( A  e.  ( 0 [,) ( pi  / 
2 ) )  /\  B  e.  ( 0 [,) ( pi  / 
2 ) ) )  ->  ( A  < 
B  <->  ( tan `  A
)  <  ( tan `  B ) ) )

Proof of Theorem tanord1
Dummy variables  x  w  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tru 1383 . 2  |- T.
2 fveq2 5865 . . 3  |-  ( x  =  y  ->  ( tan `  x )  =  ( tan `  y
) )
3 fveq2 5865 . . 3  |-  ( x  =  A  ->  ( tan `  x )  =  ( tan `  A
) )
4 fveq2 5865 . . 3  |-  ( x  =  B  ->  ( tan `  x )  =  ( tan `  B
) )
5 0re 9595 . . . 4  |-  0  e.  RR
6 halfpire 22606 . . . . 5  |-  ( pi 
/  2 )  e.  RR
76rexri 9645 . . . 4  |-  ( pi 
/  2 )  e. 
RR*
8 icossre 11604 . . . 4  |-  ( ( 0  e.  RR  /\  ( pi  /  2
)  e.  RR* )  ->  ( 0 [,) (
pi  /  2 ) )  C_  RR )
95, 7, 8mp2an 672 . . 3  |-  ( 0 [,) ( pi  / 
2 ) )  C_  RR
109sseli 3500 . . . . 5  |-  ( x  e.  ( 0 [,) ( pi  /  2
) )  ->  x  e.  RR )
11 neghalfpirx 22608 . . . . . . . . 9  |-  -u (
pi  /  2 )  e.  RR*
12 pire 22601 . . . . . . . . . . 11  |-  pi  e.  RR
13 2re 10604 . . . . . . . . . . 11  |-  2  e.  RR
14 pipos 22603 . . . . . . . . . . 11  |-  0  <  pi
15 2pos 10626 . . . . . . . . . . 11  |-  0  <  2
1612, 13, 14, 15divgt0ii 10462 . . . . . . . . . 10  |-  0  <  ( pi  /  2
)
17 lt0neg2 10058 . . . . . . . . . . 11  |-  ( ( pi  /  2 )  e.  RR  ->  (
0  <  ( pi  /  2 )  <->  -u ( pi 
/  2 )  <  0 ) )
186, 17ax-mp 5 . . . . . . . . . 10  |-  ( 0  <  ( pi  / 
2 )  <->  -u ( pi 
/  2 )  <  0 )
1916, 18mpbi 208 . . . . . . . . 9  |-  -u (
pi  /  2 )  <  0
20 df-ioo 11532 . . . . . . . . . 10  |-  (,)  =  ( x  e.  RR* ,  y  e.  RR*  |->  { z  e.  RR*  |  (
x  <  z  /\  z  <  y ) } )
21 df-ico 11534 . . . . . . . . . 10  |-  [,)  =  ( x  e.  RR* ,  y  e.  RR*  |->  { z  e.  RR*  |  (
x  <_  z  /\  z  <  y ) } )
22 xrltletr 11359 . . . . . . . . . 10  |-  ( (
-u ( pi  / 
2 )  e.  RR*  /\  0  e.  RR*  /\  w  e.  RR* )  ->  (
( -u ( pi  / 
2 )  <  0  /\  0  <_  w )  ->  -u ( pi  / 
2 )  <  w
) )
2320, 21, 22ixxss1 11546 . . . . . . . . 9  |-  ( (
-u ( pi  / 
2 )  e.  RR*  /\  -u ( pi  /  2
)  <  0 )  ->  ( 0 [,) ( pi  /  2
) )  C_  ( -u ( pi  /  2
) (,) ( pi 
/  2 ) ) )
2411, 19, 23mp2an 672 . . . . . . . 8  |-  ( 0 [,) ( pi  / 
2 ) )  C_  ( -u ( pi  / 
2 ) (,) (
pi  /  2 ) )
2524sseli 3500 . . . . . . 7  |-  ( x  e.  ( 0 [,) ( pi  /  2
) )  ->  x  e.  ( -u ( pi 
/  2 ) (,) ( pi  /  2
) ) )
26 cosq14gt0 22652 . . . . . . 7  |-  ( x  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) )  -> 
0  <  ( cos `  x ) )
2725, 26syl 16 . . . . . 6  |-  ( x  e.  ( 0 [,) ( pi  /  2
) )  ->  0  <  ( cos `  x
) )
2827gt0ne0d 10116 . . . . 5  |-  ( x  e.  ( 0 [,) ( pi  /  2
) )  ->  ( cos `  x )  =/=  0 )
2910, 28retancld 13740 . . . 4  |-  ( x  e.  ( 0 [,) ( pi  /  2
) )  ->  ( tan `  x )  e.  RR )
3029adantl 466 . . 3  |-  ( ( T.  /\  x  e.  ( 0 [,) (
pi  /  2 ) ) )  ->  ( tan `  x )  e.  RR )
3110resincld 13738 . . . . . . . . 9  |-  ( x  e.  ( 0 [,) ( pi  /  2
) )  ->  ( sin `  x )  e.  RR )
3210recoscld 13739 . . . . . . . . 9  |-  ( x  e.  ( 0 [,) ( pi  /  2
) )  ->  ( cos `  x )  e.  RR )
3331, 32, 28redivcld 10371 . . . . . . . 8  |-  ( x  e.  ( 0 [,) ( pi  /  2
) )  ->  (
( sin `  x
)  /  ( cos `  x ) )  e.  RR )
34333ad2ant1 1017 . . . . . . 7  |-  ( ( x  e.  ( 0 [,) ( pi  / 
2 ) )  /\  y  e.  ( 0 [,) ( pi  / 
2 ) )  /\  x  <  y )  -> 
( ( sin `  x
)  /  ( cos `  x ) )  e.  RR )
359sseli 3500 . . . . . . . . . 10  |-  ( y  e.  ( 0 [,) ( pi  /  2
) )  ->  y  e.  RR )
36353ad2ant2 1018 . . . . . . . . 9  |-  ( ( x  e.  ( 0 [,) ( pi  / 
2 ) )  /\  y  e.  ( 0 [,) ( pi  / 
2 ) )  /\  x  <  y )  -> 
y  e.  RR )
3736resincld 13738 . . . . . . . 8  |-  ( ( x  e.  ( 0 [,) ( pi  / 
2 ) )  /\  y  e.  ( 0 [,) ( pi  / 
2 ) )  /\  x  <  y )  -> 
( sin `  y
)  e.  RR )
38323ad2ant1 1017 . . . . . . . 8  |-  ( ( x  e.  ( 0 [,) ( pi  / 
2 ) )  /\  y  e.  ( 0 [,) ( pi  / 
2 ) )  /\  x  <  y )  -> 
( cos `  x
)  e.  RR )
39283ad2ant1 1017 . . . . . . . 8  |-  ( ( x  e.  ( 0 [,) ( pi  / 
2 ) )  /\  y  e.  ( 0 [,) ( pi  / 
2 ) )  /\  x  <  y )  -> 
( cos `  x
)  =/=  0 )
4037, 38, 39redivcld 10371 . . . . . . 7  |-  ( ( x  e.  ( 0 [,) ( pi  / 
2 ) )  /\  y  e.  ( 0 [,) ( pi  / 
2 ) )  /\  x  <  y )  -> 
( ( sin `  y
)  /  ( cos `  x ) )  e.  RR )
4136recoscld 13739 . . . . . . . 8  |-  ( ( x  e.  ( 0 [,) ( pi  / 
2 ) )  /\  y  e.  ( 0 [,) ( pi  / 
2 ) )  /\  x  <  y )  -> 
( cos `  y
)  e.  RR )
4224sseli 3500 . . . . . . . . . . 11  |-  ( y  e.  ( 0 [,) ( pi  /  2
) )  ->  y  e.  ( -u ( pi 
/  2 ) (,) ( pi  /  2
) ) )
43 cosq14gt0 22652 . . . . . . . . . . 11  |-  ( y  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) )  -> 
0  <  ( cos `  y ) )
4442, 43syl 16 . . . . . . . . . 10  |-  ( y  e.  ( 0 [,) ( pi  /  2
) )  ->  0  <  ( cos `  y
) )
4544gt0ne0d 10116 . . . . . . . . 9  |-  ( y  e.  ( 0 [,) ( pi  /  2
) )  ->  ( cos `  y )  =/=  0 )
46453ad2ant2 1018 . . . . . . . 8  |-  ( ( x  e.  ( 0 [,) ( pi  / 
2 ) )  /\  y  e.  ( 0 [,) ( pi  / 
2 ) )  /\  x  <  y )  -> 
( cos `  y
)  =/=  0 )
4737, 41, 46redivcld 10371 . . . . . . 7  |-  ( ( x  e.  ( 0 [,) ( pi  / 
2 ) )  /\  y  e.  ( 0 [,) ( pi  / 
2 ) )  /\  x  <  y )  -> 
( ( sin `  y
)  /  ( cos `  y ) )  e.  RR )
48 ioossicc 11609 . . . . . . . . . . . 12  |-  ( -u ( pi  /  2
) (,) ( pi 
/  2 ) ) 
C_  ( -u (
pi  /  2 ) [,] ( pi  / 
2 ) )
4924, 48sstri 3513 . . . . . . . . . . 11  |-  ( 0 [,) ( pi  / 
2 ) )  C_  ( -u ( pi  / 
2 ) [,] (
pi  /  2 ) )
5049sseli 3500 . . . . . . . . . 10  |-  ( x  e.  ( 0 [,) ( pi  /  2
) )  ->  x  e.  ( -u ( pi 
/  2 ) [,] ( pi  /  2
) ) )
5149sseli 3500 . . . . . . . . . 10  |-  ( y  e.  ( 0 [,) ( pi  /  2
) )  ->  y  e.  ( -u ( pi 
/  2 ) [,] ( pi  /  2
) ) )
52 sinord 22670 . . . . . . . . . 10  |-  ( ( x  e.  ( -u ( pi  /  2
) [,] ( pi 
/  2 ) )  /\  y  e.  (
-u ( pi  / 
2 ) [,] (
pi  /  2 ) ) )  ->  (
x  <  y  <->  ( sin `  x )  <  ( sin `  y ) ) )
5350, 51, 52syl2an 477 . . . . . . . . 9  |-  ( ( x  e.  ( 0 [,) ( pi  / 
2 ) )  /\  y  e.  ( 0 [,) ( pi  / 
2 ) ) )  ->  ( x  < 
y  <->  ( sin `  x
)  <  ( sin `  y ) ) )
5453biimp3a 1328 . . . . . . . 8  |-  ( ( x  e.  ( 0 [,) ( pi  / 
2 ) )  /\  y  e.  ( 0 [,) ( pi  / 
2 ) )  /\  x  <  y )  -> 
( sin `  x
)  <  ( sin `  y ) )
55103ad2ant1 1017 . . . . . . . . . 10  |-  ( ( x  e.  ( 0 [,) ( pi  / 
2 ) )  /\  y  e.  ( 0 [,) ( pi  / 
2 ) )  /\  x  <  y )  ->  x  e.  RR )
5655resincld 13738 . . . . . . . . 9  |-  ( ( x  e.  ( 0 [,) ( pi  / 
2 ) )  /\  y  e.  ( 0 [,) ( pi  / 
2 ) )  /\  x  <  y )  -> 
( sin `  x
)  e.  RR )
57273ad2ant1 1017 . . . . . . . . 9  |-  ( ( x  e.  ( 0 [,) ( pi  / 
2 ) )  /\  y  e.  ( 0 [,) ( pi  / 
2 ) )  /\  x  <  y )  -> 
0  <  ( cos `  x ) )
58 ltdiv1 10405 . . . . . . . . 9  |-  ( ( ( sin `  x
)  e.  RR  /\  ( sin `  y )  e.  RR  /\  (
( cos `  x
)  e.  RR  /\  0  <  ( cos `  x
) ) )  -> 
( ( sin `  x
)  <  ( sin `  y )  <->  ( ( sin `  x )  / 
( cos `  x
) )  <  (
( sin `  y
)  /  ( cos `  x ) ) ) )
5956, 37, 38, 57, 58syl112anc 1232 . . . . . . . 8  |-  ( ( x  e.  ( 0 [,) ( pi  / 
2 ) )  /\  y  e.  ( 0 [,) ( pi  / 
2 ) )  /\  x  <  y )  -> 
( ( sin `  x
)  <  ( sin `  y )  <->  ( ( sin `  x )  / 
( cos `  x
) )  <  (
( sin `  y
)  /  ( cos `  x ) ) ) )
6054, 59mpbid 210 . . . . . . 7  |-  ( ( x  e.  ( 0 [,) ( pi  / 
2 ) )  /\  y  e.  ( 0 [,) ( pi  / 
2 ) )  /\  x  <  y )  -> 
( ( sin `  x
)  /  ( cos `  x ) )  < 
( ( sin `  y
)  /  ( cos `  x ) ) )
6112rexri 9645 . . . . . . . . . . . 12  |-  pi  e.  RR*
6212, 14elrpii 11222 . . . . . . . . . . . . 13  |-  pi  e.  RR+
63 rphalflt 11245 . . . . . . . . . . . . 13  |-  ( pi  e.  RR+  ->  ( pi 
/  2 )  < 
pi )
6462, 63ax-mp 5 . . . . . . . . . . . 12  |-  ( pi 
/  2 )  < 
pi
65 df-icc 11535 . . . . . . . . . . . . 13  |-  [,]  =  ( x  e.  RR* ,  y  e.  RR*  |->  { z  e.  RR*  |  (
x  <_  z  /\  z  <_  y ) } )
66 xrlttr 11345 . . . . . . . . . . . . . 14  |-  ( ( w  e.  RR*  /\  (
pi  /  2 )  e.  RR*  /\  pi  e.  RR* )  ->  (
( w  <  (
pi  /  2 )  /\  ( pi  / 
2 )  <  pi )  ->  w  <  pi ) )
67 xrltle 11354 . . . . . . . . . . . . . . 15  |-  ( ( w  e.  RR*  /\  pi  e.  RR* )  ->  (
w  <  pi  ->  w  <_  pi ) )
68673adant2 1015 . . . . . . . . . . . . . 14  |-  ( ( w  e.  RR*  /\  (
pi  /  2 )  e.  RR*  /\  pi  e.  RR* )  ->  (
w  <  pi  ->  w  <_  pi ) )
6966, 68syld 44 . . . . . . . . . . . . 13  |-  ( ( w  e.  RR*  /\  (
pi  /  2 )  e.  RR*  /\  pi  e.  RR* )  ->  (
( w  <  (
pi  /  2 )  /\  ( pi  / 
2 )  <  pi )  ->  w  <_  pi ) )
7065, 21, 69ixxss2 11547 . . . . . . . . . . . 12  |-  ( ( pi  e.  RR*  /\  (
pi  /  2 )  <  pi )  -> 
( 0 [,) (
pi  /  2 ) )  C_  ( 0 [,] pi ) )
7161, 64, 70mp2an 672 . . . . . . . . . . 11  |-  ( 0 [,) ( pi  / 
2 ) )  C_  ( 0 [,] pi )
7271sseli 3500 . . . . . . . . . 10  |-  ( x  e.  ( 0 [,) ( pi  /  2
) )  ->  x  e.  ( 0 [,] pi ) )
7371sseli 3500 . . . . . . . . . 10  |-  ( y  e.  ( 0 [,) ( pi  /  2
) )  ->  y  e.  ( 0 [,] pi ) )
74 cosord 22668 . . . . . . . . . 10  |-  ( ( x  e.  ( 0 [,] pi )  /\  y  e.  ( 0 [,] pi ) )  ->  ( x  < 
y  <->  ( cos `  y
)  <  ( cos `  x ) ) )
7572, 73, 74syl2an 477 . . . . . . . . 9  |-  ( ( x  e.  ( 0 [,) ( pi  / 
2 ) )  /\  y  e.  ( 0 [,) ( pi  / 
2 ) ) )  ->  ( x  < 
y  <->  ( cos `  y
)  <  ( cos `  x ) ) )
7675biimp3a 1328 . . . . . . . 8  |-  ( ( x  e.  ( 0 [,) ( pi  / 
2 ) )  /\  y  e.  ( 0 [,) ( pi  / 
2 ) )  /\  x  <  y )  -> 
( cos `  y
)  <  ( cos `  x ) )
77 0red 9596 . . . . . . . . . . . . 13  |-  ( ( x  e.  ( 0 [,) ( pi  / 
2 ) )  /\  y  e.  ( 0 [,) ( pi  / 
2 ) )  /\  x  <  y )  -> 
0  e.  RR )
78 simp1 996 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  ( 0 [,) ( pi  / 
2 ) )  /\  y  e.  ( 0 [,) ( pi  / 
2 ) )  /\  x  <  y )  ->  x  e.  ( 0 [,) ( pi  / 
2 ) ) )
79 elico2 11587 . . . . . . . . . . . . . . . 16  |-  ( ( 0  e.  RR  /\  ( pi  /  2
)  e.  RR* )  ->  ( x  e.  ( 0 [,) ( pi 
/  2 ) )  <-> 
( x  e.  RR  /\  0  <_  x  /\  x  <  ( pi  / 
2 ) ) ) )
805, 7, 79mp2an 672 . . . . . . . . . . . . . . 15  |-  ( x  e.  ( 0 [,) ( pi  /  2
) )  <->  ( x  e.  RR  /\  0  <_  x  /\  x  <  (
pi  /  2 ) ) )
8178, 80sylib 196 . . . . . . . . . . . . . 14  |-  ( ( x  e.  ( 0 [,) ( pi  / 
2 ) )  /\  y  e.  ( 0 [,) ( pi  / 
2 ) )  /\  x  <  y )  -> 
( x  e.  RR  /\  0  <_  x  /\  x  <  ( pi  / 
2 ) ) )
8281simp2d 1009 . . . . . . . . . . . . 13  |-  ( ( x  e.  ( 0 [,) ( pi  / 
2 ) )  /\  y  e.  ( 0 [,) ( pi  / 
2 ) )  /\  x  <  y )  -> 
0  <_  x )
83 simp3 998 . . . . . . . . . . . . 13  |-  ( ( x  e.  ( 0 [,) ( pi  / 
2 ) )  /\  y  e.  ( 0 [,) ( pi  / 
2 ) )  /\  x  <  y )  ->  x  <  y )
8477, 55, 36, 82, 83lelttrd 9738 . . . . . . . . . . . 12  |-  ( ( x  e.  ( 0 [,) ( pi  / 
2 ) )  /\  y  e.  ( 0 [,) ( pi  / 
2 ) )  /\  x  <  y )  -> 
0  <  y )
85 simp2 997 . . . . . . . . . . . . . 14  |-  ( ( x  e.  ( 0 [,) ( pi  / 
2 ) )  /\  y  e.  ( 0 [,) ( pi  / 
2 ) )  /\  x  <  y )  -> 
y  e.  ( 0 [,) ( pi  / 
2 ) ) )
86 elico2 11587 . . . . . . . . . . . . . . 15  |-  ( ( 0  e.  RR  /\  ( pi  /  2
)  e.  RR* )  ->  ( y  e.  ( 0 [,) ( pi 
/  2 ) )  <-> 
( y  e.  RR  /\  0  <_  y  /\  y  <  ( pi  / 
2 ) ) ) )
875, 7, 86mp2an 672 . . . . . . . . . . . . . 14  |-  ( y  e.  ( 0 [,) ( pi  /  2
) )  <->  ( y  e.  RR  /\  0  <_ 
y  /\  y  <  ( pi  /  2 ) ) )
8885, 87sylib 196 . . . . . . . . . . . . 13  |-  ( ( x  e.  ( 0 [,) ( pi  / 
2 ) )  /\  y  e.  ( 0 [,) ( pi  / 
2 ) )  /\  x  <  y )  -> 
( y  e.  RR  /\  0  <_  y  /\  y  <  ( pi  / 
2 ) ) )
8988simp3d 1010 . . . . . . . . . . . 12  |-  ( ( x  e.  ( 0 [,) ( pi  / 
2 ) )  /\  y  e.  ( 0 [,) ( pi  / 
2 ) )  /\  x  <  y )  -> 
y  <  ( pi  /  2 ) )
90 0xr 9639 . . . . . . . . . . . . 13  |-  0  e.  RR*
91 elioo2 11569 . . . . . . . . . . . . 13  |-  ( ( 0  e.  RR*  /\  (
pi  /  2 )  e.  RR* )  ->  (
y  e.  ( 0 (,) ( pi  / 
2 ) )  <->  ( y  e.  RR  /\  0  < 
y  /\  y  <  ( pi  /  2 ) ) ) )
9290, 7, 91mp2an 672 . . . . . . . . . . . 12  |-  ( y  e.  ( 0 (,) ( pi  /  2
) )  <->  ( y  e.  RR  /\  0  < 
y  /\  y  <  ( pi  /  2 ) ) )
9336, 84, 89, 92syl3anbrc 1180 . . . . . . . . . . 11  |-  ( ( x  e.  ( 0 [,) ( pi  / 
2 ) )  /\  y  e.  ( 0 [,) ( pi  / 
2 ) )  /\  x  <  y )  -> 
y  e.  ( 0 (,) ( pi  / 
2 ) ) )
94 sincosq1sgn 22640 . . . . . . . . . . 11  |-  ( y  e.  ( 0 (,) ( pi  /  2
) )  ->  (
0  <  ( sin `  y )  /\  0  <  ( cos `  y
) ) )
9593, 94syl 16 . . . . . . . . . 10  |-  ( ( x  e.  ( 0 [,) ( pi  / 
2 ) )  /\  y  e.  ( 0 [,) ( pi  / 
2 ) )  /\  x  <  y )  -> 
( 0  <  ( sin `  y )  /\  0  <  ( cos `  y
) ) )
9695simprd 463 . . . . . . . . 9  |-  ( ( x  e.  ( 0 [,) ( pi  / 
2 ) )  /\  y  e.  ( 0 [,) ( pi  / 
2 ) )  /\  x  <  y )  -> 
0  <  ( cos `  y ) )
9795simpld 459 . . . . . . . . 9  |-  ( ( x  e.  ( 0 [,) ( pi  / 
2 ) )  /\  y  e.  ( 0 [,) ( pi  / 
2 ) )  /\  x  <  y )  -> 
0  <  ( sin `  y ) )
98 ltdiv2OLD 10430 . . . . . . . . 9  |-  ( ( ( ( cos `  y
)  e.  RR  /\  ( cos `  x )  e.  RR  /\  ( sin `  y )  e.  RR )  /\  (
0  <  ( cos `  y )  /\  0  <  ( cos `  x
)  /\  0  <  ( sin `  y ) ) )  ->  (
( cos `  y
)  <  ( cos `  x )  <->  ( ( sin `  y )  / 
( cos `  x
) )  <  (
( sin `  y
)  /  ( cos `  y ) ) ) )
9941, 38, 37, 96, 57, 97, 98syl33anc 1243 . . . . . . . 8  |-  ( ( x  e.  ( 0 [,) ( pi  / 
2 ) )  /\  y  e.  ( 0 [,) ( pi  / 
2 ) )  /\  x  <  y )  -> 
( ( cos `  y
)  <  ( cos `  x )  <->  ( ( sin `  y )  / 
( cos `  x
) )  <  (
( sin `  y
)  /  ( cos `  y ) ) ) )
10076, 99mpbid 210 . . . . . . 7  |-  ( ( x  e.  ( 0 [,) ( pi  / 
2 ) )  /\  y  e.  ( 0 [,) ( pi  / 
2 ) )  /\  x  <  y )  -> 
( ( sin `  y
)  /  ( cos `  x ) )  < 
( ( sin `  y
)  /  ( cos `  y ) ) )
10134, 40, 47, 60, 100lttrd 9741 . . . . . 6  |-  ( ( x  e.  ( 0 [,) ( pi  / 
2 ) )  /\  y  e.  ( 0 [,) ( pi  / 
2 ) )  /\  x  <  y )  -> 
( ( sin `  x
)  /  ( cos `  x ) )  < 
( ( sin `  y
)  /  ( cos `  y ) ) )
10210recnd 9621 . . . . . . . 8  |-  ( x  e.  ( 0 [,) ( pi  /  2
) )  ->  x  e.  CC )
103 tanval 13723 . . . . . . . 8  |-  ( ( x  e.  CC  /\  ( cos `  x )  =/=  0 )  -> 
( tan `  x
)  =  ( ( sin `  x )  /  ( cos `  x
) ) )
104102, 28, 103syl2anc 661 . . . . . . 7  |-  ( x  e.  ( 0 [,) ( pi  /  2
) )  ->  ( tan `  x )  =  ( ( sin `  x
)  /  ( cos `  x ) ) )
1051043ad2ant1 1017 . . . . . 6  |-  ( ( x  e.  ( 0 [,) ( pi  / 
2 ) )  /\  y  e.  ( 0 [,) ( pi  / 
2 ) )  /\  x  <  y )  -> 
( tan `  x
)  =  ( ( sin `  x )  /  ( cos `  x
) ) )
10635recnd 9621 . . . . . . . 8  |-  ( y  e.  ( 0 [,) ( pi  /  2
) )  ->  y  e.  CC )
1071063ad2ant2 1018 . . . . . . 7  |-  ( ( x  e.  ( 0 [,) ( pi  / 
2 ) )  /\  y  e.  ( 0 [,) ( pi  / 
2 ) )  /\  x  <  y )  -> 
y  e.  CC )
108 tanval 13723 . . . . . . 7  |-  ( ( y  e.  CC  /\  ( cos `  y )  =/=  0 )  -> 
( tan `  y
)  =  ( ( sin `  y )  /  ( cos `  y
) ) )
109107, 46, 108syl2anc 661 . . . . . 6  |-  ( ( x  e.  ( 0 [,) ( pi  / 
2 ) )  /\  y  e.  ( 0 [,) ( pi  / 
2 ) )  /\  x  <  y )  -> 
( tan `  y
)  =  ( ( sin `  y )  /  ( cos `  y
) ) )
110101, 105, 1093brtr4d 4477 . . . . 5  |-  ( ( x  e.  ( 0 [,) ( pi  / 
2 ) )  /\  y  e.  ( 0 [,) ( pi  / 
2 ) )  /\  x  <  y )  -> 
( tan `  x
)  <  ( tan `  y ) )
1111103expia 1198 . . . 4  |-  ( ( x  e.  ( 0 [,) ( pi  / 
2 ) )  /\  y  e.  ( 0 [,) ( pi  / 
2 ) ) )  ->  ( x  < 
y  ->  ( tan `  x )  <  ( tan `  y ) ) )
112111adantl 466 . . 3  |-  ( ( T.  /\  ( x  e.  ( 0 [,) ( pi  /  2
) )  /\  y  e.  ( 0 [,) (
pi  /  2 ) ) ) )  -> 
( x  <  y  ->  ( tan `  x
)  <  ( tan `  y ) ) )
1132, 3, 4, 9, 30, 112ltord1 10078 . 2  |-  ( ( T.  /\  ( A  e.  ( 0 [,) ( pi  /  2
) )  /\  B  e.  ( 0 [,) (
pi  /  2 ) ) ) )  -> 
( A  <  B  <->  ( tan `  A )  <  ( tan `  B
) ) )
1141, 113mpan 670 1  |-  ( ( A  e.  ( 0 [,) ( pi  / 
2 ) )  /\  B  e.  ( 0 [,) ( pi  / 
2 ) ) )  ->  ( A  < 
B  <->  ( tan `  A
)  <  ( tan `  B ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 973    = wceq 1379   T. wtru 1380    e. wcel 1767    =/= wne 2662    C_ wss 3476   class class class wbr 4447   ` cfv 5587  (class class class)co 6283   CCcc 9489   RRcr 9490   0cc0 9491   RR*cxr 9626    < clt 9627    <_ cle 9628   -ucneg 9805    / cdiv 10205   2c2 10584   RR+crp 11219   (,)cioo 11528   [,)cico 11530   [,]cicc 11531   sincsin 13660   cosccos 13661   tanctan 13662   picpi 13663
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6575  ax-inf2 8057  ax-cnex 9547  ax-resscn 9548  ax-1cn 9549  ax-icn 9550  ax-addcl 9551  ax-addrcl 9552  ax-mulcl 9553  ax-mulrcl 9554  ax-mulcom 9555  ax-addass 9556  ax-mulass 9557  ax-distr 9558  ax-i2m1 9559  ax-1ne0 9560  ax-1rid 9561  ax-rnegex 9562  ax-rrecex 9563  ax-cnre 9564  ax-pre-lttri 9565  ax-pre-lttrn 9566  ax-pre-ltadd 9567  ax-pre-mulgt0 9568  ax-pre-sup 9569  ax-addf 9570  ax-mulf 9571
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-fal 1385  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-int 4283  df-iun 4327  df-iin 4328  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-se 4839  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5550  df-fun 5589  df-fn 5590  df-f 5591  df-f1 5592  df-fo 5593  df-f1o 5594  df-fv 5595  df-isom 5596  df-riota 6244  df-ov 6286  df-oprab 6287  df-mpt2 6288  df-of 6523  df-om 6680  df-1st 6784  df-2nd 6785  df-supp 6902  df-recs 7042  df-rdg 7076  df-1o 7130  df-2o 7131  df-oadd 7134  df-er 7311  df-map 7422  df-pm 7423  df-ixp 7470  df-en 7517  df-dom 7518  df-sdom 7519  df-fin 7520  df-fsupp 7829  df-fi 7870  df-sup 7900  df-oi 7934  df-card 8319  df-cda 8547  df-pnf 9629  df-mnf 9630  df-xr 9631  df-ltxr 9632  df-le 9633  df-sub 9806  df-neg 9807  df-div 10206  df-nn 10536  df-2 10593  df-3 10594  df-4 10595  df-5 10596  df-6 10597  df-7 10598  df-8 10599  df-9 10600  df-10 10601  df-n0 10795  df-z 10864  df-dec 10976  df-uz 11082  df-q 11182  df-rp 11220  df-xneg 11317  df-xadd 11318  df-xmul 11319  df-ioo 11532  df-ioc 11533  df-ico 11534  df-icc 11535  df-fz 11672  df-fzo 11792  df-fl 11896  df-seq 12075  df-exp 12134  df-fac 12321  df-bc 12348  df-hash 12373  df-shft 12862  df-cj 12894  df-re 12895  df-im 12896  df-sqrt 13030  df-abs 13031  df-limsup 13256  df-clim 13273  df-rlim 13274  df-sum 13471  df-ef 13664  df-sin 13666  df-cos 13667  df-tan 13668  df-pi 13669  df-struct 14491  df-ndx 14492  df-slot 14493  df-base 14494  df-sets 14495  df-ress 14496  df-plusg 14567  df-mulr 14568  df-starv 14569  df-sca 14570  df-vsca 14571  df-ip 14572  df-tset 14573  df-ple 14574  df-ds 14576  df-unif 14577  df-hom 14578  df-cco 14579  df-rest 14677  df-topn 14678  df-0g 14696  df-gsum 14697  df-topgen 14698  df-pt 14699  df-prds 14702  df-xrs 14756  df-qtop 14761  df-imas 14762  df-xps 14764  df-mre 14840  df-mrc 14841  df-acs 14843  df-mnd 15731  df-submnd 15784  df-mulg 15867  df-cntz 16157  df-cmn 16603  df-psmet 18198  df-xmet 18199  df-met 18200  df-bl 18201  df-mopn 18202  df-fbas 18203  df-fg 18204  df-cnfld 18208  df-top 19182  df-bases 19184  df-topon 19185  df-topsp 19186  df-cld 19302  df-ntr 19303  df-cls 19304  df-nei 19381  df-lp 19419  df-perf 19420  df-cn 19510  df-cnp 19511  df-haus 19598  df-tx 19814  df-hmeo 20007  df-fil 20098  df-fm 20190  df-flim 20191  df-flf 20192  df-xms 20574  df-ms 20575  df-tms 20576  df-cncf 21133  df-limc 22021  df-dv 22022
This theorem is referenced by:  tanord  22674
  Copyright terms: Public domain W3C validator