![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > tanhbnd | Structured version Unicode version |
Description: The hyperbolic tangent of
a real number is bounded by ![]() |
Ref | Expression |
---|---|
tanhbnd |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | retanhcl 13556 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | ax-icn 9447 |
. . . . . . . 8
![]() ![]() ![]() ![]() | |
3 | recn 9478 |
. . . . . . . 8
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | mulcl 9472 |
. . . . . . . 8
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
5 | 2, 3, 4 | sylancr 663 |
. . . . . . 7
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
6 | rpcoshcl 13554 |
. . . . . . . 8
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
7 | 6 | rpne0d 11138 |
. . . . . . 7
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
8 | 5, 7 | tancld 13529 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
9 | 2 | a1i 11 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
10 | ine0 9886 |
. . . . . . 7
![]() ![]() ![]() ![]() | |
11 | 10 | a1i 11 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
12 | 8, 9, 11 | divnegd 10226 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
13 | mulneg2 9888 |
. . . . . . . . 9
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
14 | 2, 3, 13 | sylancr 663 |
. . . . . . . 8
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
15 | 14 | fveq2d 5798 |
. . . . . . 7
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
16 | tanneg 13545 |
. . . . . . . 8
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
17 | 5, 7, 16 | syl2anc 661 |
. . . . . . 7
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
18 | 15, 17 | eqtrd 2493 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
19 | 18 | oveq1d 6210 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
20 | 12, 19 | eqtr4d 2496 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
21 | renegcl 9778 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
22 | tanhlt1 13557 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
23 | 21, 22 | syl 16 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
24 | 20, 23 | eqbrtrd 4415 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
25 | 1re 9491 |
. . . 4
![]() ![]() ![]() ![]() | |
26 | ltnegcon1 9946 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
27 | 1, 25, 26 | sylancl 662 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
28 | 24, 27 | mpbid 210 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
29 | tanhlt1 13557 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
30 | neg1rr 10532 |
. . . 4
![]() ![]() ![]() ![]() ![]() | |
31 | 30 | rexri 9542 |
. . 3
![]() ![]() ![]() ![]() ![]() |
32 | 25 | rexri 9542 |
. . 3
![]() ![]() ![]() ![]() |
33 | elioo2 11447 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
34 | 31, 32, 33 | mp2an 672 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
35 | 1, 28, 29, 34 | syl3anbrc 1172 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1592 ax-4 1603 ax-5 1671 ax-6 1710 ax-7 1730 ax-8 1760 ax-9 1762 ax-10 1777 ax-11 1782 ax-12 1794 ax-13 1954 ax-ext 2431 ax-rep 4506 ax-sep 4516 ax-nul 4524 ax-pow 4573 ax-pr 4634 ax-un 6477 ax-inf2 7953 ax-cnex 9444 ax-resscn 9445 ax-1cn 9446 ax-icn 9447 ax-addcl 9448 ax-addrcl 9449 ax-mulcl 9450 ax-mulrcl 9451 ax-mulcom 9452 ax-addass 9453 ax-mulass 9454 ax-distr 9455 ax-i2m1 9456 ax-1ne0 9457 ax-1rid 9458 ax-rnegex 9459 ax-rrecex 9460 ax-cnre 9461 ax-pre-lttri 9462 ax-pre-lttrn 9463 ax-pre-ltadd 9464 ax-pre-mulgt0 9465 ax-pre-sup 9466 ax-addf 9467 ax-mulf 9468 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 966 df-3an 967 df-tru 1373 df-fal 1376 df-ex 1588 df-nf 1591 df-sb 1703 df-eu 2265 df-mo 2266 df-clab 2438 df-cleq 2444 df-clel 2447 df-nfc 2602 df-ne 2647 df-nel 2648 df-ral 2801 df-rex 2802 df-reu 2803 df-rmo 2804 df-rab 2805 df-v 3074 df-sbc 3289 df-csb 3391 df-dif 3434 df-un 3436 df-in 3438 df-ss 3445 df-pss 3447 df-nul 3741 df-if 3895 df-pw 3965 df-sn 3981 df-pr 3983 df-tp 3985 df-op 3987 df-uni 4195 df-int 4232 df-iun 4276 df-br 4396 df-opab 4454 df-mpt 4455 df-tr 4489 df-eprel 4735 df-id 4739 df-po 4744 df-so 4745 df-fr 4782 df-se 4783 df-we 4784 df-ord 4825 df-on 4826 df-lim 4827 df-suc 4828 df-xp 4949 df-rel 4950 df-cnv 4951 df-co 4952 df-dm 4953 df-rn 4954 df-res 4955 df-ima 4956 df-iota 5484 df-fun 5523 df-fn 5524 df-f 5525 df-f1 5526 df-fo 5527 df-f1o 5528 df-fv 5529 df-isom 5530 df-riota 6156 df-ov 6198 df-oprab 6199 df-mpt2 6200 df-om 6582 df-1st 6682 df-2nd 6683 df-recs 6937 df-rdg 6971 df-1o 7025 df-oadd 7029 df-er 7206 df-pm 7322 df-en 7416 df-dom 7417 df-sdom 7418 df-fin 7419 df-sup 7797 df-oi 7830 df-card 8215 df-pnf 9526 df-mnf 9527 df-xr 9528 df-ltxr 9529 df-le 9530 df-sub 9703 df-neg 9704 df-div 10100 df-nn 10429 df-2 10486 df-3 10487 df-n0 10686 df-z 10753 df-uz 10968 df-rp 11098 df-ioo 11410 df-ico 11412 df-fz 11550 df-fzo 11661 df-fl 11754 df-seq 11919 df-exp 11978 df-fac 12164 df-bc 12191 df-hash 12216 df-shft 12669 df-cj 12701 df-re 12702 df-im 12703 df-sqr 12837 df-abs 12838 df-limsup 13062 df-clim 13079 df-rlim 13080 df-sum 13277 df-ef 13466 df-sin 13468 df-cos 13469 df-tan 13470 |
This theorem is referenced by: tanregt0 22123 atantan 22446 |
Copyright terms: Public domain | W3C validator |