MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tangtx Structured version   Unicode version

Theorem tangtx 22631
Description: The tangent function is greater than its argument on positive reals in its principal domain. (Contributed by Mario Carneiro, 29-Jul-2014.)
Assertion
Ref Expression
tangtx  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  A  <  ( tan `  A
) )

Proof of Theorem tangtx
StepHypRef Expression
1 elioore 11555 . . . . 5  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  A  e.  RR )
21recoscld 13736 . . . . 5  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  ( cos `  A )  e.  RR )
31, 2remulcld 9620 . . . 4  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  ( A  x.  ( cos `  A ) )  e.  RR )
4 1re 9591 . . . . . . 7  |-  1  e.  RR
5 rehalfcl 10761 . . . . . . . . . 10  |-  ( A  e.  RR  ->  ( A  /  2 )  e.  RR )
61, 5syl 16 . . . . . . . . 9  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  ( A  /  2 )  e.  RR )
76resqcld 12300 . . . . . . . 8  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( A  /  2
) ^ 2 )  e.  RR )
8 3nn 10690 . . . . . . . 8  |-  3  e.  NN
9 nndivre 10567 . . . . . . . 8  |-  ( ( ( ( A  / 
2 ) ^ 2 )  e.  RR  /\  3  e.  NN )  ->  ( ( ( A  /  2 ) ^
2 )  /  3
)  e.  RR )
107, 8, 9sylancl 662 . . . . . . 7  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( ( A  / 
2 ) ^ 2 )  /  3 )  e.  RR )
11 resubcl 9879 . . . . . . 7  |-  ( ( 1  e.  RR  /\  ( ( ( A  /  2 ) ^
2 )  /  3
)  e.  RR )  ->  ( 1  -  ( ( ( A  /  2 ) ^
2 )  /  3
) )  e.  RR )
124, 10, 11sylancr 663 . . . . . 6  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
1  -  ( ( ( A  /  2
) ^ 2 )  /  3 ) )  e.  RR )
131, 12remulcld 9620 . . . . 5  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  ( A  x.  ( 1  -  ( ( ( A  /  2 ) ^ 2 )  / 
3 ) ) )  e.  RR )
14 2re 10601 . . . . . . 7  |-  2  e.  RR
15 remulcl 9573 . . . . . . 7  |-  ( ( 2  e.  RR  /\  ( ( ( A  /  2 ) ^
2 )  /  3
)  e.  RR )  ->  ( 2  x.  ( ( ( A  /  2 ) ^
2 )  /  3
) )  e.  RR )
1614, 10, 15sylancr 663 . . . . . 6  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
2  x.  ( ( ( A  /  2
) ^ 2 )  /  3 ) )  e.  RR )
17 resubcl 9879 . . . . . 6  |-  ( ( 1  e.  RR  /\  ( 2  x.  (
( ( A  / 
2 ) ^ 2 )  /  3 ) )  e.  RR )  ->  ( 1  -  ( 2  x.  (
( ( A  / 
2 ) ^ 2 )  /  3 ) ) )  e.  RR )
184, 16, 17sylancr 663 . . . . 5  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
1  -  ( 2  x.  ( ( ( A  /  2 ) ^ 2 )  / 
3 ) ) )  e.  RR )
1913, 18remulcld 9620 . . . 4  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( A  x.  (
1  -  ( ( ( A  /  2
) ^ 2 )  /  3 ) ) )  x.  ( 1  -  ( 2  x.  ( ( ( A  /  2 ) ^
2 )  /  3
) ) ) )  e.  RR )
201resincld 13735 . . . 4  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  ( sin `  A )  e.  RR )
2112resqcld 12300 . . . . . . . . 9  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( 1  -  (
( ( A  / 
2 ) ^ 2 )  /  3 ) ) ^ 2 )  e.  RR )
22 remulcl 9573 . . . . . . . . 9  |-  ( ( 2  e.  RR  /\  ( ( 1  -  ( ( ( A  /  2 ) ^
2 )  /  3
) ) ^ 2 )  e.  RR )  ->  ( 2  x.  ( ( 1  -  ( ( ( A  /  2 ) ^
2 )  /  3
) ) ^ 2 ) )  e.  RR )
2314, 21, 22sylancr 663 . . . . . . . 8  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
2  x.  ( ( 1  -  ( ( ( A  /  2
) ^ 2 )  /  3 ) ) ^ 2 ) )  e.  RR )
24 resubcl 9879 . . . . . . . 8  |-  ( ( ( 2  x.  (
( 1  -  (
( ( A  / 
2 ) ^ 2 )  /  3 ) ) ^ 2 ) )  e.  RR  /\  1  e.  RR )  ->  ( ( 2  x.  ( ( 1  -  ( ( ( A  /  2 ) ^
2 )  /  3
) ) ^ 2 ) )  -  1 )  e.  RR )
2523, 4, 24sylancl 662 . . . . . . 7  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( 2  x.  (
( 1  -  (
( ( A  / 
2 ) ^ 2 )  /  3 ) ) ^ 2 ) )  -  1 )  e.  RR )
2612, 18remulcld 9620 . . . . . . 7  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( 1  -  (
( ( A  / 
2 ) ^ 2 )  /  3 ) )  x.  ( 1  -  ( 2  x.  ( ( ( A  /  2 ) ^
2 )  /  3
) ) ) )  e.  RR )
271recnd 9618 . . . . . . . . . . 11  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  A  e.  CC )
28 2cn 10602 . . . . . . . . . . . 12  |-  2  e.  CC
2928a1i 11 . . . . . . . . . . 11  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  2  e.  CC )
30 2ne0 10624 . . . . . . . . . . . 12  |-  2  =/=  0
3130a1i 11 . . . . . . . . . . 11  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  2  =/=  0 )
3227, 29, 31divcan2d 10318 . . . . . . . . . 10  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
2  x.  ( A  /  2 ) )  =  A )
3332fveq2d 5868 . . . . . . . . 9  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  ( cos `  ( 2  x.  ( A  /  2
) ) )  =  ( cos `  A
) )
346recnd 9618 . . . . . . . . . 10  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  ( A  /  2 )  e.  CC )
35 cos2t 13770 . . . . . . . . . 10  |-  ( ( A  /  2 )  e.  CC  ->  ( cos `  ( 2  x.  ( A  /  2
) ) )  =  ( ( 2  x.  ( ( cos `  ( A  /  2 ) ) ^ 2 ) )  -  1 ) )
3634, 35syl 16 . . . . . . . . 9  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  ( cos `  ( 2  x.  ( A  /  2
) ) )  =  ( ( 2  x.  ( ( cos `  ( A  /  2 ) ) ^ 2 ) )  -  1 ) )
3733, 36eqtr3d 2510 . . . . . . . 8  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  ( cos `  A )  =  ( ( 2  x.  ( ( cos `  ( A  /  2 ) ) ^ 2 ) )  -  1 ) )
386recoscld 13736 . . . . . . . . . . 11  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  ( cos `  ( A  / 
2 ) )  e.  RR )
3938resqcld 12300 . . . . . . . . . 10  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( cos `  ( A  /  2 ) ) ^ 2 )  e.  RR )
40 remulcl 9573 . . . . . . . . . 10  |-  ( ( 2  e.  RR  /\  ( ( cos `  ( A  /  2 ) ) ^ 2 )  e.  RR )  ->  (
2  x.  ( ( cos `  ( A  /  2 ) ) ^ 2 ) )  e.  RR )
4114, 39, 40sylancr 663 . . . . . . . . 9  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
2  x.  ( ( cos `  ( A  /  2 ) ) ^ 2 ) )  e.  RR )
424a1i 11 . . . . . . . . 9  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  1  e.  RR )
4314a1i 11 . . . . . . . . . . . . . . 15  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  2  e.  RR )
44 eliooord 11580 . . . . . . . . . . . . . . . 16  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
0  <  A  /\  A  <  ( pi  / 
2 ) ) )
4544simpld 459 . . . . . . . . . . . . . . 15  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  0  <  A )
46 2pos 10623 . . . . . . . . . . . . . . . 16  |-  0  <  2
4746a1i 11 . . . . . . . . . . . . . . 15  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  0  <  2 )
481, 43, 45, 47divgt0d 10477 . . . . . . . . . . . . . 14  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  0  <  ( A  /  2
) )
49 pire 22585 . . . . . . . . . . . . . . . . . . 19  |-  pi  e.  RR
50 rehalfcl 10761 . . . . . . . . . . . . . . . . . . 19  |-  ( pi  e.  RR  ->  (
pi  /  2 )  e.  RR )
5149, 50mp1i 12 . . . . . . . . . . . . . . . . . 18  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
pi  /  2 )  e.  RR )
5244simprd 463 . . . . . . . . . . . . . . . . . 18  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  A  <  ( pi  /  2
) )
53 pigt2lt4 22583 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( 2  <  pi  /\  pi  <  4 )
5453simpri 462 . . . . . . . . . . . . . . . . . . . . 21  |-  pi  <  4
55 2t2e4 10681 . . . . . . . . . . . . . . . . . . . . 21  |-  ( 2  x.  2 )  =  4
5654, 55breqtrri 4472 . . . . . . . . . . . . . . . . . . . 20  |-  pi  <  ( 2  x.  2 )
5714, 46pm3.2i 455 . . . . . . . . . . . . . . . . . . . . 21  |-  ( 2  e.  RR  /\  0  <  2 )
58 ltdivmul 10413 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( pi  e.  RR  /\  2  e.  RR  /\  (
2  e.  RR  /\  0  <  2 ) )  ->  ( ( pi 
/  2 )  <  2  <->  pi  <  ( 2  x.  2 ) ) )
5949, 14, 57, 58mp3an 1324 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( pi  /  2 )  <  2  <->  pi  <  ( 2  x.  2 ) )
6056, 59mpbir 209 . . . . . . . . . . . . . . . . . . 19  |-  ( pi 
/  2 )  <  2
6160a1i 11 . . . . . . . . . . . . . . . . . 18  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
pi  /  2 )  <  2 )
621, 51, 43, 52, 61lttrd 9738 . . . . . . . . . . . . . . . . 17  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  A  <  2 )
6328mulid2i 9595 . . . . . . . . . . . . . . . . 17  |-  ( 1  x.  2 )  =  2
6462, 63syl6breqr 4487 . . . . . . . . . . . . . . . 16  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  A  <  ( 1  x.  2 ) )
65 ltdivmul2 10416 . . . . . . . . . . . . . . . . 17  |-  ( ( A  e.  RR  /\  1  e.  RR  /\  (
2  e.  RR  /\  0  <  2 ) )  ->  ( ( A  /  2 )  <  1  <->  A  <  ( 1  x.  2 ) ) )
661, 42, 43, 47, 65syl112anc 1232 . . . . . . . . . . . . . . . 16  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( A  /  2
)  <  1  <->  A  <  ( 1  x.  2 ) ) )
6764, 66mpbird 232 . . . . . . . . . . . . . . 15  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  ( A  /  2 )  <  1 )
686, 42, 67ltled 9728 . . . . . . . . . . . . . 14  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  ( A  /  2 )  <_ 
1 )
69 0xr 9636 . . . . . . . . . . . . . . 15  |-  0  e.  RR*
70 elioc2 11583 . . . . . . . . . . . . . . 15  |-  ( ( 0  e.  RR*  /\  1  e.  RR )  ->  (
( A  /  2
)  e.  ( 0 (,] 1 )  <->  ( ( A  /  2 )  e.  RR  /\  0  < 
( A  /  2
)  /\  ( A  /  2 )  <_ 
1 ) ) )
7169, 4, 70mp2an 672 . . . . . . . . . . . . . 14  |-  ( ( A  /  2 )  e.  ( 0 (,] 1 )  <->  ( ( A  /  2 )  e.  RR  /\  0  < 
( A  /  2
)  /\  ( A  /  2 )  <_ 
1 ) )
726, 48, 68, 71syl3anbrc 1180 . . . . . . . . . . . . 13  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  ( A  /  2 )  e.  ( 0 (,] 1
) )
73 cos01bnd 13778 . . . . . . . . . . . . 13  |-  ( ( A  /  2 )  e.  ( 0 (,] 1 )  ->  (
( 1  -  (
2  x.  ( ( ( A  /  2
) ^ 2 )  /  3 ) ) )  <  ( cos `  ( A  /  2
) )  /\  ( cos `  ( A  / 
2 ) )  < 
( 1  -  (
( ( A  / 
2 ) ^ 2 )  /  3 ) ) ) )
7472, 73syl 16 . . . . . . . . . . . 12  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( 1  -  (
2  x.  ( ( ( A  /  2
) ^ 2 )  /  3 ) ) )  <  ( cos `  ( A  /  2
) )  /\  ( cos `  ( A  / 
2 ) )  < 
( 1  -  (
( ( A  / 
2 ) ^ 2 )  /  3 ) ) ) )
7574simprd 463 . . . . . . . . . . 11  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  ( cos `  ( A  / 
2 ) )  < 
( 1  -  (
( ( A  / 
2 ) ^ 2 )  /  3 ) ) )
76 cos01gt0 13783 . . . . . . . . . . . . . 14  |-  ( ( A  /  2 )  e.  ( 0 (,] 1 )  ->  0  <  ( cos `  ( A  /  2 ) ) )
7772, 76syl 16 . . . . . . . . . . . . 13  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  0  <  ( cos `  ( A  /  2 ) ) )
78 0re 9592 . . . . . . . . . . . . . 14  |-  0  e.  RR
79 ltle 9669 . . . . . . . . . . . . . 14  |-  ( ( 0  e.  RR  /\  ( cos `  ( A  /  2 ) )  e.  RR )  -> 
( 0  <  ( cos `  ( A  / 
2 ) )  -> 
0  <_  ( cos `  ( A  /  2
) ) ) )
8078, 38, 79sylancr 663 . . . . . . . . . . . . 13  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
0  <  ( cos `  ( A  /  2
) )  ->  0  <_  ( cos `  ( A  /  2 ) ) ) )
8177, 80mpd 15 . . . . . . . . . . . 12  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  0  <_  ( cos `  ( A  /  2 ) ) )
8278a1i 11 . . . . . . . . . . . . 13  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  0  e.  RR )
8382, 38, 12, 77, 75lttrd 9738 . . . . . . . . . . . . 13  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  0  <  ( 1  -  (
( ( A  / 
2 ) ^ 2 )  /  3 ) ) )
8482, 12, 83ltled 9728 . . . . . . . . . . . 12  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  0  <_  ( 1  -  (
( ( A  / 
2 ) ^ 2 )  /  3 ) ) )
8538, 12, 81, 84lt2sqd 12308 . . . . . . . . . . 11  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( cos `  ( A  /  2 ) )  <  ( 1  -  ( ( ( A  /  2 ) ^
2 )  /  3
) )  <->  ( ( cos `  ( A  / 
2 ) ) ^
2 )  <  (
( 1  -  (
( ( A  / 
2 ) ^ 2 )  /  3 ) ) ^ 2 ) ) )
8675, 85mpbid 210 . . . . . . . . . 10  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( cos `  ( A  /  2 ) ) ^ 2 )  < 
( ( 1  -  ( ( ( A  /  2 ) ^
2 )  /  3
) ) ^ 2 ) )
87 ltmul2 10389 . . . . . . . . . . 11  |-  ( ( ( ( cos `  ( A  /  2 ) ) ^ 2 )  e.  RR  /\  ( ( 1  -  ( ( ( A  /  2
) ^ 2 )  /  3 ) ) ^ 2 )  e.  RR  /\  ( 2  e.  RR  /\  0  <  2 ) )  -> 
( ( ( cos `  ( A  /  2
) ) ^ 2 )  <  ( ( 1  -  ( ( ( A  /  2
) ^ 2 )  /  3 ) ) ^ 2 )  <->  ( 2  x.  ( ( cos `  ( A  /  2
) ) ^ 2 ) )  <  (
2  x.  ( ( 1  -  ( ( ( A  /  2
) ^ 2 )  /  3 ) ) ^ 2 ) ) ) )
8839, 21, 43, 47, 87syl112anc 1232 . . . . . . . . . 10  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( ( cos `  ( A  /  2 ) ) ^ 2 )  < 
( ( 1  -  ( ( ( A  /  2 ) ^
2 )  /  3
) ) ^ 2 )  <->  ( 2  x.  ( ( cos `  ( A  /  2 ) ) ^ 2 ) )  <  ( 2  x.  ( ( 1  -  ( ( ( A  /  2 ) ^
2 )  /  3
) ) ^ 2 ) ) ) )
8986, 88mpbid 210 . . . . . . . . 9  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
2  x.  ( ( cos `  ( A  /  2 ) ) ^ 2 ) )  <  ( 2  x.  ( ( 1  -  ( ( ( A  /  2 ) ^
2 )  /  3
) ) ^ 2 ) ) )
9041, 23, 42, 89ltsub1dd 10160 . . . . . . . 8  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( 2  x.  (
( cos `  ( A  /  2 ) ) ^ 2 ) )  -  1 )  < 
( ( 2  x.  ( ( 1  -  ( ( ( A  /  2 ) ^
2 )  /  3
) ) ^ 2 ) )  -  1 ) )
9137, 90eqbrtrd 4467 . . . . . . 7  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  ( cos `  A )  < 
( ( 2  x.  ( ( 1  -  ( ( ( A  /  2 ) ^
2 )  /  3
) ) ^ 2 ) )  -  1 ) )
92 3re 10605 . . . . . . . . . 10  |-  3  e.  RR
93 remulcl 9573 . . . . . . . . . 10  |-  ( ( 3  e.  RR  /\  ( ( ( A  /  2 ) ^
2 )  /  3
)  e.  RR )  ->  ( 3  x.  ( ( ( A  /  2 ) ^
2 )  /  3
) )  e.  RR )
9492, 10, 93sylancr 663 . . . . . . . . 9  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
3  x.  ( ( ( A  /  2
) ^ 2 )  /  3 ) )  e.  RR )
95 4re 10608 . . . . . . . . . 10  |-  4  e.  RR
96 remulcl 9573 . . . . . . . . . 10  |-  ( ( 4  e.  RR  /\  ( ( ( A  /  2 ) ^
2 )  /  3
)  e.  RR )  ->  ( 4  x.  ( ( ( A  /  2 ) ^
2 )  /  3
) )  e.  RR )
9795, 10, 96sylancr 663 . . . . . . . . 9  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
4  x.  ( ( ( A  /  2
) ^ 2 )  /  3 ) )  e.  RR )
9810resqcld 12300 . . . . . . . . . . 11  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( ( ( A  /  2 ) ^
2 )  /  3
) ^ 2 )  e.  RR )
99 remulcl 9573 . . . . . . . . . . 11  |-  ( ( 2  e.  RR  /\  ( ( ( ( A  /  2 ) ^ 2 )  / 
3 ) ^ 2 )  e.  RR )  ->  ( 2  x.  ( ( ( ( A  /  2 ) ^ 2 )  / 
3 ) ^ 2 ) )  e.  RR )
10014, 98, 99sylancr 663 . . . . . . . . . 10  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
2  x.  ( ( ( ( A  / 
2 ) ^ 2 )  /  3 ) ^ 2 ) )  e.  RR )
101 readdcl 9571 . . . . . . . . . 10  |-  ( ( 1  e.  RR  /\  ( 2  x.  (
( ( ( A  /  2 ) ^
2 )  /  3
) ^ 2 ) )  e.  RR )  ->  ( 1  +  ( 2  x.  (
( ( ( A  /  2 ) ^
2 )  /  3
) ^ 2 ) ) )  e.  RR )
1024, 100, 101sylancr 663 . . . . . . . . 9  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
1  +  ( 2  x.  ( ( ( ( A  /  2
) ^ 2 )  /  3 ) ^
2 ) ) )  e.  RR )
103 3lt4 10701 . . . . . . . . . 10  |-  3  <  4
10492a1i 11 . . . . . . . . . . 11  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  3  e.  RR )
10595a1i 11 . . . . . . . . . . 11  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  4  e.  RR )
10648gt0ne0d 10113 . . . . . . . . . . . . 13  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  ( A  /  2 )  =/=  0 )
1076, 106sqgt0d 12302 . . . . . . . . . . . 12  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  0  <  ( ( A  / 
2 ) ^ 2 ) )
108 3pos 10625 . . . . . . . . . . . . 13  |-  0  <  3
109108a1i 11 . . . . . . . . . . . 12  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  0  <  3 )
1107, 104, 107, 109divgt0d 10477 . . . . . . . . . . 11  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  0  <  ( ( ( A  /  2 ) ^
2 )  /  3
) )
111 ltmul1 10388 . . . . . . . . . . 11  |-  ( ( 3  e.  RR  /\  4  e.  RR  /\  (
( ( ( A  /  2 ) ^
2 )  /  3
)  e.  RR  /\  0  <  ( ( ( A  /  2 ) ^ 2 )  / 
3 ) ) )  ->  ( 3  <  4  <->  ( 3  x.  ( ( ( A  /  2 ) ^
2 )  /  3
) )  <  (
4  x.  ( ( ( A  /  2
) ^ 2 )  /  3 ) ) ) )
112104, 105, 10, 110, 111syl112anc 1232 . . . . . . . . . 10  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
3  <  4  <->  ( 3  x.  ( ( ( A  /  2 ) ^ 2 )  / 
3 ) )  < 
( 4  x.  (
( ( A  / 
2 ) ^ 2 )  /  3 ) ) ) )
113103, 112mpbii 211 . . . . . . . . 9  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
3  x.  ( ( ( A  /  2
) ^ 2 )  /  3 ) )  <  ( 4  x.  ( ( ( A  /  2 ) ^
2 )  /  3
) ) )
11494, 97, 102, 113ltsub2dd 10161 . . . . . . . 8  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( 1  +  ( 2  x.  ( ( ( ( A  / 
2 ) ^ 2 )  /  3 ) ^ 2 ) ) )  -  ( 4  x.  ( ( ( A  /  2 ) ^ 2 )  / 
3 ) ) )  <  ( ( 1  +  ( 2  x.  ( ( ( ( A  /  2 ) ^ 2 )  / 
3 ) ^ 2 ) ) )  -  ( 3  x.  (
( ( A  / 
2 ) ^ 2 )  /  3 ) ) ) )
115 sq1 12226 . . . . . . . . . . . . . . . 16  |-  ( 1 ^ 2 )  =  1
116115a1i 11 . . . . . . . . . . . . . . 15  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
1 ^ 2 )  =  1 )
11710recnd 9618 . . . . . . . . . . . . . . . . 17  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( ( A  / 
2 ) ^ 2 )  /  3 )  e.  CC )
118117mulid2d 9610 . . . . . . . . . . . . . . . 16  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
1  x.  ( ( ( A  /  2
) ^ 2 )  /  3 ) )  =  ( ( ( A  /  2 ) ^ 2 )  / 
3 ) )
119118oveq2d 6298 . . . . . . . . . . . . . . 15  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
2  x.  ( 1  x.  ( ( ( A  /  2 ) ^ 2 )  / 
3 ) ) )  =  ( 2  x.  ( ( ( A  /  2 ) ^
2 )  /  3
) ) )
120116, 119oveq12d 6300 . . . . . . . . . . . . . 14  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( 1 ^ 2 )  -  ( 2  x.  ( 1  x.  ( ( ( A  /  2 ) ^
2 )  /  3
) ) ) )  =  ( 1  -  ( 2  x.  (
( ( A  / 
2 ) ^ 2 )  /  3 ) ) ) )
121120oveq1d 6297 . . . . . . . . . . . . 13  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( ( 1 ^ 2 )  -  (
2  x.  ( 1  x.  ( ( ( A  /  2 ) ^ 2 )  / 
3 ) ) ) )  +  ( ( ( ( A  / 
2 ) ^ 2 )  /  3 ) ^ 2 ) )  =  ( ( 1  -  ( 2  x.  ( ( ( A  /  2 ) ^
2 )  /  3
) ) )  +  ( ( ( ( A  /  2 ) ^ 2 )  / 
3 ) ^ 2 ) ) )
122 ax-1cn 9546 . . . . . . . . . . . . . 14  |-  1  e.  CC
123 binom2sub 12249 . . . . . . . . . . . . . 14  |-  ( ( 1  e.  CC  /\  ( ( ( A  /  2 ) ^
2 )  /  3
)  e.  CC )  ->  ( ( 1  -  ( ( ( A  /  2 ) ^ 2 )  / 
3 ) ) ^
2 )  =  ( ( ( 1 ^ 2 )  -  (
2  x.  ( 1  x.  ( ( ( A  /  2 ) ^ 2 )  / 
3 ) ) ) )  +  ( ( ( ( A  / 
2 ) ^ 2 )  /  3 ) ^ 2 ) ) )
124122, 117, 123sylancr 663 . . . . . . . . . . . . 13  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( 1  -  (
( ( A  / 
2 ) ^ 2 )  /  3 ) ) ^ 2 )  =  ( ( ( 1 ^ 2 )  -  ( 2  x.  ( 1  x.  (
( ( A  / 
2 ) ^ 2 )  /  3 ) ) ) )  +  ( ( ( ( A  /  2 ) ^ 2 )  / 
3 ) ^ 2 ) ) )
12542recnd 9618 . . . . . . . . . . . . . 14  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  1  e.  CC )
12698recnd 9618 . . . . . . . . . . . . . 14  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( ( ( A  /  2 ) ^
2 )  /  3
) ^ 2 )  e.  CC )
12716recnd 9618 . . . . . . . . . . . . . 14  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
2  x.  ( ( ( A  /  2
) ^ 2 )  /  3 ) )  e.  CC )
128125, 126, 127addsubd 9947 . . . . . . . . . . . . 13  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( 1  +  ( ( ( ( A  /  2 ) ^
2 )  /  3
) ^ 2 ) )  -  ( 2  x.  ( ( ( A  /  2 ) ^ 2 )  / 
3 ) ) )  =  ( ( 1  -  ( 2  x.  ( ( ( A  /  2 ) ^
2 )  /  3
) ) )  +  ( ( ( ( A  /  2 ) ^ 2 )  / 
3 ) ^ 2 ) ) )
129121, 124, 1283eqtr4d 2518 . . . . . . . . . . . 12  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( 1  -  (
( ( A  / 
2 ) ^ 2 )  /  3 ) ) ^ 2 )  =  ( ( 1  +  ( ( ( ( A  /  2
) ^ 2 )  /  3 ) ^
2 ) )  -  ( 2  x.  (
( ( A  / 
2 ) ^ 2 )  /  3 ) ) ) )
130129oveq2d 6298 . . . . . . . . . . 11  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
2  x.  ( ( 1  -  ( ( ( A  /  2
) ^ 2 )  /  3 ) ) ^ 2 ) )  =  ( 2  x.  ( ( 1  +  ( ( ( ( A  /  2 ) ^ 2 )  / 
3 ) ^ 2 ) )  -  (
2  x.  ( ( ( A  /  2
) ^ 2 )  /  3 ) ) ) ) )
131 addcl 9570 . . . . . . . . . . . . 13  |-  ( ( 1  e.  CC  /\  ( ( ( ( A  /  2 ) ^ 2 )  / 
3 ) ^ 2 )  e.  CC )  ->  ( 1  +  ( ( ( ( A  /  2 ) ^ 2 )  / 
3 ) ^ 2 ) )  e.  CC )
132122, 126, 131sylancr 663 . . . . . . . . . . . 12  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
1  +  ( ( ( ( A  / 
2 ) ^ 2 )  /  3 ) ^ 2 ) )  e.  CC )
13329, 132, 127subdid 10008 . . . . . . . . . . 11  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
2  x.  ( ( 1  +  ( ( ( ( A  / 
2 ) ^ 2 )  /  3 ) ^ 2 ) )  -  ( 2  x.  ( ( ( A  /  2 ) ^
2 )  /  3
) ) ) )  =  ( ( 2  x.  ( 1  +  ( ( ( ( A  /  2 ) ^ 2 )  / 
3 ) ^ 2 ) ) )  -  ( 2  x.  (
2  x.  ( ( ( A  /  2
) ^ 2 )  /  3 ) ) ) ) )
13429, 125, 126adddid 9616 . . . . . . . . . . . . . 14  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
2  x.  ( 1  +  ( ( ( ( A  /  2
) ^ 2 )  /  3 ) ^
2 ) ) )  =  ( ( 2  x.  1 )  +  ( 2  x.  (
( ( ( A  /  2 ) ^
2 )  /  3
) ^ 2 ) ) ) )
1351222timesi 10652 . . . . . . . . . . . . . . . 16  |-  ( 2  x.  1 )  =  ( 1  +  1 )
136135oveq1i 6292 . . . . . . . . . . . . . . 15  |-  ( ( 2  x.  1 )  +  ( 2  x.  ( ( ( ( A  /  2 ) ^ 2 )  / 
3 ) ^ 2 ) ) )  =  ( ( 1  +  1 )  +  ( 2  x.  ( ( ( ( A  / 
2 ) ^ 2 )  /  3 ) ^ 2 ) ) )
137100recnd 9618 . . . . . . . . . . . . . . . 16  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
2  x.  ( ( ( ( A  / 
2 ) ^ 2 )  /  3 ) ^ 2 ) )  e.  CC )
138125, 125, 137addassd 9614 . . . . . . . . . . . . . . 15  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( 1  +  1 )  +  ( 2  x.  ( ( ( ( A  /  2
) ^ 2 )  /  3 ) ^
2 ) ) )  =  ( 1  +  ( 1  +  ( 2  x.  ( ( ( ( A  / 
2 ) ^ 2 )  /  3 ) ^ 2 ) ) ) ) )
139136, 138syl5eq 2520 . . . . . . . . . . . . . 14  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( 2  x.  1 )  +  ( 2  x.  ( ( ( ( A  /  2
) ^ 2 )  /  3 ) ^
2 ) ) )  =  ( 1  +  ( 1  +  ( 2  x.  ( ( ( ( A  / 
2 ) ^ 2 )  /  3 ) ^ 2 ) ) ) ) )
140134, 139eqtrd 2508 . . . . . . . . . . . . 13  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
2  x.  ( 1  +  ( ( ( ( A  /  2
) ^ 2 )  /  3 ) ^
2 ) ) )  =  ( 1  +  ( 1  +  ( 2  x.  ( ( ( ( A  / 
2 ) ^ 2 )  /  3 ) ^ 2 ) ) ) ) )
14155oveq1i 6292 . . . . . . . . . . . . . 14  |-  ( ( 2  x.  2 )  x.  ( ( ( A  /  2 ) ^ 2 )  / 
3 ) )  =  ( 4  x.  (
( ( A  / 
2 ) ^ 2 )  /  3 ) )
14229, 29, 117mulassd 9615 . . . . . . . . . . . . . 14  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( 2  x.  2 )  x.  ( ( ( A  /  2
) ^ 2 )  /  3 ) )  =  ( 2  x.  ( 2  x.  (
( ( A  / 
2 ) ^ 2 )  /  3 ) ) ) )
143141, 142syl5reqr 2523 . . . . . . . . . . . . 13  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
2  x.  ( 2  x.  ( ( ( A  /  2 ) ^ 2 )  / 
3 ) ) )  =  ( 4  x.  ( ( ( A  /  2 ) ^
2 )  /  3
) ) )
144140, 143oveq12d 6300 . . . . . . . . . . . 12  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( 2  x.  (
1  +  ( ( ( ( A  / 
2 ) ^ 2 )  /  3 ) ^ 2 ) ) )  -  ( 2  x.  ( 2  x.  ( ( ( A  /  2 ) ^
2 )  /  3
) ) ) )  =  ( ( 1  +  ( 1  +  ( 2  x.  (
( ( ( A  /  2 ) ^
2 )  /  3
) ^ 2 ) ) ) )  -  ( 4  x.  (
( ( A  / 
2 ) ^ 2 )  /  3 ) ) ) )
145 addcl 9570 . . . . . . . . . . . . . 14  |-  ( ( 1  e.  CC  /\  ( 2  x.  (
( ( ( A  /  2 ) ^
2 )  /  3
) ^ 2 ) )  e.  CC )  ->  ( 1  +  ( 2  x.  (
( ( ( A  /  2 ) ^
2 )  /  3
) ^ 2 ) ) )  e.  CC )
146122, 137, 145sylancr 663 . . . . . . . . . . . . 13  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
1  +  ( 2  x.  ( ( ( ( A  /  2
) ^ 2 )  /  3 ) ^
2 ) ) )  e.  CC )
14797recnd 9618 . . . . . . . . . . . . 13  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
4  x.  ( ( ( A  /  2
) ^ 2 )  /  3 ) )  e.  CC )
148125, 146, 147addsubassd 9946 . . . . . . . . . . . 12  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( 1  +  ( 1  +  ( 2  x.  ( ( ( ( A  /  2
) ^ 2 )  /  3 ) ^
2 ) ) ) )  -  ( 4  x.  ( ( ( A  /  2 ) ^ 2 )  / 
3 ) ) )  =  ( 1  +  ( ( 1  +  ( 2  x.  (
( ( ( A  /  2 ) ^
2 )  /  3
) ^ 2 ) ) )  -  (
4  x.  ( ( ( A  /  2
) ^ 2 )  /  3 ) ) ) ) )
149144, 148eqtrd 2508 . . . . . . . . . . 11  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( 2  x.  (
1  +  ( ( ( ( A  / 
2 ) ^ 2 )  /  3 ) ^ 2 ) ) )  -  ( 2  x.  ( 2  x.  ( ( ( A  /  2 ) ^
2 )  /  3
) ) ) )  =  ( 1  +  ( ( 1  +  ( 2  x.  (
( ( ( A  /  2 ) ^
2 )  /  3
) ^ 2 ) ) )  -  (
4  x.  ( ( ( A  /  2
) ^ 2 )  /  3 ) ) ) ) )
150130, 133, 1493eqtrd 2512 . . . . . . . . . 10  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
2  x.  ( ( 1  -  ( ( ( A  /  2
) ^ 2 )  /  3 ) ) ^ 2 ) )  =  ( 1  +  ( ( 1  +  ( 2  x.  (
( ( ( A  /  2 ) ^
2 )  /  3
) ^ 2 ) ) )  -  (
4  x.  ( ( ( A  /  2
) ^ 2 )  /  3 ) ) ) ) )
151150oveq1d 6297 . . . . . . . . 9  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( 2  x.  (
( 1  -  (
( ( A  / 
2 ) ^ 2 )  /  3 ) ) ^ 2 ) )  -  1 )  =  ( ( 1  +  ( ( 1  +  ( 2  x.  ( ( ( ( A  /  2 ) ^ 2 )  / 
3 ) ^ 2 ) ) )  -  ( 4  x.  (
( ( A  / 
2 ) ^ 2 )  /  3 ) ) ) )  - 
1 ) )
152146, 147subcld 9926 . . . . . . . . . 10  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( 1  +  ( 2  x.  ( ( ( ( A  / 
2 ) ^ 2 )  /  3 ) ^ 2 ) ) )  -  ( 4  x.  ( ( ( A  /  2 ) ^ 2 )  / 
3 ) ) )  e.  CC )
153 pncan2 9823 . . . . . . . . . 10  |-  ( ( 1  e.  CC  /\  ( ( 1  +  ( 2  x.  (
( ( ( A  /  2 ) ^
2 )  /  3
) ^ 2 ) ) )  -  (
4  x.  ( ( ( A  /  2
) ^ 2 )  /  3 ) ) )  e.  CC )  ->  ( ( 1  +  ( ( 1  +  ( 2  x.  ( ( ( ( A  /  2 ) ^ 2 )  / 
3 ) ^ 2 ) ) )  -  ( 4  x.  (
( ( A  / 
2 ) ^ 2 )  /  3 ) ) ) )  - 
1 )  =  ( ( 1  +  ( 2  x.  ( ( ( ( A  / 
2 ) ^ 2 )  /  3 ) ^ 2 ) ) )  -  ( 4  x.  ( ( ( A  /  2 ) ^ 2 )  / 
3 ) ) ) )
154122, 152, 153sylancr 663 . . . . . . . . 9  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( 1  +  ( ( 1  +  ( 2  x.  ( ( ( ( A  / 
2 ) ^ 2 )  /  3 ) ^ 2 ) ) )  -  ( 4  x.  ( ( ( A  /  2 ) ^ 2 )  / 
3 ) ) ) )  -  1 )  =  ( ( 1  +  ( 2  x.  ( ( ( ( A  /  2 ) ^ 2 )  / 
3 ) ^ 2 ) ) )  -  ( 4  x.  (
( ( A  / 
2 ) ^ 2 )  /  3 ) ) ) )
155151, 154eqtrd 2508 . . . . . . . 8  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( 2  x.  (
( 1  -  (
( ( A  / 
2 ) ^ 2 )  /  3 ) ) ^ 2 ) )  -  1 )  =  ( ( 1  +  ( 2  x.  ( ( ( ( A  /  2 ) ^ 2 )  / 
3 ) ^ 2 ) ) )  -  ( 4  x.  (
( ( A  / 
2 ) ^ 2 )  /  3 ) ) ) )
156 subcl 9815 . . . . . . . . . . 11  |-  ( ( 1  e.  CC  /\  ( ( ( A  /  2 ) ^
2 )  /  3
)  e.  CC )  ->  ( 1  -  ( ( ( A  /  2 ) ^
2 )  /  3
) )  e.  CC )
157122, 117, 156sylancr 663 . . . . . . . . . 10  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
1  -  ( ( ( A  /  2
) ^ 2 )  /  3 ) )  e.  CC )
158157, 125, 127subdid 10008 . . . . . . . . 9  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( 1  -  (
( ( A  / 
2 ) ^ 2 )  /  3 ) )  x.  ( 1  -  ( 2  x.  ( ( ( A  /  2 ) ^
2 )  /  3
) ) ) )  =  ( ( ( 1  -  ( ( ( A  /  2
) ^ 2 )  /  3 ) )  x.  1 )  -  ( ( 1  -  ( ( ( A  /  2 ) ^
2 )  /  3
) )  x.  (
2  x.  ( ( ( A  /  2
) ^ 2 )  /  3 ) ) ) ) )
159157mulid1d 9609 . . . . . . . . . 10  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( 1  -  (
( ( A  / 
2 ) ^ 2 )  /  3 ) )  x.  1 )  =  ( 1  -  ( ( ( A  /  2 ) ^
2 )  /  3
) ) )
160125, 117, 127subdird 10009 . . . . . . . . . . 11  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( 1  -  (
( ( A  / 
2 ) ^ 2 )  /  3 ) )  x.  ( 2  x.  ( ( ( A  /  2 ) ^ 2 )  / 
3 ) ) )  =  ( ( 1  x.  ( 2  x.  ( ( ( A  /  2 ) ^
2 )  /  3
) ) )  -  ( ( ( ( A  /  2 ) ^ 2 )  / 
3 )  x.  (
2  x.  ( ( ( A  /  2
) ^ 2 )  /  3 ) ) ) ) )
161127mulid2d 9610 . . . . . . . . . . . 12  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
1  x.  ( 2  x.  ( ( ( A  /  2 ) ^ 2 )  / 
3 ) ) )  =  ( 2  x.  ( ( ( A  /  2 ) ^
2 )  /  3
) ) )
162117, 29, 117mul12d 9784 . . . . . . . . . . . . 13  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( ( ( A  /  2 ) ^
2 )  /  3
)  x.  ( 2  x.  ( ( ( A  /  2 ) ^ 2 )  / 
3 ) ) )  =  ( 2  x.  ( ( ( ( A  /  2 ) ^ 2 )  / 
3 )  x.  (
( ( A  / 
2 ) ^ 2 )  /  3 ) ) ) )
163117sqvald 12271 . . . . . . . . . . . . . 14  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( ( ( A  /  2 ) ^
2 )  /  3
) ^ 2 )  =  ( ( ( ( A  /  2
) ^ 2 )  /  3 )  x.  ( ( ( A  /  2 ) ^
2 )  /  3
) ) )
164163oveq2d 6298 . . . . . . . . . . . . 13  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
2  x.  ( ( ( ( A  / 
2 ) ^ 2 )  /  3 ) ^ 2 ) )  =  ( 2  x.  ( ( ( ( A  /  2 ) ^ 2 )  / 
3 )  x.  (
( ( A  / 
2 ) ^ 2 )  /  3 ) ) ) )
165162, 164eqtr4d 2511 . . . . . . . . . . . 12  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( ( ( A  /  2 ) ^
2 )  /  3
)  x.  ( 2  x.  ( ( ( A  /  2 ) ^ 2 )  / 
3 ) ) )  =  ( 2  x.  ( ( ( ( A  /  2 ) ^ 2 )  / 
3 ) ^ 2 ) ) )
166161, 165oveq12d 6300 . . . . . . . . . . 11  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( 1  x.  (
2  x.  ( ( ( A  /  2
) ^ 2 )  /  3 ) ) )  -  ( ( ( ( A  / 
2 ) ^ 2 )  /  3 )  x.  ( 2  x.  ( ( ( A  /  2 ) ^
2 )  /  3
) ) ) )  =  ( ( 2  x.  ( ( ( A  /  2 ) ^ 2 )  / 
3 ) )  -  ( 2  x.  (
( ( ( A  /  2 ) ^
2 )  /  3
) ^ 2 ) ) ) )
167160, 166eqtrd 2508 . . . . . . . . . 10  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( 1  -  (
( ( A  / 
2 ) ^ 2 )  /  3 ) )  x.  ( 2  x.  ( ( ( A  /  2 ) ^ 2 )  / 
3 ) ) )  =  ( ( 2  x.  ( ( ( A  /  2 ) ^ 2 )  / 
3 ) )  -  ( 2  x.  (
( ( ( A  /  2 ) ^
2 )  /  3
) ^ 2 ) ) ) )
168159, 167oveq12d 6300 . . . . . . . . 9  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( ( 1  -  ( ( ( A  /  2 ) ^
2 )  /  3
) )  x.  1 )  -  ( ( 1  -  ( ( ( A  /  2
) ^ 2 )  /  3 ) )  x.  ( 2  x.  ( ( ( A  /  2 ) ^
2 )  /  3
) ) ) )  =  ( ( 1  -  ( ( ( A  /  2 ) ^ 2 )  / 
3 ) )  -  ( ( 2  x.  ( ( ( A  /  2 ) ^
2 )  /  3
) )  -  (
2  x.  ( ( ( ( A  / 
2 ) ^ 2 )  /  3 ) ^ 2 ) ) ) ) )
169125, 117, 127, 137subadd4d 9974 . . . . . . . . . 10  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( 1  -  (
( ( A  / 
2 ) ^ 2 )  /  3 ) )  -  ( ( 2  x.  ( ( ( A  /  2
) ^ 2 )  /  3 ) )  -  ( 2  x.  ( ( ( ( A  /  2 ) ^ 2 )  / 
3 ) ^ 2 ) ) ) )  =  ( ( 1  +  ( 2  x.  ( ( ( ( A  /  2 ) ^ 2 )  / 
3 ) ^ 2 ) ) )  -  ( ( ( ( A  /  2 ) ^ 2 )  / 
3 )  +  ( 2  x.  ( ( ( A  /  2
) ^ 2 )  /  3 ) ) ) ) )
170 df-3 10591 . . . . . . . . . . . . . 14  |-  3  =  ( 2  +  1 )
17128, 122addcomi 9766 . . . . . . . . . . . . . 14  |-  ( 2  +  1 )  =  ( 1  +  2 )
172170, 171eqtri 2496 . . . . . . . . . . . . 13  |-  3  =  ( 1  +  2 )
173172oveq1i 6292 . . . . . . . . . . . 12  |-  ( 3  x.  ( ( ( A  /  2 ) ^ 2 )  / 
3 ) )  =  ( ( 1  +  2 )  x.  (
( ( A  / 
2 ) ^ 2 )  /  3 ) )
174125, 29, 117adddird 9617 . . . . . . . . . . . . 13  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( 1  +  2 )  x.  ( ( ( A  /  2
) ^ 2 )  /  3 ) )  =  ( ( 1  x.  ( ( ( A  /  2 ) ^ 2 )  / 
3 ) )  +  ( 2  x.  (
( ( A  / 
2 ) ^ 2 )  /  3 ) ) ) )
175118oveq1d 6297 . . . . . . . . . . . . 13  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( 1  x.  (
( ( A  / 
2 ) ^ 2 )  /  3 ) )  +  ( 2  x.  ( ( ( A  /  2 ) ^ 2 )  / 
3 ) ) )  =  ( ( ( ( A  /  2
) ^ 2 )  /  3 )  +  ( 2  x.  (
( ( A  / 
2 ) ^ 2 )  /  3 ) ) ) )
176174, 175eqtrd 2508 . . . . . . . . . . . 12  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( 1  +  2 )  x.  ( ( ( A  /  2
) ^ 2 )  /  3 ) )  =  ( ( ( ( A  /  2
) ^ 2 )  /  3 )  +  ( 2  x.  (
( ( A  / 
2 ) ^ 2 )  /  3 ) ) ) )
177173, 176syl5eq 2520 . . . . . . . . . . 11  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
3  x.  ( ( ( A  /  2
) ^ 2 )  /  3 ) )  =  ( ( ( ( A  /  2
) ^ 2 )  /  3 )  +  ( 2  x.  (
( ( A  / 
2 ) ^ 2 )  /  3 ) ) ) )
178177oveq2d 6298 . . . . . . . . . 10  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( 1  +  ( 2  x.  ( ( ( ( A  / 
2 ) ^ 2 )  /  3 ) ^ 2 ) ) )  -  ( 3  x.  ( ( ( A  /  2 ) ^ 2 )  / 
3 ) ) )  =  ( ( 1  +  ( 2  x.  ( ( ( ( A  /  2 ) ^ 2 )  / 
3 ) ^ 2 ) ) )  -  ( ( ( ( A  /  2 ) ^ 2 )  / 
3 )  +  ( 2  x.  ( ( ( A  /  2
) ^ 2 )  /  3 ) ) ) ) )
179169, 178eqtr4d 2511 . . . . . . . . 9  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( 1  -  (
( ( A  / 
2 ) ^ 2 )  /  3 ) )  -  ( ( 2  x.  ( ( ( A  /  2
) ^ 2 )  /  3 ) )  -  ( 2  x.  ( ( ( ( A  /  2 ) ^ 2 )  / 
3 ) ^ 2 ) ) ) )  =  ( ( 1  +  ( 2  x.  ( ( ( ( A  /  2 ) ^ 2 )  / 
3 ) ^ 2 ) ) )  -  ( 3  x.  (
( ( A  / 
2 ) ^ 2 )  /  3 ) ) ) )
180158, 168, 1793eqtrd 2512 . . . . . . . 8  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( 1  -  (
( ( A  / 
2 ) ^ 2 )  /  3 ) )  x.  ( 1  -  ( 2  x.  ( ( ( A  /  2 ) ^
2 )  /  3
) ) ) )  =  ( ( 1  +  ( 2  x.  ( ( ( ( A  /  2 ) ^ 2 )  / 
3 ) ^ 2 ) ) )  -  ( 3  x.  (
( ( A  / 
2 ) ^ 2 )  /  3 ) ) ) )
181114, 155, 1803brtr4d 4477 . . . . . . 7  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( 2  x.  (
( 1  -  (
( ( A  / 
2 ) ^ 2 )  /  3 ) ) ^ 2 ) )  -  1 )  <  ( ( 1  -  ( ( ( A  /  2 ) ^ 2 )  / 
3 ) )  x.  ( 1  -  (
2  x.  ( ( ( A  /  2
) ^ 2 )  /  3 ) ) ) ) )
1822, 25, 26, 91, 181lttrd 9738 . . . . . 6  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  ( cos `  A )  < 
( ( 1  -  ( ( ( A  /  2 ) ^
2 )  /  3
) )  x.  (
1  -  ( 2  x.  ( ( ( A  /  2 ) ^ 2 )  / 
3 ) ) ) ) )
183 ltmul2 10389 . . . . . . 7  |-  ( ( ( cos `  A
)  e.  RR  /\  ( ( 1  -  ( ( ( A  /  2 ) ^
2 )  /  3
) )  x.  (
1  -  ( 2  x.  ( ( ( A  /  2 ) ^ 2 )  / 
3 ) ) ) )  e.  RR  /\  ( A  e.  RR  /\  0  <  A ) )  ->  ( ( cos `  A )  < 
( ( 1  -  ( ( ( A  /  2 ) ^
2 )  /  3
) )  x.  (
1  -  ( 2  x.  ( ( ( A  /  2 ) ^ 2 )  / 
3 ) ) ) )  <->  ( A  x.  ( cos `  A ) )  <  ( A  x.  ( ( 1  -  ( ( ( A  /  2 ) ^ 2 )  / 
3 ) )  x.  ( 1  -  (
2  x.  ( ( ( A  /  2
) ^ 2 )  /  3 ) ) ) ) ) ) )
1842, 26, 1, 45, 183syl112anc 1232 . . . . . 6  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( cos `  A
)  <  ( (
1  -  ( ( ( A  /  2
) ^ 2 )  /  3 ) )  x.  ( 1  -  ( 2  x.  (
( ( A  / 
2 ) ^ 2 )  /  3 ) ) ) )  <->  ( A  x.  ( cos `  A
) )  <  ( A  x.  ( (
1  -  ( ( ( A  /  2
) ^ 2 )  /  3 ) )  x.  ( 1  -  ( 2  x.  (
( ( A  / 
2 ) ^ 2 )  /  3 ) ) ) ) ) ) )
185182, 184mpbid 210 . . . . 5  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  ( A  x.  ( cos `  A ) )  < 
( A  x.  (
( 1  -  (
( ( A  / 
2 ) ^ 2 )  /  3 ) )  x.  ( 1  -  ( 2  x.  ( ( ( A  /  2 ) ^
2 )  /  3
) ) ) ) ) )
18618recnd 9618 . . . . . 6  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
1  -  ( 2  x.  ( ( ( A  /  2 ) ^ 2 )  / 
3 ) ) )  e.  CC )
18727, 157, 186mulassd 9615 . . . . 5  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( A  x.  (
1  -  ( ( ( A  /  2
) ^ 2 )  /  3 ) ) )  x.  ( 1  -  ( 2  x.  ( ( ( A  /  2 ) ^
2 )  /  3
) ) ) )  =  ( A  x.  ( ( 1  -  ( ( ( A  /  2 ) ^
2 )  /  3
) )  x.  (
1  -  ( 2  x.  ( ( ( A  /  2 ) ^ 2 )  / 
3 ) ) ) ) ) )
188185, 187breqtrrd 4473 . . . 4  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  ( A  x.  ( cos `  A ) )  < 
( ( A  x.  ( 1  -  (
( ( A  / 
2 ) ^ 2 )  /  3 ) ) )  x.  (
1  -  ( 2  x.  ( ( ( A  /  2 ) ^ 2 )  / 
3 ) ) ) ) )
18913, 38remulcld 9620 . . . . 5  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( A  x.  (
1  -  ( ( ( A  /  2
) ^ 2 )  /  3 ) ) )  x.  ( cos `  ( A  /  2
) ) )  e.  RR )
19074simpld 459 . . . . . 6  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
1  -  ( 2  x.  ( ( ( A  /  2 ) ^ 2 )  / 
3 ) ) )  <  ( cos `  ( A  /  2 ) ) )
1911, 12, 45, 83mulgt0d 9732 . . . . . . 7  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  0  <  ( A  x.  (
1  -  ( ( ( A  /  2
) ^ 2 )  /  3 ) ) ) )
192 ltmul2 10389 . . . . . . 7  |-  ( ( ( 1  -  (
2  x.  ( ( ( A  /  2
) ^ 2 )  /  3 ) ) )  e.  RR  /\  ( cos `  ( A  /  2 ) )  e.  RR  /\  (
( A  x.  (
1  -  ( ( ( A  /  2
) ^ 2 )  /  3 ) ) )  e.  RR  /\  0  <  ( A  x.  ( 1  -  (
( ( A  / 
2 ) ^ 2 )  /  3 ) ) ) ) )  ->  ( ( 1  -  ( 2  x.  ( ( ( A  /  2 ) ^
2 )  /  3
) ) )  < 
( cos `  ( A  /  2 ) )  <-> 
( ( A  x.  ( 1  -  (
( ( A  / 
2 ) ^ 2 )  /  3 ) ) )  x.  (
1  -  ( 2  x.  ( ( ( A  /  2 ) ^ 2 )  / 
3 ) ) ) )  <  ( ( A  x.  ( 1  -  ( ( ( A  /  2 ) ^ 2 )  / 
3 ) ) )  x.  ( cos `  ( A  /  2 ) ) ) ) )
19318, 38, 13, 191, 192syl112anc 1232 . . . . . 6  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( 1  -  (
2  x.  ( ( ( A  /  2
) ^ 2 )  /  3 ) ) )  <  ( cos `  ( A  /  2
) )  <->  ( ( A  x.  ( 1  -  ( ( ( A  /  2 ) ^ 2 )  / 
3 ) ) )  x.  ( 1  -  ( 2  x.  (
( ( A  / 
2 ) ^ 2 )  /  3 ) ) ) )  < 
( ( A  x.  ( 1  -  (
( ( A  / 
2 ) ^ 2 )  /  3 ) ) )  x.  ( cos `  ( A  / 
2 ) ) ) ) )
194190, 193mpbid 210 . . . . 5  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( A  x.  (
1  -  ( ( ( A  /  2
) ^ 2 )  /  3 ) ) )  x.  ( 1  -  ( 2  x.  ( ( ( A  /  2 ) ^
2 )  /  3
) ) ) )  <  ( ( A  x.  ( 1  -  ( ( ( A  /  2 ) ^
2 )  /  3
) ) )  x.  ( cos `  ( A  /  2 ) ) ) )
19529, 34, 157mulassd 9615 . . . . . . . . 9  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( 2  x.  ( A  /  2 ) )  x.  ( 1  -  ( ( ( A  /  2 ) ^
2 )  /  3
) ) )  =  ( 2  x.  (
( A  /  2
)  x.  ( 1  -  ( ( ( A  /  2 ) ^ 2 )  / 
3 ) ) ) ) )
19632oveq1d 6297 . . . . . . . . 9  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( 2  x.  ( A  /  2 ) )  x.  ( 1  -  ( ( ( A  /  2 ) ^
2 )  /  3
) ) )  =  ( A  x.  (
1  -  ( ( ( A  /  2
) ^ 2 )  /  3 ) ) ) )
19734, 125, 117subdid 10008 . . . . . . . . . . 11  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( A  /  2
)  x.  ( 1  -  ( ( ( A  /  2 ) ^ 2 )  / 
3 ) ) )  =  ( ( ( A  /  2 )  x.  1 )  -  ( ( A  / 
2 )  x.  (
( ( A  / 
2 ) ^ 2 )  /  3 ) ) ) )
19834mulid1d 9609 . . . . . . . . . . . 12  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( A  /  2
)  x.  1 )  =  ( A  / 
2 ) )
199170oveq2i 6293 . . . . . . . . . . . . . . . 16  |-  ( ( A  /  2 ) ^ 3 )  =  ( ( A  / 
2 ) ^ (
2  +  1 ) )
200 2nn0 10808 . . . . . . . . . . . . . . . . 17  |-  2  e.  NN0
201 expp1 12137 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  /  2
)  e.  CC  /\  2  e.  NN0 )  -> 
( ( A  / 
2 ) ^ (
2  +  1 ) )  =  ( ( ( A  /  2
) ^ 2 )  x.  ( A  / 
2 ) ) )
20234, 200, 201sylancl 662 . . . . . . . . . . . . . . . 16  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( A  /  2
) ^ ( 2  +  1 ) )  =  ( ( ( A  /  2 ) ^ 2 )  x.  ( A  /  2
) ) )
203199, 202syl5eq 2520 . . . . . . . . . . . . . . 15  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( A  /  2
) ^ 3 )  =  ( ( ( A  /  2 ) ^ 2 )  x.  ( A  /  2
) ) )
2047recnd 9618 . . . . . . . . . . . . . . . 16  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( A  /  2
) ^ 2 )  e.  CC )
205204, 34mulcomd 9613 . . . . . . . . . . . . . . 15  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( ( A  / 
2 ) ^ 2 )  x.  ( A  /  2 ) )  =  ( ( A  /  2 )  x.  ( ( A  / 
2 ) ^ 2 ) ) )
206203, 205eqtrd 2508 . . . . . . . . . . . . . 14  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( A  /  2
) ^ 3 )  =  ( ( A  /  2 )  x.  ( ( A  / 
2 ) ^ 2 ) ) )
207206oveq1d 6297 . . . . . . . . . . . . 13  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( ( A  / 
2 ) ^ 3 )  /  3 )  =  ( ( ( A  /  2 )  x.  ( ( A  /  2 ) ^
2 ) )  / 
3 ) )
208 3cn 10606 . . . . . . . . . . . . . . 15  |-  3  e.  CC
209208a1i 11 . . . . . . . . . . . . . 14  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  3  e.  CC )
210 3ne0 10626 . . . . . . . . . . . . . . 15  |-  3  =/=  0
211210a1i 11 . . . . . . . . . . . . . 14  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  3  =/=  0 )
21234, 204, 209, 211divassd 10351 . . . . . . . . . . . . 13  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( ( A  / 
2 )  x.  (
( A  /  2
) ^ 2 ) )  /  3 )  =  ( ( A  /  2 )  x.  ( ( ( A  /  2 ) ^
2 )  /  3
) ) )
213207, 212eqtr2d 2509 . . . . . . . . . . . 12  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( A  /  2
)  x.  ( ( ( A  /  2
) ^ 2 )  /  3 ) )  =  ( ( ( A  /  2 ) ^ 3 )  / 
3 ) )
214198, 213oveq12d 6300 . . . . . . . . . . 11  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( ( A  / 
2 )  x.  1 )  -  ( ( A  /  2 )  x.  ( ( ( A  /  2 ) ^ 2 )  / 
3 ) ) )  =  ( ( A  /  2 )  -  ( ( ( A  /  2 ) ^
3 )  /  3
) ) )
215197, 214eqtrd 2508 . . . . . . . . . 10  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( A  /  2
)  x.  ( 1  -  ( ( ( A  /  2 ) ^ 2 )  / 
3 ) ) )  =  ( ( A  /  2 )  -  ( ( ( A  /  2 ) ^
3 )  /  3
) ) )
216215oveq2d 6298 . . . . . . . . 9  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
2  x.  ( ( A  /  2 )  x.  ( 1  -  ( ( ( A  /  2 ) ^
2 )  /  3
) ) ) )  =  ( 2  x.  ( ( A  / 
2 )  -  (
( ( A  / 
2 ) ^ 3 )  /  3 ) ) ) )
217195, 196, 2163eqtr3d 2516 . . . . . . . 8  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  ( A  x.  ( 1  -  ( ( ( A  /  2 ) ^ 2 )  / 
3 ) ) )  =  ( 2  x.  ( ( A  / 
2 )  -  (
( ( A  / 
2 ) ^ 3 )  /  3 ) ) ) )
218 sin01bnd 13777 . . . . . . . . . . 11  |-  ( ( A  /  2 )  e.  ( 0 (,] 1 )  ->  (
( ( A  / 
2 )  -  (
( ( A  / 
2 ) ^ 3 )  /  3 ) )  <  ( sin `  ( A  /  2
) )  /\  ( sin `  ( A  / 
2 ) )  < 
( A  /  2
) ) )
21972, 218syl 16 . . . . . . . . . 10  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( ( A  / 
2 )  -  (
( ( A  / 
2 ) ^ 3 )  /  3 ) )  <  ( sin `  ( A  /  2
) )  /\  ( sin `  ( A  / 
2 ) )  < 
( A  /  2
) ) )
220219simpld 459 . . . . . . . . 9  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( A  /  2
)  -  ( ( ( A  /  2
) ^ 3 )  /  3 ) )  <  ( sin `  ( A  /  2 ) ) )
221 3nn0 10809 . . . . . . . . . . . . 13  |-  3  e.  NN0
222 reexpcl 12147 . . . . . . . . . . . . 13  |-  ( ( ( A  /  2
)  e.  RR  /\  3  e.  NN0 )  -> 
( ( A  / 
2 ) ^ 3 )  e.  RR )
2236, 221, 222sylancl 662 . . . . . . . . . . . 12  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( A  /  2
) ^ 3 )  e.  RR )
224 nndivre 10567 . . . . . . . . . . . 12  |-  ( ( ( ( A  / 
2 ) ^ 3 )  e.  RR  /\  3  e.  NN )  ->  ( ( ( A  /  2 ) ^
3 )  /  3
)  e.  RR )
225223, 8, 224sylancl 662 . . . . . . . . . . 11  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( ( A  / 
2 ) ^ 3 )  /  3 )  e.  RR )
2266, 225resubcld 9983 . . . . . . . . . 10  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( A  /  2
)  -  ( ( ( A  /  2
) ^ 3 )  /  3 ) )  e.  RR )
2276resincld 13735 . . . . . . . . . 10  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  ( sin `  ( A  / 
2 ) )  e.  RR )
228 ltmul2 10389 . . . . . . . . . 10  |-  ( ( ( ( A  / 
2 )  -  (
( ( A  / 
2 ) ^ 3 )  /  3 ) )  e.  RR  /\  ( sin `  ( A  /  2 ) )  e.  RR  /\  (
2  e.  RR  /\  0  <  2 ) )  ->  ( ( ( A  /  2 )  -  ( ( ( A  /  2 ) ^ 3 )  / 
3 ) )  < 
( sin `  ( A  /  2 ) )  <-> 
( 2  x.  (
( A  /  2
)  -  ( ( ( A  /  2
) ^ 3 )  /  3 ) ) )  <  ( 2  x.  ( sin `  ( A  /  2 ) ) ) ) )
229226, 227, 43, 47, 228syl112anc 1232 . . . . . . . . 9  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( ( A  / 
2 )  -  (
( ( A  / 
2 ) ^ 3 )  /  3 ) )  <  ( sin `  ( A  /  2
) )  <->  ( 2  x.  ( ( A  /  2 )  -  ( ( ( A  /  2 ) ^
3 )  /  3
) ) )  < 
( 2  x.  ( sin `  ( A  / 
2 ) ) ) ) )
230220, 229mpbid 210 . . . . . . . 8  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
2  x.  ( ( A  /  2 )  -  ( ( ( A  /  2 ) ^ 3 )  / 
3 ) ) )  <  ( 2  x.  ( sin `  ( A  /  2 ) ) ) )
231217, 230eqbrtrd 4467 . . . . . . 7  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  ( A  x.  ( 1  -  ( ( ( A  /  2 ) ^ 2 )  / 
3 ) ) )  <  ( 2  x.  ( sin `  ( A  /  2 ) ) ) )
232 remulcl 9573 . . . . . . . . 9  |-  ( ( 2  e.  RR  /\  ( sin `  ( A  /  2 ) )  e.  RR )  -> 
( 2  x.  ( sin `  ( A  / 
2 ) ) )  e.  RR )
23314, 227, 232sylancr 663 . . . . . . . 8  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
2  x.  ( sin `  ( A  /  2
) ) )  e.  RR )
234 ltmul1 10388 . . . . . . . 8  |-  ( ( ( A  x.  (
1  -  ( ( ( A  /  2
) ^ 2 )  /  3 ) ) )  e.  RR  /\  ( 2  x.  ( sin `  ( A  / 
2 ) ) )  e.  RR  /\  (
( cos `  ( A  /  2 ) )  e.  RR  /\  0  <  ( cos `  ( A  /  2 ) ) ) )  ->  (
( A  x.  (
1  -  ( ( ( A  /  2
) ^ 2 )  /  3 ) ) )  <  ( 2  x.  ( sin `  ( A  /  2 ) ) )  <->  ( ( A  x.  ( 1  -  ( ( ( A  /  2 ) ^
2 )  /  3
) ) )  x.  ( cos `  ( A  /  2 ) ) )  <  ( ( 2  x.  ( sin `  ( A  /  2
) ) )  x.  ( cos `  ( A  /  2 ) ) ) ) )
23513, 233, 38, 77, 234syl112anc 1232 . . . . . . 7  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( A  x.  (
1  -  ( ( ( A  /  2
) ^ 2 )  /  3 ) ) )  <  ( 2  x.  ( sin `  ( A  /  2 ) ) )  <->  ( ( A  x.  ( 1  -  ( ( ( A  /  2 ) ^
2 )  /  3
) ) )  x.  ( cos `  ( A  /  2 ) ) )  <  ( ( 2  x.  ( sin `  ( A  /  2
) ) )  x.  ( cos `  ( A  /  2 ) ) ) ) )
236231, 235mpbid 210 . . . . . 6  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( A  x.  (
1  -  ( ( ( A  /  2
) ^ 2 )  /  3 ) ) )  x.  ( cos `  ( A  /  2
) ) )  < 
( ( 2  x.  ( sin `  ( A  /  2 ) ) )  x.  ( cos `  ( A  /  2
) ) ) )
237227recnd 9618 . . . . . . . 8  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  ( sin `  ( A  / 
2 ) )  e.  CC )
23838recnd 9618 . . . . . . . 8  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  ( cos `  ( A  / 
2 ) )  e.  CC )
23929, 237, 238mulassd 9615 . . . . . . 7  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( 2  x.  ( sin `  ( A  / 
2 ) ) )  x.  ( cos `  ( A  /  2 ) ) )  =  ( 2  x.  ( ( sin `  ( A  /  2
) )  x.  ( cos `  ( A  / 
2 ) ) ) ) )
240 sin2t 13769 . . . . . . . 8  |-  ( ( A  /  2 )  e.  CC  ->  ( sin `  ( 2  x.  ( A  /  2
) ) )  =  ( 2  x.  (
( sin `  ( A  /  2 ) )  x.  ( cos `  ( A  /  2 ) ) ) ) )
24134, 240syl 16 . . . . . . 7  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  ( sin `  ( 2  x.  ( A  /  2
) ) )  =  ( 2  x.  (
( sin `  ( A  /  2 ) )  x.  ( cos `  ( A  /  2 ) ) ) ) )
24232fveq2d 5868 . . . . . . 7  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  ( sin `  ( 2  x.  ( A  /  2
) ) )  =  ( sin `  A
) )
243239, 241, 2423eqtr2rd 2515 . . . . . 6  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  ( sin `  A )  =  ( ( 2  x.  ( sin `  ( A  /  2 ) ) )  x.  ( cos `  ( A  /  2
) ) ) )
244236, 243breqtrrd 4473 . . . . 5  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( A  x.  (
1  -  ( ( ( A  /  2
) ^ 2 )  /  3 ) ) )  x.  ( cos `  ( A  /  2
) ) )  < 
( sin `  A
) )
24519, 189, 20, 194, 244lttrd 9738 . . . 4  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( A  x.  (
1  -  ( ( ( A  /  2
) ^ 2 )  /  3 ) ) )  x.  ( 1  -  ( 2  x.  ( ( ( A  /  2 ) ^
2 )  /  3
) ) ) )  <  ( sin `  A
) )
2463, 19, 20, 188, 245lttrd 9738 . . 3  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  ( A  x.  ( cos `  A ) )  < 
( sin `  A
) )
247 sincosq1sgn 22624 . . . . 5  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
0  <  ( sin `  A )  /\  0  <  ( cos `  A
) ) )
248247simprd 463 . . . 4  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  0  <  ( cos `  A
) )
249 ltmuldiv 10411 . . . 4  |-  ( ( A  e.  RR  /\  ( sin `  A )  e.  RR  /\  (
( cos `  A
)  e.  RR  /\  0  <  ( cos `  A
) ) )  -> 
( ( A  x.  ( cos `  A ) )  <  ( sin `  A )  <->  A  <  ( ( sin `  A
)  /  ( cos `  A ) ) ) )
2501, 20, 2, 248, 249syl112anc 1232 . . 3  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
( A  x.  ( cos `  A ) )  <  ( sin `  A
)  <->  A  <  ( ( sin `  A )  /  ( cos `  A
) ) ) )
251246, 250mpbid 210 . 2  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  A  <  ( ( sin `  A
)  /  ( cos `  A ) ) )
252248gt0ne0d 10113 . . 3  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  ( cos `  A )  =/=  0 )
253 tanval 13720 . . 3  |-  ( ( A  e.  CC  /\  ( cos `  A )  =/=  0 )  -> 
( tan `  A
)  =  ( ( sin `  A )  /  ( cos `  A
) ) )
25427, 252, 253syl2anc 661 . 2  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  ( tan `  A )  =  ( ( sin `  A
)  /  ( cos `  A ) ) )
255251, 254breqtrrd 4473 1  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  A  <  ( tan `  A
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 973    = wceq 1379    e. wcel 1767    =/= wne 2662   class class class wbr 4447   ` cfv 5586  (class class class)co 6282   CCcc 9486   RRcr 9487   0cc0 9488   1c1 9489    + caddc 9491    x. cmul 9493   RR*cxr 9623    < clt 9624    <_ cle 9625    - cmin 9801    / cdiv 10202   NNcn 10532   2c2 10581   3c3 10582   4c4 10583   NN0cn0 10791   (,)cioo 11525   (,]cioc 11526   ^cexp 12130   sincsin 13657   cosccos 13658   tanctan 13659   picpi 13660
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6574  ax-inf2 8054  ax-cnex 9544  ax-resscn 9545  ax-1cn 9546  ax-icn 9547  ax-addcl 9548  ax-addrcl 9549  ax-mulcl 9550  ax-mulrcl 9551  ax-mulcom 9552  ax-addass 9553  ax-mulass 9554  ax-distr 9555  ax-i2m1 9556  ax-1ne0 9557  ax-1rid 9558  ax-rnegex 9559  ax-rrecex 9560  ax-cnre 9561  ax-pre-lttri 9562  ax-pre-lttrn 9563  ax-pre-ltadd 9564  ax-pre-mulgt0 9565  ax-pre-sup 9566  ax-addf 9567  ax-mulf 9568
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-fal 1385  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-int 4283  df-iun 4327  df-iin 4328  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-se 4839  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5549  df-fun 5588  df-fn 5589  df-f 5590  df-f1 5591  df-fo 5592  df-f1o 5593  df-fv 5594  df-isom 5595  df-riota 6243  df-ov 6285  df-oprab 6286  df-mpt2 6287  df-of 6522  df-om 6679  df-1st 6781  df-2nd 6782  df-supp 6899  df-recs 7039  df-rdg 7073  df-1o 7127  df-2o 7128  df-oadd 7131  df-er 7308  df-map 7419  df-pm 7420  df-ixp 7467  df-en 7514  df-dom 7515  df-sdom 7516  df-fin 7517  df-fsupp 7826  df-fi 7867  df-sup 7897  df-oi 7931  df-card 8316  df-cda 8544  df-pnf 9626  df-mnf 9627  df-xr 9628  df-ltxr 9629  df-le 9630  df-sub 9803  df-neg 9804  df-div 10203  df-nn 10533  df-2 10590  df-3 10591  df-4 10592  df-5 10593  df-6 10594  df-7 10595  df-8 10596  df-9 10597  df-10 10598  df-n0 10792  df-z 10861  df-dec 10973  df-uz 11079  df-q 11179  df-rp 11217  df-xneg 11314  df-xadd 11315  df-xmul 11316  df-ioo 11529  df-ioc 11530  df-ico 11531  df-icc 11532  df-fz 11669  df-fzo 11789  df-fl 11893  df-seq 12072  df-exp 12131  df-fac 12318  df-bc 12345  df-hash 12370  df-shft 12859  df-cj 12891  df-re 12892  df-im 12893  df-sqrt 13027  df-abs 13028  df-limsup 13253  df-clim 13270  df-rlim 13271  df-sum 13468  df-ef 13661  df-sin 13663  df-cos 13664  df-tan 13665  df-pi 13666  df-struct 14488  df-ndx 14489  df-slot 14490  df-base 14491  df-sets 14492  df-ress 14493  df-plusg 14564  df-mulr 14565  df-starv 14566  df-sca 14567  df-vsca 14568  df-ip 14569  df-tset 14570  df-ple 14571  df-ds 14573  df-unif 14574  df-hom 14575  df-cco 14576  df-rest 14674  df-topn 14675  df-0g 14693  df-gsum 14694  df-topgen 14695  df-pt 14696  df-prds 14699  df-xrs 14753  df-qtop 14758  df-imas 14759  df-xps 14761  df-mre 14837  df-mrc 14838  df-acs 14840  df-mnd 15728  df-submnd 15778  df-mulg 15861  df-cntz 16150  df-cmn 16596  df-psmet 18182  df-xmet 18183  df-met 18184  df-bl 18185  df-mopn 18186  df-fbas 18187  df-fg 18188  df-cnfld 18192  df-top 19166  df-bases 19168  df-topon 19169  df-topsp 19170  df-cld 19286  df-ntr 19287  df-cls 19288  df-nei 19365  df-lp 19403  df-perf 19404  df-cn 19494  df-cnp 19495  df-haus 19582  df-tx 19798  df-hmeo 19991  df-fil 20082  df-fm 20174  df-flim 20175  df-flf 20176  df-xms 20558  df-ms 20559  df-tms 20560  df-cncf 21117  df-limc 22005  df-dv 22006
This theorem is referenced by:  tanabsge  22632  basellem8  23089
  Copyright terms: Public domain W3C validator