MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tanarg Structured version   Unicode version

Theorem tanarg 22090
Description: The basic relation between the "arg" function 
Im  o.  log and the arctangent. (Contributed by Mario Carneiro, 25-Feb-2015.)
Assertion
Ref Expression
tanarg  |-  ( ( A  e.  CC  /\  ( Re `  A )  =/=  0 )  -> 
( tan `  (
Im `  ( log `  A ) ) )  =  ( ( Im
`  A )  / 
( Re `  A
) ) )

Proof of Theorem tanarg
StepHypRef Expression
1 fveq2 5712 . . . . . . . 8  |-  ( A  =  0  ->  (
Re `  A )  =  ( Re ` 
0 ) )
2 re0 12662 . . . . . . . 8  |-  ( Re
`  0 )  =  0
31, 2syl6eq 2491 . . . . . . 7  |-  ( A  =  0  ->  (
Re `  A )  =  0 )
43necon3i 2674 . . . . . 6  |-  ( ( Re `  A )  =/=  0  ->  A  =/=  0 )
5 logcl 22042 . . . . . 6  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( log `  A
)  e.  CC )
64, 5sylan2 474 . . . . 5  |-  ( ( A  e.  CC  /\  ( Re `  A )  =/=  0 )  -> 
( log `  A
)  e.  CC )
76imcld 12705 . . . 4  |-  ( ( A  e.  CC  /\  ( Re `  A )  =/=  0 )  -> 
( Im `  ( log `  A ) )  e.  RR )
87recnd 9433 . . 3  |-  ( ( A  e.  CC  /\  ( Re `  A )  =/=  0 )  -> 
( Im `  ( log `  A ) )  e.  CC )
9 sqcl 11949 . . . . . . 7  |-  ( A  e.  CC  ->  ( A ^ 2 )  e.  CC )
109adantr 465 . . . . . 6  |-  ( ( A  e.  CC  /\  ( Re `  A )  =/=  0 )  -> 
( A ^ 2 )  e.  CC )
11 abscl 12788 . . . . . . . . 9  |-  ( A  e.  CC  ->  ( abs `  A )  e.  RR )
1211adantr 465 . . . . . . . 8  |-  ( ( A  e.  CC  /\  ( Re `  A )  =/=  0 )  -> 
( abs `  A
)  e.  RR )
1312recnd 9433 . . . . . . 7  |-  ( ( A  e.  CC  /\  ( Re `  A )  =/=  0 )  -> 
( abs `  A
)  e.  CC )
1413sqcld 12027 . . . . . 6  |-  ( ( A  e.  CC  /\  ( Re `  A )  =/=  0 )  -> 
( ( abs `  A
) ^ 2 )  e.  CC )
15 absrpcl 12798 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( abs `  A
)  e.  RR+ )
164, 15sylan2 474 . . . . . . . 8  |-  ( ( A  e.  CC  /\  ( Re `  A )  =/=  0 )  -> 
( abs `  A
)  e.  RR+ )
1716rpne0d 11053 . . . . . . 7  |-  ( ( A  e.  CC  /\  ( Re `  A )  =/=  0 )  -> 
( abs `  A
)  =/=  0 )
18 sqne0 11953 . . . . . . . 8  |-  ( ( abs `  A )  e.  CC  ->  (
( ( abs `  A
) ^ 2 )  =/=  0  <->  ( abs `  A )  =/=  0
) )
1913, 18syl 16 . . . . . . 7  |-  ( ( A  e.  CC  /\  ( Re `  A )  =/=  0 )  -> 
( ( ( abs `  A ) ^ 2 )  =/=  0  <->  ( abs `  A )  =/=  0 ) )
2017, 19mpbird 232 . . . . . 6  |-  ( ( A  e.  CC  /\  ( Re `  A )  =/=  0 )  -> 
( ( abs `  A
) ^ 2 )  =/=  0 )
2110, 14, 14, 20divdird 10166 . . . . 5  |-  ( ( A  e.  CC  /\  ( Re `  A )  =/=  0 )  -> 
( ( ( A ^ 2 )  +  ( ( abs `  A
) ^ 2 ) )  /  ( ( abs `  A ) ^ 2 ) )  =  ( ( ( A ^ 2 )  /  ( ( abs `  A ) ^ 2 ) )  +  ( ( ( abs `  A
) ^ 2 )  /  ( ( abs `  A ) ^ 2 ) ) ) )
22 ax-icn 9362 . . . . . . . . 9  |-  _i  e.  CC
23 mulcl 9387 . . . . . . . . 9  |-  ( ( _i  e.  CC  /\  ( Im `  ( log `  A ) )  e.  CC )  ->  (
_i  x.  ( Im `  ( log `  A
) ) )  e.  CC )
2422, 8, 23sylancr 663 . . . . . . . 8  |-  ( ( A  e.  CC  /\  ( Re `  A )  =/=  0 )  -> 
( _i  x.  (
Im `  ( log `  A ) ) )  e.  CC )
25 2z 10699 . . . . . . . 8  |-  2  e.  ZZ
26 efexp 13406 . . . . . . . 8  |-  ( ( ( _i  x.  (
Im `  ( log `  A ) ) )  e.  CC  /\  2  e.  ZZ )  ->  ( exp `  ( 2  x.  ( _i  x.  (
Im `  ( log `  A ) ) ) ) )  =  ( ( exp `  (
_i  x.  ( Im `  ( log `  A
) ) ) ) ^ 2 ) )
2724, 25, 26sylancl 662 . . . . . . 7  |-  ( ( A  e.  CC  /\  ( Re `  A )  =/=  0 )  -> 
( exp `  (
2  x.  ( _i  x.  ( Im `  ( log `  A ) ) ) ) )  =  ( ( exp `  ( _i  x.  (
Im `  ( log `  A ) ) ) ) ^ 2 ) )
28 efiarg 22078 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( exp `  (
_i  x.  ( Im `  ( log `  A
) ) ) )  =  ( A  / 
( abs `  A
) ) )
294, 28sylan2 474 . . . . . . . 8  |-  ( ( A  e.  CC  /\  ( Re `  A )  =/=  0 )  -> 
( exp `  (
_i  x.  ( Im `  ( log `  A
) ) ) )  =  ( A  / 
( abs `  A
) ) )
3029oveq1d 6127 . . . . . . 7  |-  ( ( A  e.  CC  /\  ( Re `  A )  =/=  0 )  -> 
( ( exp `  (
_i  x.  ( Im `  ( log `  A
) ) ) ) ^ 2 )  =  ( ( A  / 
( abs `  A
) ) ^ 2 ) )
31 simpl 457 . . . . . . . 8  |-  ( ( A  e.  CC  /\  ( Re `  A )  =/=  0 )  ->  A  e.  CC )
3231, 13, 17sqdivd 12042 . . . . . . 7  |-  ( ( A  e.  CC  /\  ( Re `  A )  =/=  0 )  -> 
( ( A  / 
( abs `  A
) ) ^ 2 )  =  ( ( A ^ 2 )  /  ( ( abs `  A ) ^ 2 ) ) )
3327, 30, 323eqtrrd 2480 . . . . . 6  |-  ( ( A  e.  CC  /\  ( Re `  A )  =/=  0 )  -> 
( ( A ^
2 )  /  (
( abs `  A
) ^ 2 ) )  =  ( exp `  ( 2  x.  (
_i  x.  ( Im `  ( log `  A
) ) ) ) ) )
3414, 20dividd 10126 . . . . . 6  |-  ( ( A  e.  CC  /\  ( Re `  A )  =/=  0 )  -> 
( ( ( abs `  A ) ^ 2 )  /  ( ( abs `  A ) ^ 2 ) )  =  1 )
3533, 34oveq12d 6130 . . . . 5  |-  ( ( A  e.  CC  /\  ( Re `  A )  =/=  0 )  -> 
( ( ( A ^ 2 )  / 
( ( abs `  A
) ^ 2 ) )  +  ( ( ( abs `  A
) ^ 2 )  /  ( ( abs `  A ) ^ 2 ) ) )  =  ( ( exp `  (
2  x.  ( _i  x.  ( Im `  ( log `  A ) ) ) ) )  +  1 ) )
3621, 35eqtr2d 2476 . . . 4  |-  ( ( A  e.  CC  /\  ( Re `  A )  =/=  0 )  -> 
( ( exp `  (
2  x.  ( _i  x.  ( Im `  ( log `  A ) ) ) ) )  +  1 )  =  ( ( ( A ^ 2 )  +  ( ( abs `  A
) ^ 2 ) )  /  ( ( abs `  A ) ^ 2 ) ) )
3710, 14addcld 9426 . . . . 5  |-  ( ( A  e.  CC  /\  ( Re `  A )  =/=  0 )  -> 
( ( A ^
2 )  +  ( ( abs `  A
) ^ 2 ) )  e.  CC )
3822a1i 11 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  ( Re `  A )  =/=  0 )  ->  _i  e.  CC )
39 2cn 10413 . . . . . . . . . . 11  |-  2  e.  CC
40 recl 12620 . . . . . . . . . . . . . 14  |-  ( A  e.  CC  ->  (
Re `  A )  e.  RR )
4140adantr 465 . . . . . . . . . . . . 13  |-  ( ( A  e.  CC  /\  ( Re `  A )  =/=  0 )  -> 
( Re `  A
)  e.  RR )
4241recnd 9433 . . . . . . . . . . . 12  |-  ( ( A  e.  CC  /\  ( Re `  A )  =/=  0 )  -> 
( Re `  A
)  e.  CC )
4342sqcld 12027 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  ( Re `  A )  =/=  0 )  -> 
( ( Re `  A ) ^ 2 )  e.  CC )
44 mulcl 9387 . . . . . . . . . . 11  |-  ( ( 2  e.  CC  /\  ( ( Re `  A ) ^ 2 )  e.  CC )  ->  ( 2  x.  ( ( Re `  A ) ^ 2 ) )  e.  CC )
4539, 43, 44sylancr 663 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  ( Re `  A )  =/=  0 )  -> 
( 2  x.  (
( Re `  A
) ^ 2 ) )  e.  CC )
4639a1i 11 . . . . . . . . . . . . 13  |-  ( ( A  e.  CC  /\  ( Re `  A )  =/=  0 )  -> 
2  e.  CC )
47 imcl 12621 . . . . . . . . . . . . . . . 16  |-  ( A  e.  CC  ->  (
Im `  A )  e.  RR )
4847adantr 465 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  CC  /\  ( Re `  A )  =/=  0 )  -> 
( Im `  A
)  e.  RR )
4948recnd 9433 . . . . . . . . . . . . . 14  |-  ( ( A  e.  CC  /\  ( Re `  A )  =/=  0 )  -> 
( Im `  A
)  e.  CC )
5042, 49mulcld 9427 . . . . . . . . . . . . 13  |-  ( ( A  e.  CC  /\  ( Re `  A )  =/=  0 )  -> 
( ( Re `  A )  x.  (
Im `  A )
)  e.  CC )
5138, 46, 50mul12d 9599 . . . . . . . . . . . 12  |-  ( ( A  e.  CC  /\  ( Re `  A )  =/=  0 )  -> 
( _i  x.  (
2  x.  ( ( Re `  A )  x.  ( Im `  A ) ) ) )  =  ( 2  x.  ( _i  x.  ( ( Re `  A )  x.  (
Im `  A )
) ) ) )
5238, 42, 49mul12d 9599 . . . . . . . . . . . . 13  |-  ( ( A  e.  CC  /\  ( Re `  A )  =/=  0 )  -> 
( _i  x.  (
( Re `  A
)  x.  ( Im
`  A ) ) )  =  ( ( Re `  A )  x.  ( _i  x.  ( Im `  A ) ) ) )
5352oveq2d 6128 . . . . . . . . . . . 12  |-  ( ( A  e.  CC  /\  ( Re `  A )  =/=  0 )  -> 
( 2  x.  (
_i  x.  ( (
Re `  A )  x.  ( Im `  A
) ) ) )  =  ( 2  x.  ( ( Re `  A )  x.  (
_i  x.  ( Im `  A ) ) ) ) )
5451, 53eqtrd 2475 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  ( Re `  A )  =/=  0 )  -> 
( _i  x.  (
2  x.  ( ( Re `  A )  x.  ( Im `  A ) ) ) )  =  ( 2  x.  ( ( Re
`  A )  x.  ( _i  x.  (
Im `  A )
) ) ) )
55 mulcl 9387 . . . . . . . . . . . . . 14  |-  ( ( _i  e.  CC  /\  ( Im `  A )  e.  CC )  -> 
( _i  x.  (
Im `  A )
)  e.  CC )
5622, 49, 55sylancr 663 . . . . . . . . . . . . 13  |-  ( ( A  e.  CC  /\  ( Re `  A )  =/=  0 )  -> 
( _i  x.  (
Im `  A )
)  e.  CC )
5742, 56mulcld 9427 . . . . . . . . . . . 12  |-  ( ( A  e.  CC  /\  ( Re `  A )  =/=  0 )  -> 
( ( Re `  A )  x.  (
_i  x.  ( Im `  A ) ) )  e.  CC )
58 mulcl 9387 . . . . . . . . . . . 12  |-  ( ( 2  e.  CC  /\  ( ( Re `  A )  x.  (
_i  x.  ( Im `  A ) ) )  e.  CC )  -> 
( 2  x.  (
( Re `  A
)  x.  ( _i  x.  ( Im `  A ) ) ) )  e.  CC )
5939, 57, 58sylancr 663 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  ( Re `  A )  =/=  0 )  -> 
( 2  x.  (
( Re `  A
)  x.  ( _i  x.  ( Im `  A ) ) ) )  e.  CC )
6054, 59eqeltrd 2517 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  ( Re `  A )  =/=  0 )  -> 
( _i  x.  (
2  x.  ( ( Re `  A )  x.  ( Im `  A ) ) ) )  e.  CC )
6138, 45, 60adddid 9431 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  ( Re `  A )  =/=  0 )  -> 
( _i  x.  (
( 2  x.  (
( Re `  A
) ^ 2 ) )  +  ( _i  x.  ( 2  x.  ( ( Re `  A )  x.  (
Im `  A )
) ) ) ) )  =  ( ( _i  x.  ( 2  x.  ( ( Re
`  A ) ^
2 ) ) )  +  ( _i  x.  ( _i  x.  (
2  x.  ( ( Re `  A )  x.  ( Im `  A ) ) ) ) ) ) )
62 mulcl 9387 . . . . . . . . . . . . 13  |-  ( ( ( Re `  A
)  e.  CC  /\  _i  e.  CC )  -> 
( ( Re `  A )  x.  _i )  e.  CC )
6342, 22, 62sylancl 662 . . . . . . . . . . . 12  |-  ( ( A  e.  CC  /\  ( Re `  A )  =/=  0 )  -> 
( ( Re `  A )  x.  _i )  e.  CC )
6446, 63, 42mulassd 9430 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  ( Re `  A )  =/=  0 )  -> 
( ( 2  x.  ( ( Re `  A )  x.  _i ) )  x.  (
Re `  A )
)  =  ( 2  x.  ( ( ( Re `  A )  x.  _i )  x.  ( Re `  A
) ) ) )
6542sqvald 12026 . . . . . . . . . . . . . 14  |-  ( ( A  e.  CC  /\  ( Re `  A )  =/=  0 )  -> 
( ( Re `  A ) ^ 2 )  =  ( ( Re `  A )  x.  ( Re `  A ) ) )
6665oveq1d 6127 . . . . . . . . . . . . 13  |-  ( ( A  e.  CC  /\  ( Re `  A )  =/=  0 )  -> 
( ( ( Re
`  A ) ^
2 )  x.  _i )  =  ( (
( Re `  A
)  x.  ( Re
`  A ) )  x.  _i ) )
67 mulcom 9389 . . . . . . . . . . . . . 14  |-  ( ( ( ( Re `  A ) ^ 2 )  e.  CC  /\  _i  e.  CC )  -> 
( ( ( Re
`  A ) ^
2 )  x.  _i )  =  ( _i  x.  ( ( Re `  A ) ^ 2 ) ) )
6843, 22, 67sylancl 662 . . . . . . . . . . . . 13  |-  ( ( A  e.  CC  /\  ( Re `  A )  =/=  0 )  -> 
( ( ( Re
`  A ) ^
2 )  x.  _i )  =  ( _i  x.  ( ( Re `  A ) ^ 2 ) ) )
6942, 42, 38mul32d 9600 . . . . . . . . . . . . 13  |-  ( ( A  e.  CC  /\  ( Re `  A )  =/=  0 )  -> 
( ( ( Re
`  A )  x.  ( Re `  A
) )  x.  _i )  =  ( (
( Re `  A
)  x.  _i )  x.  ( Re `  A ) ) )
7066, 68, 693eqtr3d 2483 . . . . . . . . . . . 12  |-  ( ( A  e.  CC  /\  ( Re `  A )  =/=  0 )  -> 
( _i  x.  (
( Re `  A
) ^ 2 ) )  =  ( ( ( Re `  A
)  x.  _i )  x.  ( Re `  A ) ) )
7170oveq2d 6128 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  ( Re `  A )  =/=  0 )  -> 
( 2  x.  (
_i  x.  ( (
Re `  A ) ^ 2 ) ) )  =  ( 2  x.  ( ( ( Re `  A )  x.  _i )  x.  ( Re `  A
) ) ) )
7246, 38, 43mul12d 9599 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  ( Re `  A )  =/=  0 )  -> 
( 2  x.  (
_i  x.  ( (
Re `  A ) ^ 2 ) ) )  =  ( _i  x.  ( 2  x.  ( ( Re `  A ) ^ 2 ) ) ) )
7364, 71, 723eqtr2d 2481 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  ( Re `  A )  =/=  0 )  -> 
( ( 2  x.  ( ( Re `  A )  x.  _i ) )  x.  (
Re `  A )
)  =  ( _i  x.  ( 2  x.  ( ( Re `  A ) ^ 2 ) ) ) )
74 ixi 9986 . . . . . . . . . . . . 13  |-  ( _i  x.  _i )  = 
-u 1
7574oveq1i 6122 . . . . . . . . . . . 12  |-  ( ( _i  x.  _i )  x.  ( ( 2  x.  ( Im `  A ) )  x.  ( Re `  A
) ) )  =  ( -u 1  x.  ( ( 2  x.  ( Im `  A
) )  x.  (
Re `  A )
) )
76 mulcl 9387 . . . . . . . . . . . . . . 15  |-  ( ( 2  e.  CC  /\  ( Im `  A )  e.  CC )  -> 
( 2  x.  (
Im `  A )
)  e.  CC )
7739, 49, 76sylancr 663 . . . . . . . . . . . . . 14  |-  ( ( A  e.  CC  /\  ( Re `  A )  =/=  0 )  -> 
( 2  x.  (
Im `  A )
)  e.  CC )
7877, 42mulcld 9427 . . . . . . . . . . . . 13  |-  ( ( A  e.  CC  /\  ( Re `  A )  =/=  0 )  -> 
( ( 2  x.  ( Im `  A
) )  x.  (
Re `  A )
)  e.  CC )
7938, 38, 78mulassd 9430 . . . . . . . . . . . 12  |-  ( ( A  e.  CC  /\  ( Re `  A )  =/=  0 )  -> 
( ( _i  x.  _i )  x.  (
( 2  x.  (
Im `  A )
)  x.  ( Re
`  A ) ) )  =  ( _i  x.  ( _i  x.  ( ( 2  x.  ( Im `  A
) )  x.  (
Re `  A )
) ) ) )
8075, 79syl5eqr 2489 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  ( Re `  A )  =/=  0 )  -> 
( -u 1  x.  (
( 2  x.  (
Im `  A )
)  x.  ( Re
`  A ) ) )  =  ( _i  x.  ( _i  x.  ( ( 2  x.  ( Im `  A
) )  x.  (
Re `  A )
) ) ) )
8178mulm1d 9817 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  ( Re `  A )  =/=  0 )  -> 
( -u 1  x.  (
( 2  x.  (
Im `  A )
)  x.  ( Re
`  A ) ) )  =  -u (
( 2  x.  (
Im `  A )
)  x.  ( Re
`  A ) ) )
8246, 49, 42mulassd 9430 . . . . . . . . . . . . . 14  |-  ( ( A  e.  CC  /\  ( Re `  A )  =/=  0 )  -> 
( ( 2  x.  ( Im `  A
) )  x.  (
Re `  A )
)  =  ( 2  x.  ( ( Im
`  A )  x.  ( Re `  A
) ) ) )
8349, 42mulcomd 9428 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  CC  /\  ( Re `  A )  =/=  0 )  -> 
( ( Im `  A )  x.  (
Re `  A )
)  =  ( ( Re `  A )  x.  ( Im `  A ) ) )
8483oveq2d 6128 . . . . . . . . . . . . . 14  |-  ( ( A  e.  CC  /\  ( Re `  A )  =/=  0 )  -> 
( 2  x.  (
( Im `  A
)  x.  ( Re
`  A ) ) )  =  ( 2  x.  ( ( Re
`  A )  x.  ( Im `  A
) ) ) )
8582, 84eqtrd 2475 . . . . . . . . . . . . 13  |-  ( ( A  e.  CC  /\  ( Re `  A )  =/=  0 )  -> 
( ( 2  x.  ( Im `  A
) )  x.  (
Re `  A )
)  =  ( 2  x.  ( ( Re
`  A )  x.  ( Im `  A
) ) ) )
8685oveq2d 6128 . . . . . . . . . . . 12  |-  ( ( A  e.  CC  /\  ( Re `  A )  =/=  0 )  -> 
( _i  x.  (
( 2  x.  (
Im `  A )
)  x.  ( Re
`  A ) ) )  =  ( _i  x.  ( 2  x.  ( ( Re `  A )  x.  (
Im `  A )
) ) ) )
8786oveq2d 6128 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  ( Re `  A )  =/=  0 )  -> 
( _i  x.  (
_i  x.  ( (
2  x.  ( Im
`  A ) )  x.  ( Re `  A ) ) ) )  =  ( _i  x.  ( _i  x.  ( 2  x.  (
( Re `  A
)  x.  ( Im
`  A ) ) ) ) ) )
8880, 81, 873eqtr3d 2483 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  ( Re `  A )  =/=  0 )  ->  -u ( ( 2  x.  ( Im `  A
) )  x.  (
Re `  A )
)  =  ( _i  x.  ( _i  x.  ( 2  x.  (
( Re `  A
)  x.  ( Im
`  A ) ) ) ) ) )
8973, 88oveq12d 6130 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  ( Re `  A )  =/=  0 )  -> 
( ( ( 2  x.  ( ( Re
`  A )  x.  _i ) )  x.  ( Re `  A
) )  +  -u ( ( 2  x.  ( Im `  A
) )  x.  (
Re `  A )
) )  =  ( ( _i  x.  (
2  x.  ( ( Re `  A ) ^ 2 ) ) )  +  ( _i  x.  ( _i  x.  ( 2  x.  (
( Re `  A
)  x.  ( Im
`  A ) ) ) ) ) ) )
90 mulcl 9387 . . . . . . . . . . . 12  |-  ( ( 2  e.  CC  /\  ( ( Re `  A )  x.  _i )  e.  CC )  ->  ( 2  x.  (
( Re `  A
)  x.  _i ) )  e.  CC )
9139, 63, 90sylancr 663 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  ( Re `  A )  =/=  0 )  -> 
( 2  x.  (
( Re `  A
)  x.  _i ) )  e.  CC )
9291, 42mulcld 9427 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  ( Re `  A )  =/=  0 )  -> 
( ( 2  x.  ( ( Re `  A )  x.  _i ) )  x.  (
Re `  A )
)  e.  CC )
9392, 78negsubd 9746 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  ( Re `  A )  =/=  0 )  -> 
( ( ( 2  x.  ( ( Re
`  A )  x.  _i ) )  x.  ( Re `  A
) )  +  -u ( ( 2  x.  ( Im `  A
) )  x.  (
Re `  A )
) )  =  ( ( ( 2  x.  ( ( Re `  A )  x.  _i ) )  x.  (
Re `  A )
)  -  ( ( 2  x.  ( Im
`  A ) )  x.  ( Re `  A ) ) ) )
9461, 89, 933eqtr2d 2481 . . . . . . . 8  |-  ( ( A  e.  CC  /\  ( Re `  A )  =/=  0 )  -> 
( _i  x.  (
( 2  x.  (
( Re `  A
) ^ 2 ) )  +  ( _i  x.  ( 2  x.  ( ( Re `  A )  x.  (
Im `  A )
) ) ) ) )  =  ( ( ( 2  x.  (
( Re `  A
)  x.  _i ) )  x.  ( Re
`  A ) )  -  ( ( 2  x.  ( Im `  A ) )  x.  ( Re `  A
) ) ) )
9549sqcld 12027 . . . . . . . . . . . 12  |-  ( ( A  e.  CC  /\  ( Re `  A )  =/=  0 )  -> 
( ( Im `  A ) ^ 2 )  e.  CC )
9659, 95subcld 9740 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  ( Re `  A )  =/=  0 )  -> 
( ( 2  x.  ( ( Re `  A )  x.  (
_i  x.  ( Im `  A ) ) ) )  -  ( ( Im `  A ) ^ 2 ) )  e.  CC )
9743, 96, 43, 95add4d 9614 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  ( Re `  A )  =/=  0 )  -> 
( ( ( ( Re `  A ) ^ 2 )  +  ( ( 2  x.  ( ( Re `  A )  x.  (
_i  x.  ( Im `  A ) ) ) )  -  ( ( Im `  A ) ^ 2 ) ) )  +  ( ( ( Re `  A
) ^ 2 )  +  ( ( Im
`  A ) ^
2 ) ) )  =  ( ( ( ( Re `  A
) ^ 2 )  +  ( ( Re
`  A ) ^
2 ) )  +  ( ( ( 2  x.  ( ( Re
`  A )  x.  ( _i  x.  (
Im `  A )
) ) )  -  ( ( Im `  A ) ^ 2 ) )  +  ( ( Im `  A
) ^ 2 ) ) ) )
98 replim 12626 . . . . . . . . . . . . . 14  |-  ( A  e.  CC  ->  A  =  ( ( Re
`  A )  +  ( _i  x.  (
Im `  A )
) ) )
9998adantr 465 . . . . . . . . . . . . 13  |-  ( ( A  e.  CC  /\  ( Re `  A )  =/=  0 )  ->  A  =  ( (
Re `  A )  +  ( _i  x.  ( Im `  A ) ) ) )
10099oveq1d 6127 . . . . . . . . . . . 12  |-  ( ( A  e.  CC  /\  ( Re `  A )  =/=  0 )  -> 
( A ^ 2 )  =  ( ( ( Re `  A
)  +  ( _i  x.  ( Im `  A ) ) ) ^ 2 ) )
101 binom2 12002 . . . . . . . . . . . . . 14  |-  ( ( ( Re `  A
)  e.  CC  /\  ( _i  x.  (
Im `  A )
)  e.  CC )  ->  ( ( ( Re `  A )  +  ( _i  x.  ( Im `  A ) ) ) ^ 2 )  =  ( ( ( ( Re `  A ) ^ 2 )  +  ( 2  x.  ( ( Re
`  A )  x.  ( _i  x.  (
Im `  A )
) ) ) )  +  ( ( _i  x.  ( Im `  A ) ) ^
2 ) ) )
10242, 56, 101syl2anc 661 . . . . . . . . . . . . 13  |-  ( ( A  e.  CC  /\  ( Re `  A )  =/=  0 )  -> 
( ( ( Re
`  A )  +  ( _i  x.  (
Im `  A )
) ) ^ 2 )  =  ( ( ( ( Re `  A ) ^ 2 )  +  ( 2  x.  ( ( Re
`  A )  x.  ( _i  x.  (
Im `  A )
) ) ) )  +  ( ( _i  x.  ( Im `  A ) ) ^
2 ) ) )
103 sqmul 11950 . . . . . . . . . . . . . . . . 17  |-  ( ( _i  e.  CC  /\  ( Im `  A )  e.  CC )  -> 
( ( _i  x.  ( Im `  A ) ) ^ 2 )  =  ( ( _i
^ 2 )  x.  ( ( Im `  A ) ^ 2 ) ) )
10422, 49, 103sylancr 663 . . . . . . . . . . . . . . . 16  |-  ( ( A  e.  CC  /\  ( Re `  A )  =/=  0 )  -> 
( ( _i  x.  ( Im `  A ) ) ^ 2 )  =  ( ( _i
^ 2 )  x.  ( ( Im `  A ) ^ 2 ) ) )
105 i2 11987 . . . . . . . . . . . . . . . . 17  |-  ( _i
^ 2 )  = 
-u 1
106105oveq1i 6122 . . . . . . . . . . . . . . . 16  |-  ( ( _i ^ 2 )  x.  ( ( Im
`  A ) ^
2 ) )  =  ( -u 1  x.  ( ( Im `  A ) ^ 2 ) )
107104, 106syl6eq 2491 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  CC  /\  ( Re `  A )  =/=  0 )  -> 
( ( _i  x.  ( Im `  A ) ) ^ 2 )  =  ( -u 1  x.  ( ( Im `  A ) ^ 2 ) ) )
10895mulm1d 9817 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  CC  /\  ( Re `  A )  =/=  0 )  -> 
( -u 1  x.  (
( Im `  A
) ^ 2 ) )  =  -u (
( Im `  A
) ^ 2 ) )
109107, 108eqtrd 2475 . . . . . . . . . . . . . 14  |-  ( ( A  e.  CC  /\  ( Re `  A )  =/=  0 )  -> 
( ( _i  x.  ( Im `  A ) ) ^ 2 )  =  -u ( ( Im
`  A ) ^
2 ) )
110109oveq2d 6128 . . . . . . . . . . . . 13  |-  ( ( A  e.  CC  /\  ( Re `  A )  =/=  0 )  -> 
( ( ( ( Re `  A ) ^ 2 )  +  ( 2  x.  (
( Re `  A
)  x.  ( _i  x.  ( Im `  A ) ) ) ) )  +  ( ( _i  x.  (
Im `  A )
) ^ 2 ) )  =  ( ( ( ( Re `  A ) ^ 2 )  +  ( 2  x.  ( ( Re
`  A )  x.  ( _i  x.  (
Im `  A )
) ) ) )  +  -u ( ( Im
`  A ) ^
2 ) ) )
11143, 59addcld 9426 . . . . . . . . . . . . . 14  |-  ( ( A  e.  CC  /\  ( Re `  A )  =/=  0 )  -> 
( ( ( Re
`  A ) ^
2 )  +  ( 2  x.  ( ( Re `  A )  x.  ( _i  x.  ( Im `  A ) ) ) ) )  e.  CC )
112111, 95negsubd 9746 . . . . . . . . . . . . 13  |-  ( ( A  e.  CC  /\  ( Re `  A )  =/=  0 )  -> 
( ( ( ( Re `  A ) ^ 2 )  +  ( 2  x.  (
( Re `  A
)  x.  ( _i  x.  ( Im `  A ) ) ) ) )  +  -u ( ( Im `  A ) ^ 2 ) )  =  ( ( ( ( Re
`  A ) ^
2 )  +  ( 2  x.  ( ( Re `  A )  x.  ( _i  x.  ( Im `  A ) ) ) ) )  -  ( ( Im
`  A ) ^
2 ) ) )
113102, 110, 1123eqtrd 2479 . . . . . . . . . . . 12  |-  ( ( A  e.  CC  /\  ( Re `  A )  =/=  0 )  -> 
( ( ( Re
`  A )  +  ( _i  x.  (
Im `  A )
) ) ^ 2 )  =  ( ( ( ( Re `  A ) ^ 2 )  +  ( 2  x.  ( ( Re
`  A )  x.  ( _i  x.  (
Im `  A )
) ) ) )  -  ( ( Im
`  A ) ^
2 ) ) )
11443, 59, 95addsubassd 9760 . . . . . . . . . . . 12  |-  ( ( A  e.  CC  /\  ( Re `  A )  =/=  0 )  -> 
( ( ( ( Re `  A ) ^ 2 )  +  ( 2  x.  (
( Re `  A
)  x.  ( _i  x.  ( Im `  A ) ) ) ) )  -  (
( Im `  A
) ^ 2 ) )  =  ( ( ( Re `  A
) ^ 2 )  +  ( ( 2  x.  ( ( Re
`  A )  x.  ( _i  x.  (
Im `  A )
) ) )  -  ( ( Im `  A ) ^ 2 ) ) ) )
115100, 113, 1143eqtrd 2479 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  ( Re `  A )  =/=  0 )  -> 
( A ^ 2 )  =  ( ( ( Re `  A
) ^ 2 )  +  ( ( 2  x.  ( ( Re
`  A )  x.  ( _i  x.  (
Im `  A )
) ) )  -  ( ( Im `  A ) ^ 2 ) ) ) )
116 absvalsq2 12791 . . . . . . . . . . . 12  |-  ( A  e.  CC  ->  (
( abs `  A
) ^ 2 )  =  ( ( ( Re `  A ) ^ 2 )  +  ( ( Im `  A ) ^ 2 ) ) )
117116adantr 465 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  ( Re `  A )  =/=  0 )  -> 
( ( abs `  A
) ^ 2 )  =  ( ( ( Re `  A ) ^ 2 )  +  ( ( Im `  A ) ^ 2 ) ) )
118115, 117oveq12d 6130 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  ( Re `  A )  =/=  0 )  -> 
( ( A ^
2 )  +  ( ( abs `  A
) ^ 2 ) )  =  ( ( ( ( Re `  A ) ^ 2 )  +  ( ( 2  x.  ( ( Re `  A )  x.  ( _i  x.  ( Im `  A ) ) ) )  -  ( ( Im `  A ) ^ 2 ) ) )  +  ( ( ( Re
`  A ) ^
2 )  +  ( ( Im `  A
) ^ 2 ) ) ) )
119432timesd 10588 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  ( Re `  A )  =/=  0 )  -> 
( 2  x.  (
( Re `  A
) ^ 2 ) )  =  ( ( ( Re `  A
) ^ 2 )  +  ( ( Re
`  A ) ^
2 ) ) )
12059, 95npcand 9744 . . . . . . . . . . . 12  |-  ( ( A  e.  CC  /\  ( Re `  A )  =/=  0 )  -> 
( ( ( 2  x.  ( ( Re
`  A )  x.  ( _i  x.  (
Im `  A )
) ) )  -  ( ( Im `  A ) ^ 2 ) )  +  ( ( Im `  A
) ^ 2 ) )  =  ( 2  x.  ( ( Re
`  A )  x.  ( _i  x.  (
Im `  A )
) ) ) )
12153, 51, 1203eqtr4d 2485 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  ( Re `  A )  =/=  0 )  -> 
( _i  x.  (
2  x.  ( ( Re `  A )  x.  ( Im `  A ) ) ) )  =  ( ( ( 2  x.  (
( Re `  A
)  x.  ( _i  x.  ( Im `  A ) ) ) )  -  ( ( Im `  A ) ^ 2 ) )  +  ( ( Im
`  A ) ^
2 ) ) )
122119, 121oveq12d 6130 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  ( Re `  A )  =/=  0 )  -> 
( ( 2  x.  ( ( Re `  A ) ^ 2 ) )  +  ( _i  x.  ( 2  x.  ( ( Re
`  A )  x.  ( Im `  A
) ) ) ) )  =  ( ( ( ( Re `  A ) ^ 2 )  +  ( ( Re `  A ) ^ 2 ) )  +  ( ( ( 2  x.  ( ( Re `  A )  x.  ( _i  x.  ( Im `  A ) ) ) )  -  ( ( Im `  A ) ^ 2 ) )  +  ( ( Im `  A
) ^ 2 ) ) ) )
12397, 118, 1223eqtr4d 2485 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  ( Re `  A )  =/=  0 )  -> 
( ( A ^
2 )  +  ( ( abs `  A
) ^ 2 ) )  =  ( ( 2  x.  ( ( Re `  A ) ^ 2 ) )  +  ( _i  x.  ( 2  x.  (
( Re `  A
)  x.  ( Im
`  A ) ) ) ) ) )
124123oveq2d 6128 . . . . . . . 8  |-  ( ( A  e.  CC  /\  ( Re `  A )  =/=  0 )  -> 
( _i  x.  (
( A ^ 2 )  +  ( ( abs `  A ) ^ 2 ) ) )  =  ( _i  x.  ( ( 2  x.  ( ( Re
`  A ) ^
2 ) )  +  ( _i  x.  (
2  x.  ( ( Re `  A )  x.  ( Im `  A ) ) ) ) ) ) )
12591, 77, 42subdird 9822 . . . . . . . 8  |-  ( ( A  e.  CC  /\  ( Re `  A )  =/=  0 )  -> 
( ( ( 2  x.  ( ( Re
`  A )  x.  _i ) )  -  ( 2  x.  (
Im `  A )
) )  x.  (
Re `  A )
)  =  ( ( ( 2  x.  (
( Re `  A
)  x.  _i ) )  x.  ( Re
`  A ) )  -  ( ( 2  x.  ( Im `  A ) )  x.  ( Re `  A
) ) ) )
12694, 124, 1253eqtr4d 2485 . . . . . . 7  |-  ( ( A  e.  CC  /\  ( Re `  A )  =/=  0 )  -> 
( _i  x.  (
( A ^ 2 )  +  ( ( abs `  A ) ^ 2 ) ) )  =  ( ( ( 2  x.  (
( Re `  A
)  x.  _i ) )  -  ( 2  x.  ( Im `  A ) ) )  x.  ( Re `  A ) ) )
12791, 77subcld 9740 . . . . . . . 8  |-  ( ( A  e.  CC  /\  ( Re `  A )  =/=  0 )  -> 
( ( 2  x.  ( ( Re `  A )  x.  _i ) )  -  (
2  x.  ( Im
`  A ) ) )  e.  CC )
128 mulcom 9389 . . . . . . . . . . 11  |-  ( ( ( Re `  A
)  e.  CC  /\  _i  e.  CC )  -> 
( ( Re `  A )  x.  _i )  =  ( _i  x.  ( Re `  A
) ) )
12942, 22, 128sylancl 662 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  ( Re `  A )  =/=  0 )  -> 
( ( Re `  A )  x.  _i )  =  ( _i  x.  ( Re `  A
) ) )
130 simpr 461 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  ( Re `  A )  =/=  0 )  -> 
( Re `  A
)  =/=  0 )
131 eleq1 2503 . . . . . . . . . . . . . 14  |-  ( ( _i  x.  ( Re
`  A ) )  =  ( Im `  A )  ->  (
( _i  x.  (
Re `  A )
)  e.  RR  <->  ( Im `  A )  e.  RR ) )
13248, 131syl5ibrcom 222 . . . . . . . . . . . . 13  |-  ( ( A  e.  CC  /\  ( Re `  A )  =/=  0 )  -> 
( ( _i  x.  ( Re `  A ) )  =  ( Im
`  A )  -> 
( _i  x.  (
Re `  A )
)  e.  RR ) )
133 rimul 10334 . . . . . . . . . . . . 13  |-  ( ( ( Re `  A
)  e.  RR  /\  ( _i  x.  (
Re `  A )
)  e.  RR )  ->  ( Re `  A )  =  0 )
13441, 132, 133syl6an 545 . . . . . . . . . . . 12  |-  ( ( A  e.  CC  /\  ( Re `  A )  =/=  0 )  -> 
( ( _i  x.  ( Re `  A ) )  =  ( Im
`  A )  -> 
( Re `  A
)  =  0 ) )
135134necon3d 2670 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  ( Re `  A )  =/=  0 )  -> 
( ( Re `  A )  =/=  0  ->  ( _i  x.  (
Re `  A )
)  =/=  ( Im
`  A ) ) )
136130, 135mpd 15 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  ( Re `  A )  =/=  0 )  -> 
( _i  x.  (
Re `  A )
)  =/=  ( Im
`  A ) )
137129, 136eqnetrd 2654 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  ( Re `  A )  =/=  0 )  -> 
( ( Re `  A )  x.  _i )  =/=  ( Im `  A ) )
13891, 77subeq0ad 9750 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  ( Re `  A )  =/=  0 )  -> 
( ( ( 2  x.  ( ( Re
`  A )  x.  _i ) )  -  ( 2  x.  (
Im `  A )
) )  =  0  <-> 
( 2  x.  (
( Re `  A
)  x.  _i ) )  =  ( 2  x.  ( Im `  A ) ) ) )
139 2ne0 10435 . . . . . . . . . . . . 13  |-  2  =/=  0
140139a1i 11 . . . . . . . . . . . 12  |-  ( ( A  e.  CC  /\  ( Re `  A )  =/=  0 )  -> 
2  =/=  0 )
14163, 49, 46, 140mulcand 9990 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  ( Re `  A )  =/=  0 )  -> 
( ( 2  x.  ( ( Re `  A )  x.  _i ) )  =  ( 2  x.  ( Im
`  A ) )  <-> 
( ( Re `  A )  x.  _i )  =  ( Im `  A ) ) )
142138, 141bitrd 253 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  ( Re `  A )  =/=  0 )  -> 
( ( ( 2  x.  ( ( Re
`  A )  x.  _i ) )  -  ( 2  x.  (
Im `  A )
) )  =  0  <-> 
( ( Re `  A )  x.  _i )  =  ( Im `  A ) ) )
143142necon3bid 2637 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  ( Re `  A )  =/=  0 )  -> 
( ( ( 2  x.  ( ( Re
`  A )  x.  _i ) )  -  ( 2  x.  (
Im `  A )
) )  =/=  0  <->  ( ( Re `  A
)  x.  _i )  =/=  ( Im `  A ) ) )
144137, 143mpbird 232 . . . . . . . 8  |-  ( ( A  e.  CC  /\  ( Re `  A )  =/=  0 )  -> 
( ( 2  x.  ( ( Re `  A )  x.  _i ) )  -  (
2  x.  ( Im
`  A ) ) )  =/=  0 )
145127, 42, 144, 130mulne0d 10009 . . . . . . 7  |-  ( ( A  e.  CC  /\  ( Re `  A )  =/=  0 )  -> 
( ( ( 2  x.  ( ( Re
`  A )  x.  _i ) )  -  ( 2  x.  (
Im `  A )
) )  x.  (
Re `  A )
)  =/=  0 )
146126, 145eqnetrd 2654 . . . . . 6  |-  ( ( A  e.  CC  /\  ( Re `  A )  =/=  0 )  -> 
( _i  x.  (
( A ^ 2 )  +  ( ( abs `  A ) ^ 2 ) ) )  =/=  0 )
147 oveq2 6120 . . . . . . . 8  |-  ( ( ( A ^ 2 )  +  ( ( abs `  A ) ^ 2 ) )  =  0  ->  (
_i  x.  ( ( A ^ 2 )  +  ( ( abs `  A
) ^ 2 ) ) )  =  ( _i  x.  0 ) )
148 it0e0 10568 . . . . . . . 8  |-  ( _i  x.  0 )  =  0
149147, 148syl6eq 2491 . . . . . . 7  |-  ( ( ( A ^ 2 )  +  ( ( abs `  A ) ^ 2 ) )  =  0  ->  (
_i  x.  ( ( A ^ 2 )  +  ( ( abs `  A
) ^ 2 ) ) )  =  0 )
150149necon3i 2674 . . . . . 6  |-  ( ( _i  x.  ( ( A ^ 2 )  +  ( ( abs `  A ) ^ 2 ) ) )  =/=  0  ->  ( ( A ^ 2 )  +  ( ( abs `  A
) ^ 2 ) )  =/=  0 )
151146, 150syl 16 . . . . 5  |-  ( ( A  e.  CC  /\  ( Re `  A )  =/=  0 )  -> 
( ( A ^
2 )  +  ( ( abs `  A
) ^ 2 ) )  =/=  0 )
15237, 14, 151, 20divne0d 10144 . . . 4  |-  ( ( A  e.  CC  /\  ( Re `  A )  =/=  0 )  -> 
( ( ( A ^ 2 )  +  ( ( abs `  A
) ^ 2 ) )  /  ( ( abs `  A ) ^ 2 ) )  =/=  0 )
15336, 152eqnetrd 2654 . . 3  |-  ( ( A  e.  CC  /\  ( Re `  A )  =/=  0 )  -> 
( ( exp `  (
2  x.  ( _i  x.  ( Im `  ( log `  A ) ) ) ) )  +  1 )  =/=  0 )
154 tanval3 13439 . . 3  |-  ( ( ( Im `  ( log `  A ) )  e.  CC  /\  (
( exp `  (
2  x.  ( _i  x.  ( Im `  ( log `  A ) ) ) ) )  +  1 )  =/=  0 )  ->  ( tan `  ( Im `  ( log `  A ) ) )  =  ( ( ( exp `  (
2  x.  ( _i  x.  ( Im `  ( log `  A ) ) ) ) )  -  1 )  / 
( _i  x.  (
( exp `  (
2  x.  ( _i  x.  ( Im `  ( log `  A ) ) ) ) )  +  1 ) ) ) )
1558, 153, 154syl2anc 661 . 2  |-  ( ( A  e.  CC  /\  ( Re `  A )  =/=  0 )  -> 
( tan `  (
Im `  ( log `  A ) ) )  =  ( ( ( exp `  ( 2  x.  ( _i  x.  ( Im `  ( log `  A ) ) ) ) )  -  1 )  /  ( _i  x.  ( ( exp `  ( 2  x.  (
_i  x.  ( Im `  ( log `  A
) ) ) ) )  +  1 ) ) ) )
15610, 14, 14, 20divsubdird 10167 . . . 4  |-  ( ( A  e.  CC  /\  ( Re `  A )  =/=  0 )  -> 
( ( ( A ^ 2 )  -  ( ( abs `  A
) ^ 2 ) )  /  ( ( abs `  A ) ^ 2 ) )  =  ( ( ( A ^ 2 )  /  ( ( abs `  A ) ^ 2 ) )  -  (
( ( abs `  A
) ^ 2 )  /  ( ( abs `  A ) ^ 2 ) ) ) )
15733, 34oveq12d 6130 . . . 4  |-  ( ( A  e.  CC  /\  ( Re `  A )  =/=  0 )  -> 
( ( ( A ^ 2 )  / 
( ( abs `  A
) ^ 2 ) )  -  ( ( ( abs `  A
) ^ 2 )  /  ( ( abs `  A ) ^ 2 ) ) )  =  ( ( exp `  (
2  x.  ( _i  x.  ( Im `  ( log `  A ) ) ) ) )  -  1 ) )
158156, 157eqtr2d 2476 . . 3  |-  ( ( A  e.  CC  /\  ( Re `  A )  =/=  0 )  -> 
( ( exp `  (
2  x.  ( _i  x.  ( Im `  ( log `  A ) ) ) ) )  -  1 )  =  ( ( ( A ^ 2 )  -  ( ( abs `  A
) ^ 2 ) )  /  ( ( abs `  A ) ^ 2 ) ) )
15936oveq2d 6128 . . . 4  |-  ( ( A  e.  CC  /\  ( Re `  A )  =/=  0 )  -> 
( _i  x.  (
( exp `  (
2  x.  ( _i  x.  ( Im `  ( log `  A ) ) ) ) )  +  1 ) )  =  ( _i  x.  ( ( ( A ^ 2 )  +  ( ( abs `  A
) ^ 2 ) )  /  ( ( abs `  A ) ^ 2 ) ) ) )
16038, 37, 14, 20divassd 10163 . . . 4  |-  ( ( A  e.  CC  /\  ( Re `  A )  =/=  0 )  -> 
( ( _i  x.  ( ( A ^
2 )  +  ( ( abs `  A
) ^ 2 ) ) )  /  (
( abs `  A
) ^ 2 ) )  =  ( _i  x.  ( ( ( A ^ 2 )  +  ( ( abs `  A ) ^ 2 ) )  /  (
( abs `  A
) ^ 2 ) ) ) )
161159, 160eqtr4d 2478 . . 3  |-  ( ( A  e.  CC  /\  ( Re `  A )  =/=  0 )  -> 
( _i  x.  (
( exp `  (
2  x.  ( _i  x.  ( Im `  ( log `  A ) ) ) ) )  +  1 ) )  =  ( ( _i  x.  ( ( A ^ 2 )  +  ( ( abs `  A
) ^ 2 ) ) )  /  (
( abs `  A
) ^ 2 ) ) )
162158, 161oveq12d 6130 . 2  |-  ( ( A  e.  CC  /\  ( Re `  A )  =/=  0 )  -> 
( ( ( exp `  ( 2  x.  (
_i  x.  ( Im `  ( log `  A
) ) ) ) )  -  1 )  /  ( _i  x.  ( ( exp `  (
2  x.  ( _i  x.  ( Im `  ( log `  A ) ) ) ) )  +  1 ) ) )  =  ( ( ( ( A ^
2 )  -  (
( abs `  A
) ^ 2 ) )  /  ( ( abs `  A ) ^ 2 ) )  /  ( ( _i  x.  ( ( A ^ 2 )  +  ( ( abs `  A
) ^ 2 ) ) )  /  (
( abs `  A
) ^ 2 ) ) ) )
16310, 14subcld 9740 . . . 4  |-  ( ( A  e.  CC  /\  ( Re `  A )  =/=  0 )  -> 
( ( A ^
2 )  -  (
( abs `  A
) ^ 2 ) )  e.  CC )
164 mulcl 9387 . . . . 5  |-  ( ( _i  e.  CC  /\  ( ( A ^
2 )  +  ( ( abs `  A
) ^ 2 ) )  e.  CC )  ->  ( _i  x.  ( ( A ^
2 )  +  ( ( abs `  A
) ^ 2 ) ) )  e.  CC )
16522, 37, 164sylancr 663 . . . 4  |-  ( ( A  e.  CC  /\  ( Re `  A )  =/=  0 )  -> 
( _i  x.  (
( A ^ 2 )  +  ( ( abs `  A ) ^ 2 ) ) )  e.  CC )
166163, 165, 14, 146, 20divcan7d 10156 . . 3  |-  ( ( A  e.  CC  /\  ( Re `  A )  =/=  0 )  -> 
( ( ( ( A ^ 2 )  -  ( ( abs `  A ) ^ 2 ) )  /  (
( abs `  A
) ^ 2 ) )  /  ( ( _i  x.  ( ( A ^ 2 )  +  ( ( abs `  A ) ^ 2 ) ) )  / 
( ( abs `  A
) ^ 2 ) ) )  =  ( ( ( A ^
2 )  -  (
( abs `  A
) ^ 2 ) )  /  ( _i  x.  ( ( A ^ 2 )  +  ( ( abs `  A
) ^ 2 ) ) ) ) )
167115, 117oveq12d 6130 . . . . 5  |-  ( ( A  e.  CC  /\  ( Re `  A )  =/=  0 )  -> 
( ( A ^
2 )  -  (
( abs `  A
) ^ 2 ) )  =  ( ( ( ( Re `  A ) ^ 2 )  +  ( ( 2  x.  ( ( Re `  A )  x.  ( _i  x.  ( Im `  A ) ) ) )  -  ( ( Im `  A ) ^ 2 ) ) )  -  ( ( ( Re
`  A ) ^
2 )  +  ( ( Im `  A
) ^ 2 ) ) ) )
16843, 96, 95pnpcand 9777 . . . . 5  |-  ( ( A  e.  CC  /\  ( Re `  A )  =/=  0 )  -> 
( ( ( ( Re `  A ) ^ 2 )  +  ( ( 2  x.  ( ( Re `  A )  x.  (
_i  x.  ( Im `  A ) ) ) )  -  ( ( Im `  A ) ^ 2 ) ) )  -  ( ( ( Re `  A
) ^ 2 )  +  ( ( Im
`  A ) ^
2 ) ) )  =  ( ( ( 2  x.  ( ( Re `  A )  x.  ( _i  x.  ( Im `  A ) ) ) )  -  ( ( Im `  A ) ^ 2 ) )  -  (
( Im `  A
) ^ 2 ) ) )
16959, 95, 95subsub4d 9771 . . . . . 6  |-  ( ( A  e.  CC  /\  ( Re `  A )  =/=  0 )  -> 
( ( ( 2  x.  ( ( Re
`  A )  x.  ( _i  x.  (
Im `  A )
) ) )  -  ( ( Im `  A ) ^ 2 ) )  -  (
( Im `  A
) ^ 2 ) )  =  ( ( 2  x.  ( ( Re `  A )  x.  ( _i  x.  ( Im `  A ) ) ) )  -  ( ( ( Im
`  A ) ^
2 )  +  ( ( Im `  A
) ^ 2 ) ) ) )
170952timesd 10588 . . . . . . 7  |-  ( ( A  e.  CC  /\  ( Re `  A )  =/=  0 )  -> 
( 2  x.  (
( Im `  A
) ^ 2 ) )  =  ( ( ( Im `  A
) ^ 2 )  +  ( ( Im
`  A ) ^
2 ) ) )
171170oveq2d 6128 . . . . . 6  |-  ( ( A  e.  CC  /\  ( Re `  A )  =/=  0 )  -> 
( ( 2  x.  ( ( Re `  A )  x.  (
_i  x.  ( Im `  A ) ) ) )  -  ( 2  x.  ( ( Im
`  A ) ^
2 ) ) )  =  ( ( 2  x.  ( ( Re
`  A )  x.  ( _i  x.  (
Im `  A )
) ) )  -  ( ( ( Im
`  A ) ^
2 )  +  ( ( Im `  A
) ^ 2 ) ) ) )
17246, 63, 49mulassd 9430 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  ( Re `  A )  =/=  0 )  -> 
( ( 2  x.  ( ( Re `  A )  x.  _i ) )  x.  (
Im `  A )
)  =  ( 2  x.  ( ( ( Re `  A )  x.  _i )  x.  ( Im `  A
) ) ) )
17342, 38, 49mulassd 9430 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  ( Re `  A )  =/=  0 )  -> 
( ( ( Re
`  A )  x.  _i )  x.  (
Im `  A )
)  =  ( ( Re `  A )  x.  ( _i  x.  ( Im `  A ) ) ) )
174173oveq2d 6128 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  ( Re `  A )  =/=  0 )  -> 
( 2  x.  (
( ( Re `  A )  x.  _i )  x.  ( Im `  A ) ) )  =  ( 2  x.  ( ( Re `  A )  x.  (
_i  x.  ( Im `  A ) ) ) ) )
175172, 174eqtr2d 2476 . . . . . . . 8  |-  ( ( A  e.  CC  /\  ( Re `  A )  =/=  0 )  -> 
( 2  x.  (
( Re `  A
)  x.  ( _i  x.  ( Im `  A ) ) ) )  =  ( ( 2  x.  ( ( Re `  A )  x.  _i ) )  x.  ( Im `  A ) ) )
17649sqvald 12026 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  ( Re `  A )  =/=  0 )  -> 
( ( Im `  A ) ^ 2 )  =  ( ( Im `  A )  x.  ( Im `  A ) ) )
177176oveq2d 6128 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  ( Re `  A )  =/=  0 )  -> 
( 2  x.  (
( Im `  A
) ^ 2 ) )  =  ( 2  x.  ( ( Im
`  A )  x.  ( Im `  A
) ) ) )
17846, 49, 49mulassd 9430 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  ( Re `  A )  =/=  0 )  -> 
( ( 2  x.  ( Im `  A
) )  x.  (
Im `  A )
)  =  ( 2  x.  ( ( Im
`  A )  x.  ( Im `  A
) ) ) )
179177, 178eqtr4d 2478 . . . . . . . 8  |-  ( ( A  e.  CC  /\  ( Re `  A )  =/=  0 )  -> 
( 2  x.  (
( Im `  A
) ^ 2 ) )  =  ( ( 2  x.  ( Im
`  A ) )  x.  ( Im `  A ) ) )
180175, 179oveq12d 6130 . . . . . . 7  |-  ( ( A  e.  CC  /\  ( Re `  A )  =/=  0 )  -> 
( ( 2  x.  ( ( Re `  A )  x.  (
_i  x.  ( Im `  A ) ) ) )  -  ( 2  x.  ( ( Im
`  A ) ^
2 ) ) )  =  ( ( ( 2  x.  ( ( Re `  A )  x.  _i ) )  x.  ( Im `  A ) )  -  ( ( 2  x.  ( Im `  A
) )  x.  (
Im `  A )
) ) )
18191, 77, 49subdird 9822 . . . . . . 7  |-  ( ( A  e.  CC  /\  ( Re `  A )  =/=  0 )  -> 
( ( ( 2  x.  ( ( Re
`  A )  x.  _i ) )  -  ( 2  x.  (
Im `  A )
) )  x.  (
Im `  A )
)  =  ( ( ( 2  x.  (
( Re `  A
)  x.  _i ) )  x.  ( Im
`  A ) )  -  ( ( 2  x.  ( Im `  A ) )  x.  ( Im `  A
) ) ) )
182180, 181eqtr4d 2478 . . . . . 6  |-  ( ( A  e.  CC  /\  ( Re `  A )  =/=  0 )  -> 
( ( 2  x.  ( ( Re `  A )  x.  (
_i  x.  ( Im `  A ) ) ) )  -  ( 2  x.  ( ( Im
`  A ) ^
2 ) ) )  =  ( ( ( 2  x.  ( ( Re `  A )  x.  _i ) )  -  ( 2  x.  ( Im `  A
) ) )  x.  ( Im `  A
) ) )
183169, 171, 1823eqtr2d 2481 . . . . 5  |-  ( ( A  e.  CC  /\  ( Re `  A )  =/=  0 )  -> 
( ( ( 2  x.  ( ( Re
`  A )  x.  ( _i  x.  (
Im `  A )
) ) )  -  ( ( Im `  A ) ^ 2 ) )  -  (
( Im `  A
) ^ 2 ) )  =  ( ( ( 2  x.  (
( Re `  A
)  x.  _i ) )  -  ( 2  x.  ( Im `  A ) ) )  x.  ( Im `  A ) ) )
184167, 168, 1833eqtrd 2479 . . . 4  |-  ( ( A  e.  CC  /\  ( Re `  A )  =/=  0 )  -> 
( ( A ^
2 )  -  (
( abs `  A
) ^ 2 ) )  =  ( ( ( 2  x.  (
( Re `  A
)  x.  _i ) )  -  ( 2  x.  ( Im `  A ) ) )  x.  ( Im `  A ) ) )
185184, 126oveq12d 6130 . . 3  |-  ( ( A  e.  CC  /\  ( Re `  A )  =/=  0 )  -> 
( ( ( A ^ 2 )  -  ( ( abs `  A
) ^ 2 ) )  /  ( _i  x.  ( ( A ^ 2 )  +  ( ( abs `  A
) ^ 2 ) ) ) )  =  ( ( ( ( 2  x.  ( ( Re `  A )  x.  _i ) )  -  ( 2  x.  ( Im `  A
) ) )  x.  ( Im `  A
) )  /  (
( ( 2  x.  ( ( Re `  A )  x.  _i ) )  -  (
2  x.  ( Im
`  A ) ) )  x.  ( Re
`  A ) ) ) )
18649, 42, 127, 130, 144divcan5d 10154 . . 3  |-  ( ( A  e.  CC  /\  ( Re `  A )  =/=  0 )  -> 
( ( ( ( 2  x.  ( ( Re `  A )  x.  _i ) )  -  ( 2  x.  ( Im `  A
) ) )  x.  ( Im `  A
) )  /  (
( ( 2  x.  ( ( Re `  A )  x.  _i ) )  -  (
2  x.  ( Im
`  A ) ) )  x.  ( Re
`  A ) ) )  =  ( ( Im `  A )  /  ( Re `  A ) ) )
187166, 185, 1863eqtrd 2479 . 2  |-  ( ( A  e.  CC  /\  ( Re `  A )  =/=  0 )  -> 
( ( ( ( A ^ 2 )  -  ( ( abs `  A ) ^ 2 ) )  /  (
( abs `  A
) ^ 2 ) )  /  ( ( _i  x.  ( ( A ^ 2 )  +  ( ( abs `  A ) ^ 2 ) ) )  / 
( ( abs `  A
) ^ 2 ) ) )  =  ( ( Im `  A
)  /  ( Re
`  A ) ) )
188155, 162, 1873eqtrd 2479 1  |-  ( ( A  e.  CC  /\  ( Re `  A )  =/=  0 )  -> 
( tan `  (
Im `  ( log `  A ) ) )  =  ( ( Im
`  A )  / 
( Re `  A
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1369    e. wcel 1756    =/= wne 2620   ` cfv 5439  (class class class)co 6112   CCcc 9301   RRcr 9302   0cc0 9303   1c1 9304   _ici 9305    + caddc 9306    x. cmul 9308    - cmin 9616   -ucneg 9617    / cdiv 10014   2c2 10392   ZZcz 10667   RR+crp 11012   ^cexp 11886   Recre 12607   Imcim 12608   abscabs 12744   expce 13368   tanctan 13372   logclog 22028
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4424  ax-sep 4434  ax-nul 4442  ax-pow 4491  ax-pr 4552  ax-un 6393  ax-inf2 7868  ax-cnex 9359  ax-resscn 9360  ax-1cn 9361  ax-icn 9362  ax-addcl 9363  ax-addrcl 9364  ax-mulcl 9365  ax-mulrcl 9366  ax-mulcom 9367  ax-addass 9368  ax-mulass 9369  ax-distr 9370  ax-i2m1 9371  ax-1ne0 9372  ax-1rid 9373  ax-rnegex 9374  ax-rrecex 9375  ax-cnre 9376  ax-pre-lttri 9377  ax-pre-lttrn 9378  ax-pre-ltadd 9379  ax-pre-mulgt0 9380  ax-pre-sup 9381  ax-addf 9382  ax-mulf 9383
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-fal 1375  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2577  df-ne 2622  df-nel 2623  df-ral 2741  df-rex 2742  df-reu 2743  df-rmo 2744  df-rab 2745  df-v 2995  df-sbc 3208  df-csb 3310  df-dif 3352  df-un 3354  df-in 3356  df-ss 3363  df-pss 3365  df-nul 3659  df-if 3813  df-pw 3883  df-sn 3899  df-pr 3901  df-tp 3903  df-op 3905  df-uni 4113  df-int 4150  df-iun 4194  df-iin 4195  df-br 4314  df-opab 4372  df-mpt 4373  df-tr 4407  df-eprel 4653  df-id 4657  df-po 4662  df-so 4663  df-fr 4700  df-se 4701  df-we 4702  df-ord 4743  df-on 4744  df-lim 4745  df-suc 4746  df-xp 4867  df-rel 4868  df-cnv 4869  df-co 4870  df-dm 4871  df-rn 4872  df-res 4873  df-ima 4874  df-iota 5402  df-fun 5441  df-fn 5442  df-f 5443  df-f1 5444  df-fo 5445  df-f1o 5446  df-fv 5447  df-isom 5448  df-riota 6073  df-ov 6115  df-oprab 6116  df-mpt2 6117  df-of 6341  df-om 6498  df-1st 6598  df-2nd 6599  df-supp 6712  df-recs 6853  df-rdg 6887  df-1o 6941  df-2o 6942  df-oadd 6945  df-er 7122  df-map 7237  df-pm 7238  df-ixp 7285  df-en 7332  df-dom 7333  df-sdom 7334  df-fin 7335  df-fsupp 7642  df-fi 7682  df-sup 7712  df-oi 7745  df-card 8130  df-cda 8358  df-pnf 9441  df-mnf 9442  df-xr 9443  df-ltxr 9444  df-le 9445  df-sub 9618  df-neg 9619  df-div 10015  df-nn 10344  df-2 10401  df-3 10402  df-4 10403  df-5 10404  df-6 10405  df-7 10406  df-8 10407  df-9 10408  df-10 10409  df-n0 10601  df-z 10668  df-dec 10777  df-uz 10883  df-q 10975  df-rp 11013  df-xneg 11110  df-xadd 11111  df-xmul 11112  df-ioo 11325  df-ioc 11326  df-ico 11327  df-icc 11328  df-fz 11459  df-fzo 11570  df-fl 11663  df-mod 11730  df-seq 11828  df-exp 11887  df-fac 12073  df-bc 12100  df-hash 12125  df-shft 12577  df-cj 12609  df-re 12610  df-im 12611  df-sqr 12745  df-abs 12746  df-limsup 12970  df-clim 12987  df-rlim 12988  df-sum 13185  df-ef 13374  df-sin 13376  df-cos 13377  df-tan 13378  df-pi 13379  df-struct 14197  df-ndx 14198  df-slot 14199  df-base 14200  df-sets 14201  df-ress 14202  df-plusg 14272  df-mulr 14273  df-starv 14274  df-sca 14275  df-vsca 14276  df-ip 14277  df-tset 14278  df-ple 14279  df-ds 14281  df-unif 14282  df-hom 14283  df-cco 14284  df-rest 14382  df-topn 14383  df-0g 14401  df-gsum 14402  df-topgen 14403  df-pt 14404  df-prds 14407  df-xrs 14461  df-qtop 14466  df-imas 14467  df-xps 14469  df-mre 14545  df-mrc 14546  df-acs 14548  df-mnd 15436  df-submnd 15486  df-mulg 15569  df-cntz 15856  df-cmn 16300  df-psmet 17831  df-xmet 17832  df-met 17833  df-bl 17834  df-mopn 17835  df-fbas 17836  df-fg 17837  df-cnfld 17841  df-top 18525  df-bases 18527  df-topon 18528  df-topsp 18529  df-cld 18645  df-ntr 18646  df-cls 18647  df-nei 18724  df-lp 18762  df-perf 18763  df-cn 18853  df-cnp 18854  df-haus 18941  df-tx 19157  df-hmeo 19350  df-fil 19441  df-fm 19533  df-flim 19534  df-flf 19535  df-xms 19917  df-ms 19918  df-tms 19919  df-cncf 20476  df-limc 21363  df-dv 21364  df-log 22030
This theorem is referenced by:  logcnlem4  22112  atanlogsublem  22332
  Copyright terms: Public domain W3C validator