MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tan4thpi Structured version   Unicode version

Theorem tan4thpi 21956
Description: The tangent of  pi  / 
4. (Contributed by Mario Carneiro, 5-Apr-2015.)
Assertion
Ref Expression
tan4thpi  |-  ( tan `  ( pi  /  4
) )  =  1

Proof of Theorem tan4thpi
StepHypRef Expression
1 pire 21901 . . . . 5  |-  pi  e.  RR
2 4nn 10473 . . . . 5  |-  4  e.  NN
3 nndivre 10349 . . . . 5  |-  ( ( pi  e.  RR  /\  4  e.  NN )  ->  ( pi  /  4
)  e.  RR )
41, 2, 3mp2an 672 . . . 4  |-  ( pi 
/  4 )  e.  RR
54recni 9390 . . 3  |-  ( pi 
/  4 )  e.  CC
6 sincos4thpi 21955 . . . . 5  |-  ( ( sin `  ( pi 
/  4 ) )  =  ( 1  / 
( sqr `  2
) )  /\  ( cos `  ( pi  / 
4 ) )  =  ( 1  /  ( sqr `  2 ) ) )
76simpri 462 . . . 4  |-  ( cos `  ( pi  /  4
) )  =  ( 1  /  ( sqr `  2 ) )
8 sqr2re 13524 . . . . . 6  |-  ( sqr `  2 )  e.  RR
98recni 9390 . . . . 5  |-  ( sqr `  2 )  e.  CC
10 2re 10383 . . . . . . . 8  |-  2  e.  RR
11 0le2 10404 . . . . . . . 8  |-  0  <_  2
12 resqrth 12737 . . . . . . . 8  |-  ( ( 2  e.  RR  /\  0  <_  2 )  -> 
( ( sqr `  2
) ^ 2 )  =  2 )
1310, 11, 12mp2an 672 . . . . . . 7  |-  ( ( sqr `  2 ) ^ 2 )  =  2
14 2ne0 10406 . . . . . . 7  |-  2  =/=  0
1513, 14eqnetri 2620 . . . . . 6  |-  ( ( sqr `  2 ) ^ 2 )  =/=  0
16 sqne0 11924 . . . . . . 7  |-  ( ( sqr `  2 )  e.  CC  ->  (
( ( sqr `  2
) ^ 2 )  =/=  0  <->  ( sqr `  2 )  =/=  0
) )
179, 16ax-mp 5 . . . . . 6  |-  ( ( ( sqr `  2
) ^ 2 )  =/=  0  <->  ( sqr `  2 )  =/=  0
)
1815, 17mpbi 208 . . . . 5  |-  ( sqr `  2 )  =/=  0
19 recne0 9999 . . . . 5  |-  ( ( ( sqr `  2
)  e.  CC  /\  ( sqr `  2 )  =/=  0 )  -> 
( 1  /  ( sqr `  2 ) )  =/=  0 )
209, 18, 19mp2an 672 . . . 4  |-  ( 1  /  ( sqr `  2
) )  =/=  0
217, 20eqnetri 2620 . . 3  |-  ( cos `  ( pi  /  4
) )  =/=  0
22 tanval 13404 . . 3  |-  ( ( ( pi  /  4
)  e.  CC  /\  ( cos `  ( pi 
/  4 ) )  =/=  0 )  -> 
( tan `  (
pi  /  4 ) )  =  ( ( sin `  ( pi 
/  4 ) )  /  ( cos `  (
pi  /  4 ) ) ) )
235, 21, 22mp2an 672 . 2  |-  ( tan `  ( pi  /  4
) )  =  ( ( sin `  (
pi  /  4 ) )  /  ( cos `  ( pi  /  4
) ) )
246simpli 458 . . 3  |-  ( sin `  ( pi  /  4
) )  =  ( 1  /  ( sqr `  2 ) )
2524, 7oveq12i 6098 . 2  |-  ( ( sin `  ( pi 
/  4 ) )  /  ( cos `  (
pi  /  4 ) ) )  =  ( ( 1  /  ( sqr `  2 ) )  /  ( 1  / 
( sqr `  2
) ) )
269, 18reccli 10053 . . 3  |-  ( 1  /  ( sqr `  2
) )  e.  CC
2726, 20dividi 10056 . 2  |-  ( ( 1  /  ( sqr `  2 ) )  /  ( 1  / 
( sqr `  2
) ) )  =  1
2823, 25, 273eqtri 2462 1  |-  ( tan `  ( pi  /  4
) )  =  1
Colors of variables: wff setvar class
Syntax hints:    <-> wb 184    = wceq 1369    e. wcel 1756    =/= wne 2601   class class class wbr 4287   ` cfv 5413  (class class class)co 6086   CCcc 9272   RRcr 9273   0cc0 9274   1c1 9275    <_ cle 9411    / cdiv 9985   NNcn 10314   2c2 10363   4c4 10365   ^cexp 11857   sqrcsqr 12714   sincsin 13341   cosccos 13342   tanctan 13343   picpi 13344
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2419  ax-rep 4398  ax-sep 4408  ax-nul 4416  ax-pow 4465  ax-pr 4526  ax-un 6367  ax-inf2 7839  ax-cnex 9330  ax-resscn 9331  ax-1cn 9332  ax-icn 9333  ax-addcl 9334  ax-addrcl 9335  ax-mulcl 9336  ax-mulrcl 9337  ax-mulcom 9338  ax-addass 9339  ax-mulass 9340  ax-distr 9341  ax-i2m1 9342  ax-1ne0 9343  ax-1rid 9344  ax-rnegex 9345  ax-rrecex 9346  ax-cnre 9347  ax-pre-lttri 9348  ax-pre-lttrn 9349  ax-pre-ltadd 9350  ax-pre-mulgt0 9351  ax-pre-sup 9352  ax-addf 9353  ax-mulf 9354
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-fal 1375  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2256  df-mo 2257  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2715  df-rex 2716  df-reu 2717  df-rmo 2718  df-rab 2719  df-v 2969  df-sbc 3182  df-csb 3284  df-dif 3326  df-un 3328  df-in 3330  df-ss 3337  df-pss 3339  df-nul 3633  df-if 3787  df-pw 3857  df-sn 3873  df-pr 3875  df-tp 3877  df-op 3879  df-uni 4087  df-int 4124  df-iun 4168  df-iin 4169  df-br 4288  df-opab 4346  df-mpt 4347  df-tr 4381  df-eprel 4627  df-id 4631  df-po 4636  df-so 4637  df-fr 4674  df-se 4675  df-we 4676  df-ord 4717  df-on 4718  df-lim 4719  df-suc 4720  df-xp 4841  df-rel 4842  df-cnv 4843  df-co 4844  df-dm 4845  df-rn 4846  df-res 4847  df-ima 4848  df-iota 5376  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-isom 5422  df-riota 6047  df-ov 6089  df-oprab 6090  df-mpt2 6091  df-of 6315  df-om 6472  df-1st 6572  df-2nd 6573  df-supp 6686  df-recs 6824  df-rdg 6858  df-1o 6912  df-2o 6913  df-oadd 6916  df-er 7093  df-map 7208  df-pm 7209  df-ixp 7256  df-en 7303  df-dom 7304  df-sdom 7305  df-fin 7306  df-fsupp 7613  df-fi 7653  df-sup 7683  df-oi 7716  df-card 8101  df-cda 8329  df-pnf 9412  df-mnf 9413  df-xr 9414  df-ltxr 9415  df-le 9416  df-sub 9589  df-neg 9590  df-div 9986  df-nn 10315  df-2 10372  df-3 10373  df-4 10374  df-5 10375  df-6 10376  df-7 10377  df-8 10378  df-9 10379  df-10 10380  df-n0 10572  df-z 10639  df-dec 10748  df-uz 10854  df-q 10946  df-rp 10984  df-xneg 11081  df-xadd 11082  df-xmul 11083  df-ioo 11296  df-ioc 11297  df-ico 11298  df-icc 11299  df-fz 11430  df-fzo 11541  df-fl 11634  df-seq 11799  df-exp 11858  df-fac 12044  df-bc 12071  df-hash 12096  df-shft 12548  df-cj 12580  df-re 12581  df-im 12582  df-sqr 12716  df-abs 12717  df-limsup 12941  df-clim 12958  df-rlim 12959  df-sum 13156  df-ef 13345  df-sin 13347  df-cos 13348  df-tan 13349  df-pi 13350  df-struct 14168  df-ndx 14169  df-slot 14170  df-base 14171  df-sets 14172  df-ress 14173  df-plusg 14243  df-mulr 14244  df-starv 14245  df-sca 14246  df-vsca 14247  df-ip 14248  df-tset 14249  df-ple 14250  df-ds 14252  df-unif 14253  df-hom 14254  df-cco 14255  df-rest 14353  df-topn 14354  df-0g 14372  df-gsum 14373  df-topgen 14374  df-pt 14375  df-prds 14378  df-xrs 14432  df-qtop 14437  df-imas 14438  df-xps 14440  df-mre 14516  df-mrc 14517  df-acs 14519  df-mnd 15407  df-submnd 15457  df-mulg 15539  df-cntz 15826  df-cmn 16270  df-psmet 17789  df-xmet 17790  df-met 17791  df-bl 17792  df-mopn 17793  df-fbas 17794  df-fg 17795  df-cnfld 17799  df-top 18483  df-bases 18485  df-topon 18486  df-topsp 18487  df-cld 18603  df-ntr 18604  df-cls 18605  df-nei 18682  df-lp 18720  df-perf 18721  df-cn 18811  df-cnp 18812  df-haus 18899  df-tx 19115  df-hmeo 19308  df-fil 19399  df-fm 19491  df-flim 19492  df-flf 19493  df-xms 19875  df-ms 19876  df-tms 19877  df-cncf 20434  df-limc 21321  df-dv 21322
This theorem is referenced by:  atan1  22303
  Copyright terms: Public domain W3C validator