Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tan2h Structured version   Unicode version

Theorem tan2h 29652
Description: Half-angle rule for tangent. (Contributed by Brendan Leahy, 4-Aug-2018.)
Assertion
Ref Expression
tan2h  |-  ( A  e.  ( 0 [,) pi )  ->  ( tan `  ( A  / 
2 ) )  =  ( sqr `  (
( 1  -  ( cos `  A ) )  /  ( 1  +  ( cos `  A
) ) ) ) )

Proof of Theorem tan2h
StepHypRef Expression
1 0re 9596 . . . . . . . 8  |-  0  e.  RR
2 pire 22613 . . . . . . . . 9  |-  pi  e.  RR
32rexri 9646 . . . . . . . 8  |-  pi  e.  RR*
4 icossre 11605 . . . . . . . 8  |-  ( ( 0  e.  RR  /\  pi  e.  RR* )  ->  (
0 [,) pi ) 
C_  RR )
51, 3, 4mp2an 672 . . . . . . 7  |-  ( 0 [,) pi )  C_  RR
65sseli 3500 . . . . . 6  |-  ( A  e.  ( 0 [,) pi )  ->  A  e.  RR )
76recnd 9622 . . . . 5  |-  ( A  e.  ( 0 [,) pi )  ->  A  e.  CC )
87halfcld 10783 . . . 4  |-  ( A  e.  ( 0 [,) pi )  ->  ( A  /  2 )  e.  CC )
96rehalfcld 10785 . . . . . . 7  |-  ( A  e.  ( 0 [,) pi )  ->  ( A  /  2 )  e.  RR )
109rered 13020 . . . . . 6  |-  ( A  e.  ( 0 [,) pi )  ->  (
Re `  ( A  /  2 ) )  =  ( A  / 
2 ) )
11 elico2 11588 . . . . . . . 8  |-  ( ( 0  e.  RR  /\  pi  e.  RR* )  ->  ( A  e.  ( 0 [,) pi )  <->  ( A  e.  RR  /\  0  <_  A  /\  A  <  pi ) ) )
121, 3, 11mp2an 672 . . . . . . 7  |-  ( A  e.  ( 0 [,) pi )  <->  ( A  e.  RR  /\  0  <_  A  /\  A  <  pi ) )
13 pipos 22615 . . . . . . . . . . . . 13  |-  0  <  pi
14 lt0neg2 10059 . . . . . . . . . . . . . 14  |-  ( pi  e.  RR  ->  (
0  <  pi  <->  -u pi  <  0 ) )
152, 14ax-mp 5 . . . . . . . . . . . . 13  |-  ( 0  <  pi  <->  -u pi  <  0 )
1613, 15mpbi 208 . . . . . . . . . . . 12  |-  -u pi  <  0
172renegcli 9880 . . . . . . . . . . . . 13  |-  -u pi  e.  RR
18 ltletr 9676 . . . . . . . . . . . . 13  |-  ( (
-u pi  e.  RR  /\  0  e.  RR  /\  A  e.  RR )  ->  ( ( -u pi  <  0  /\  0  <_  A )  ->  -u pi  <  A ) )
1917, 1, 18mp3an12 1314 . . . . . . . . . . . 12  |-  ( A  e.  RR  ->  (
( -u pi  <  0  /\  0  <_  A )  ->  -u pi  <  A
) )
2016, 19mpani 676 . . . . . . . . . . 11  |-  ( A  e.  RR  ->  (
0  <_  A  ->  -u pi  <  A ) )
21 2re 10605 . . . . . . . . . . . . . 14  |-  2  e.  RR
22 2pos 10627 . . . . . . . . . . . . . 14  |-  0  <  2
2321, 22pm3.2i 455 . . . . . . . . . . . . 13  |-  ( 2  e.  RR  /\  0  <  2 )
24 ltdiv1 10406 . . . . . . . . . . . . 13  |-  ( (
-u pi  e.  RR  /\  A  e.  RR  /\  ( 2  e.  RR  /\  0  <  2 ) )  ->  ( -u pi  <  A  <->  ( -u pi  /  2 )  <  ( A  /  2 ) ) )
2517, 23, 24mp3an13 1315 . . . . . . . . . . . 12  |-  ( A  e.  RR  ->  ( -u pi  <  A  <->  ( -u pi  /  2 )  <  ( A  /  2 ) ) )
262recni 9608 . . . . . . . . . . . . . 14  |-  pi  e.  CC
27 2cn 10606 . . . . . . . . . . . . . 14  |-  2  e.  CC
28 2ne0 10628 . . . . . . . . . . . . . 14  |-  2  =/=  0
29 divneg 10239 . . . . . . . . . . . . . 14  |-  ( ( pi  e.  CC  /\  2  e.  CC  /\  2  =/=  0 )  ->  -u (
pi  /  2 )  =  ( -u pi  /  2 ) )
3026, 27, 28, 29mp3an 1324 . . . . . . . . . . . . 13  |-  -u (
pi  /  2 )  =  ( -u pi  /  2 )
3130breq1i 4454 . . . . . . . . . . . 12  |-  ( -u ( pi  /  2
)  <  ( A  /  2 )  <->  ( -u pi  /  2 )  <  ( A  /  2 ) )
3225, 31syl6bbr 263 . . . . . . . . . . 11  |-  ( A  e.  RR  ->  ( -u pi  <  A  <->  -u ( pi 
/  2 )  < 
( A  /  2
) ) )
3320, 32sylibd 214 . . . . . . . . . 10  |-  ( A  e.  RR  ->  (
0  <_  A  ->  -u ( pi  /  2
)  <  ( A  /  2 ) ) )
34 ltdiv1 10406 . . . . . . . . . . . 12  |-  ( ( A  e.  RR  /\  pi  e.  RR  /\  (
2  e.  RR  /\  0  <  2 ) )  ->  ( A  < 
pi 
<->  ( A  /  2
)  <  ( pi  /  2 ) ) )
352, 23, 34mp3an23 1316 . . . . . . . . . . 11  |-  ( A  e.  RR  ->  ( A  <  pi  <->  ( A  /  2 )  < 
( pi  /  2
) ) )
3635biimpd 207 . . . . . . . . . 10  |-  ( A  e.  RR  ->  ( A  <  pi  ->  ( A  /  2 )  < 
( pi  /  2
) ) )
3733, 36anim12d 563 . . . . . . . . 9  |-  ( A  e.  RR  ->  (
( 0  <_  A  /\  A  <  pi )  ->  ( -u (
pi  /  2 )  <  ( A  / 
2 )  /\  ( A  /  2 )  < 
( pi  /  2
) ) ) )
38 rehalfcl 10765 . . . . . . . . . . 11  |-  ( A  e.  RR  ->  ( A  /  2 )  e.  RR )
3938rexrd 9643 . . . . . . . . . 10  |-  ( A  e.  RR  ->  ( A  /  2 )  e. 
RR* )
40 halfpire 22618 . . . . . . . . . . . . 13  |-  ( pi 
/  2 )  e.  RR
4140renegcli 9880 . . . . . . . . . . . 12  |-  -u (
pi  /  2 )  e.  RR
4241rexri 9646 . . . . . . . . . . 11  |-  -u (
pi  /  2 )  e.  RR*
4340rexri 9646 . . . . . . . . . . 11  |-  ( pi 
/  2 )  e. 
RR*
44 elioo5 11582 . . . . . . . . . . 11  |-  ( (
-u ( pi  / 
2 )  e.  RR*  /\  ( pi  /  2
)  e.  RR*  /\  ( A  /  2 )  e. 
RR* )  ->  (
( A  /  2
)  e.  ( -u ( pi  /  2
) (,) ( pi 
/  2 ) )  <-> 
( -u ( pi  / 
2 )  <  ( A  /  2 )  /\  ( A  /  2
)  <  ( pi  /  2 ) ) ) )
4542, 43, 44mp3an12 1314 . . . . . . . . . 10  |-  ( ( A  /  2 )  e.  RR*  ->  ( ( A  /  2 )  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) )  <->  ( -u (
pi  /  2 )  <  ( A  / 
2 )  /\  ( A  /  2 )  < 
( pi  /  2
) ) ) )
4639, 45syl 16 . . . . . . . . 9  |-  ( A  e.  RR  ->  (
( A  /  2
)  e.  ( -u ( pi  /  2
) (,) ( pi 
/  2 ) )  <-> 
( -u ( pi  / 
2 )  <  ( A  /  2 )  /\  ( A  /  2
)  <  ( pi  /  2 ) ) ) )
4737, 46sylibrd 234 . . . . . . . 8  |-  ( A  e.  RR  ->  (
( 0  <_  A  /\  A  <  pi )  ->  ( A  / 
2 )  e.  (
-u ( pi  / 
2 ) (,) (
pi  /  2 ) ) ) )
48473impib 1194 . . . . . . 7  |-  ( ( A  e.  RR  /\  0  <_  A  /\  A  <  pi )  ->  ( A  /  2 )  e.  ( -u ( pi 
/  2 ) (,) ( pi  /  2
) ) )
4912, 48sylbi 195 . . . . . 6  |-  ( A  e.  ( 0 [,) pi )  ->  ( A  /  2 )  e.  ( -u ( pi 
/  2 ) (,) ( pi  /  2
) ) )
5010, 49eqeltrd 2555 . . . . 5  |-  ( A  e.  ( 0 [,) pi )  ->  (
Re `  ( A  /  2 ) )  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) ) )
51 cosne0 22678 . . . . 5  |-  ( ( ( A  /  2
)  e.  CC  /\  ( Re `  ( A  /  2 ) )  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) ) )  ->  ( cos `  ( A  /  2 ) )  =/=  0 )
528, 50, 51syl2anc 661 . . . 4  |-  ( A  e.  ( 0 [,) pi )  ->  ( cos `  ( A  / 
2 ) )  =/=  0 )
53 tanval 13724 . . . 4  |-  ( ( ( A  /  2
)  e.  CC  /\  ( cos `  ( A  /  2 ) )  =/=  0 )  -> 
( tan `  ( A  /  2 ) )  =  ( ( sin `  ( A  /  2
) )  /  ( cos `  ( A  / 
2 ) ) ) )
548, 52, 53syl2anc 661 . . 3  |-  ( A  e.  ( 0 [,) pi )  ->  ( tan `  ( A  / 
2 ) )  =  ( ( sin `  ( A  /  2 ) )  /  ( cos `  ( A  /  2 ) ) ) )
55 0xr 9640 . . . . . . 7  |-  0  e.  RR*
56 elico1 11572 . . . . . . 7  |-  ( ( 0  e.  RR*  /\  pi  e.  RR* )  ->  ( A  e.  ( 0 [,) pi )  <->  ( A  e.  RR*  /\  0  <_  A  /\  A  <  pi ) ) )
5755, 3, 56mp2an 672 . . . . . 6  |-  ( A  e.  ( 0 [,) pi )  <->  ( A  e.  RR*  /\  0  <_  A  /\  A  <  pi ) )
5821, 2remulcli 9610 . . . . . . . . . . 11  |-  ( 2  x.  pi )  e.  RR
5958rexri 9646 . . . . . . . . . 10  |-  ( 2  x.  pi )  e. 
RR*
60 1lt2 10702 . . . . . . . . . . . . 13  |-  1  <  2
61 ltmulgt12 10403 . . . . . . . . . . . . . 14  |-  ( ( pi  e.  RR  /\  2  e.  RR  /\  0  <  pi )  ->  (
1  <  2  <->  pi  <  ( 2  x.  pi ) ) )
622, 21, 13, 61mp3an 1324 . . . . . . . . . . . . 13  |-  ( 1  <  2  <->  pi  <  ( 2  x.  pi ) )
6360, 62mpbi 208 . . . . . . . . . . . 12  |-  pi  <  ( 2  x.  pi )
64 xrlttr 11346 . . . . . . . . . . . . 13  |-  ( ( A  e.  RR*  /\  pi  e.  RR*  /\  ( 2  x.  pi )  e. 
RR* )  ->  (
( A  <  pi  /\  pi  <  ( 2  x.  pi ) )  ->  A  <  (
2  x.  pi ) ) )
653, 64mp3an2 1312 . . . . . . . . . . . 12  |-  ( ( A  e.  RR*  /\  (
2  x.  pi )  e.  RR* )  ->  (
( A  <  pi  /\  pi  <  ( 2  x.  pi ) )  ->  A  <  (
2  x.  pi ) ) )
6663, 65mpan2i 677 . . . . . . . . . . 11  |-  ( ( A  e.  RR*  /\  (
2  x.  pi )  e.  RR* )  ->  ( A  <  pi  ->  A  <  ( 2  x.  pi ) ) )
67 xrltle 11355 . . . . . . . . . . 11  |-  ( ( A  e.  RR*  /\  (
2  x.  pi )  e.  RR* )  ->  ( A  <  ( 2  x.  pi )  ->  A  <_  ( 2  x.  pi ) ) )
6866, 67syld 44 . . . . . . . . . 10  |-  ( ( A  e.  RR*  /\  (
2  x.  pi )  e.  RR* )  ->  ( A  <  pi  ->  A  <_  ( 2  x.  pi ) ) )
6959, 68mpan2 671 . . . . . . . . 9  |-  ( A  e.  RR*  ->  ( A  <  pi  ->  A  <_  ( 2  x.  pi ) ) )
7069anim2d 565 . . . . . . . 8  |-  ( A  e.  RR*  ->  ( ( 0  <_  A  /\  A  <  pi )  -> 
( 0  <_  A  /\  A  <_  ( 2  x.  pi ) ) ) )
71 elicc4 11591 . . . . . . . . 9  |-  ( ( 0  e.  RR*  /\  (
2  x.  pi )  e.  RR*  /\  A  e. 
RR* )  ->  ( A  e.  ( 0 [,] ( 2  x.  pi ) )  <->  ( 0  <_  A  /\  A  <_  ( 2  x.  pi ) ) ) )
7255, 59, 71mp3an12 1314 . . . . . . . 8  |-  ( A  e.  RR*  ->  ( A  e.  ( 0 [,] ( 2  x.  pi ) )  <->  ( 0  <_  A  /\  A  <_  ( 2  x.  pi ) ) ) )
7370, 72sylibrd 234 . . . . . . 7  |-  ( A  e.  RR*  ->  ( ( 0  <_  A  /\  A  <  pi )  ->  A  e.  ( 0 [,] ( 2  x.  pi ) ) ) )
74733impib 1194 . . . . . 6  |-  ( ( A  e.  RR*  /\  0  <_  A  /\  A  < 
pi )  ->  A  e.  ( 0 [,] (
2  x.  pi ) ) )
7557, 74sylbi 195 . . . . 5  |-  ( A  e.  ( 0 [,) pi )  ->  A  e.  ( 0 [,] (
2  x.  pi ) ) )
76 sin2h 29650 . . . . 5  |-  ( A  e.  ( 0 [,] ( 2  x.  pi ) )  ->  ( sin `  ( A  / 
2 ) )  =  ( sqr `  (
( 1  -  ( cos `  A ) )  /  2 ) ) )
7775, 76syl 16 . . . 4  |-  ( A  e.  ( 0 [,) pi )  ->  ( sin `  ( A  / 
2 ) )  =  ( sqr `  (
( 1  -  ( cos `  A ) )  /  2 ) ) )
781, 2, 13ltleii 9707 . . . . . . . . . . 11  |-  0  <_  pi
79 le0neg2 10061 . . . . . . . . . . . 12  |-  ( pi  e.  RR  ->  (
0  <_  pi  <->  -u pi  <_  0 ) )
802, 79ax-mp 5 . . . . . . . . . . 11  |-  ( 0  <_  pi  <->  -u pi  <_  0 )
8178, 80mpbi 208 . . . . . . . . . 10  |-  -u pi  <_  0
8217rexri 9646 . . . . . . . . . . 11  |-  -u pi  e.  RR*
83 xrletr 11361 . . . . . . . . . . 11  |-  ( (
-u pi  e.  RR*  /\  0  e.  RR*  /\  A  e.  RR* )  ->  (
( -u pi  <_  0  /\  0  <_  A )  ->  -u pi  <_  A
) )
8482, 55, 83mp3an12 1314 . . . . . . . . . 10  |-  ( A  e.  RR*  ->  ( (
-u pi  <_  0  /\  0  <_  A )  ->  -u pi  <_  A
) )
8581, 84mpani 676 . . . . . . . . 9  |-  ( A  e.  RR*  ->  ( 0  <_  A  ->  -u pi  <_  A ) )
86 xrltle 11355 . . . . . . . . . 10  |-  ( ( A  e.  RR*  /\  pi  e.  RR* )  ->  ( A  <  pi  ->  A  <_  pi ) )
873, 86mpan2 671 . . . . . . . . 9  |-  ( A  e.  RR*  ->  ( A  <  pi  ->  A  <_  pi ) )
8885, 87anim12d 563 . . . . . . . 8  |-  ( A  e.  RR*  ->  ( ( 0  <_  A  /\  A  <  pi )  -> 
( -u pi  <_  A  /\  A  <_  pi ) ) )
89 elicc4 11591 . . . . . . . . 9  |-  ( (
-u pi  e.  RR*  /\  pi  e.  RR*  /\  A  e.  RR* )  ->  ( A  e.  ( -u pi [,] pi )  <->  ( -u pi  <_  A  /\  A  <_  pi ) ) )
9082, 3, 89mp3an12 1314 . . . . . . . 8  |-  ( A  e.  RR*  ->  ( A  e.  ( -u pi [,] pi )  <->  ( -u pi  <_  A  /\  A  <_  pi ) ) )
9188, 90sylibrd 234 . . . . . . 7  |-  ( A  e.  RR*  ->  ( ( 0  <_  A  /\  A  <  pi )  ->  A  e.  ( -u pi [,] pi ) ) )
92913impib 1194 . . . . . 6  |-  ( ( A  e.  RR*  /\  0  <_  A  /\  A  < 
pi )  ->  A  e.  ( -u pi [,] pi ) )
9357, 92sylbi 195 . . . . 5  |-  ( A  e.  ( 0 [,) pi )  ->  A  e.  ( -u pi [,] pi ) )
94 cos2h 29651 . . . . 5  |-  ( A  e.  ( -u pi [,] pi )  ->  ( cos `  ( A  / 
2 ) )  =  ( sqr `  (
( 1  +  ( cos `  A ) )  /  2 ) ) )
9593, 94syl 16 . . . 4  |-  ( A  e.  ( 0 [,) pi )  ->  ( cos `  ( A  / 
2 ) )  =  ( sqr `  (
( 1  +  ( cos `  A ) )  /  2 ) ) )
9677, 95oveq12d 6302 . . 3  |-  ( A  e.  ( 0 [,) pi )  ->  (
( sin `  ( A  /  2 ) )  /  ( cos `  ( A  /  2 ) ) )  =  ( ( sqr `  ( ( 1  -  ( cos `  A ) )  / 
2 ) )  / 
( sqr `  (
( 1  +  ( cos `  A ) )  /  2 ) ) ) )
9754, 96eqtrd 2508 . 2  |-  ( A  e.  ( 0 [,) pi )  ->  ( tan `  ( A  / 
2 ) )  =  ( ( sqr `  (
( 1  -  ( cos `  A ) )  /  2 ) )  /  ( sqr `  (
( 1  +  ( cos `  A ) )  /  2 ) ) ) )
98 1re 9595 . . . . 5  |-  1  e.  RR
996recoscld 13740 . . . . 5  |-  ( A  e.  ( 0 [,) pi )  ->  ( cos `  A )  e.  RR )
100 resubcl 9883 . . . . 5  |-  ( ( 1  e.  RR  /\  ( cos `  A )  e.  RR )  -> 
( 1  -  ( cos `  A ) )  e.  RR )
10198, 99, 100sylancr 663 . . . 4  |-  ( A  e.  ( 0 [,) pi )  ->  (
1  -  ( cos `  A ) )  e.  RR )
102101rehalfcld 10785 . . 3  |-  ( A  e.  ( 0 [,) pi )  ->  (
( 1  -  ( cos `  A ) )  /  2 )  e.  RR )
103 cosbnd 13777 . . . . . 6  |-  ( A  e.  RR  ->  ( -u 1  <_  ( cos `  A )  /\  ( cos `  A )  <_ 
1 ) )
104103simprd 463 . . . . 5  |-  ( A  e.  RR  ->  ( cos `  A )  <_ 
1 )
105 recoscl 13737 . . . . . 6  |-  ( A  e.  RR  ->  ( cos `  A )  e.  RR )
106 subge0 10065 . . . . . . 7  |-  ( ( 1  e.  RR  /\  ( cos `  A )  e.  RR )  -> 
( 0  <_  (
1  -  ( cos `  A ) )  <->  ( cos `  A )  <_  1
) )
107 halfnneg2 10770 . . . . . . . 8  |-  ( ( 1  -  ( cos `  A ) )  e.  RR  ->  ( 0  <_  ( 1  -  ( cos `  A
) )  <->  0  <_  ( ( 1  -  ( cos `  A ) )  /  2 ) ) )
108100, 107syl 16 . . . . . . 7  |-  ( ( 1  e.  RR  /\  ( cos `  A )  e.  RR )  -> 
( 0  <_  (
1  -  ( cos `  A ) )  <->  0  <_  ( ( 1  -  ( cos `  A ) )  /  2 ) ) )
109106, 108bitr3d 255 . . . . . 6  |-  ( ( 1  e.  RR  /\  ( cos `  A )  e.  RR )  -> 
( ( cos `  A
)  <_  1  <->  0  <_  ( ( 1  -  ( cos `  A ) )  /  2 ) ) )
11098, 105, 109sylancr 663 . . . . 5  |-  ( A  e.  RR  ->  (
( cos `  A
)  <_  1  <->  0  <_  ( ( 1  -  ( cos `  A ) )  /  2 ) ) )
111104, 110mpbid 210 . . . 4  |-  ( A  e.  RR  ->  0  <_  ( ( 1  -  ( cos `  A
) )  /  2
) )
1126, 111syl 16 . . 3  |-  ( A  e.  ( 0 [,) pi )  ->  0  <_  ( ( 1  -  ( cos `  A
) )  /  2
) )
113 readdcl 9575 . . . . . 6  |-  ( ( 1  e.  RR  /\  ( cos `  A )  e.  RR )  -> 
( 1  +  ( cos `  A ) )  e.  RR )
11498, 99, 113sylancr 663 . . . . 5  |-  ( A  e.  ( 0 [,) pi )  ->  (
1  +  ( cos `  A ) )  e.  RR )
115103simpld 459 . . . . . . . 8  |-  ( A  e.  RR  ->  -u 1  <_  ( cos `  A
) )
11698renegcli 9880 . . . . . . . . . 10  |-  -u 1  e.  RR
117 subge0 10065 . . . . . . . . . 10  |-  ( ( ( cos `  A
)  e.  RR  /\  -u 1  e.  RR )  ->  ( 0  <_ 
( ( cos `  A
)  -  -u 1
)  <->  -u 1  <_  ( cos `  A ) ) )
118105, 116, 117sylancl 662 . . . . . . . . 9  |-  ( A  e.  RR  ->  (
0  <_  ( ( cos `  A )  -  -u 1 )  <->  -u 1  <_ 
( cos `  A
) ) )
119 recn 9582 . . . . . . . . . . . 12  |-  ( A  e.  RR  ->  A  e.  CC )
120119coscld 13727 . . . . . . . . . . 11  |-  ( A  e.  RR  ->  ( cos `  A )  e.  CC )
121 ax-1cn 9550 . . . . . . . . . . 11  |-  1  e.  CC
122 subneg 9868 . . . . . . . . . . . 12  |-  ( ( ( cos `  A
)  e.  CC  /\  1  e.  CC )  ->  ( ( cos `  A
)  -  -u 1
)  =  ( ( cos `  A )  +  1 ) )
123 addcom 9765 . . . . . . . . . . . 12  |-  ( ( ( cos `  A
)  e.  CC  /\  1  e.  CC )  ->  ( ( cos `  A
)  +  1 )  =  ( 1  +  ( cos `  A
) ) )
124122, 123eqtrd 2508 . . . . . . . . . . 11  |-  ( ( ( cos `  A
)  e.  CC  /\  1  e.  CC )  ->  ( ( cos `  A
)  -  -u 1
)  =  ( 1  +  ( cos `  A
) ) )
125120, 121, 124sylancl 662 . . . . . . . . . 10  |-  ( A  e.  RR  ->  (
( cos `  A
)  -  -u 1
)  =  ( 1  +  ( cos `  A
) ) )
126125breq2d 4459 . . . . . . . . 9  |-  ( A  e.  RR  ->  (
0  <_  ( ( cos `  A )  -  -u 1 )  <->  0  <_  ( 1  +  ( cos `  A ) ) ) )
127118, 126bitr3d 255 . . . . . . . 8  |-  ( A  e.  RR  ->  ( -u 1  <_  ( cos `  A )  <->  0  <_  ( 1  +  ( cos `  A ) ) ) )
128115, 127mpbid 210 . . . . . . 7  |-  ( A  e.  RR  ->  0  <_  ( 1  +  ( cos `  A ) ) )
1296, 128syl 16 . . . . . 6  |-  ( A  e.  ( 0 [,) pi )  ->  0  <_  ( 1  +  ( cos `  A ) ) )
130 snunioo 11646 . . . . . . . . . 10  |-  ( ( 0  e.  RR*  /\  pi  e.  RR*  /\  0  < 
pi )  ->  ( { 0 }  u.  ( 0 (,) pi ) )  =  ( 0 [,) pi ) )
13155, 3, 13, 130mp3an 1324 . . . . . . . . 9  |-  ( { 0 }  u.  (
0 (,) pi ) )  =  ( 0 [,) pi )
132131eleq2i 2545 . . . . . . . 8  |-  ( A  e.  ( { 0 }  u.  ( 0 (,) pi ) )  <-> 
A  e.  ( 0 [,) pi ) )
133 elun 3645 . . . . . . . 8  |-  ( A  e.  ( { 0 }  u.  ( 0 (,) pi ) )  <-> 
( A  e.  {
0 }  \/  A  e.  ( 0 (,) pi ) ) )
134132, 133bitr3i 251 . . . . . . 7  |-  ( A  e.  ( 0 [,) pi )  <->  ( A  e.  { 0 }  \/  A  e.  ( 0 (,) pi ) ) )
135 elsni 4052 . . . . . . . . 9  |-  ( A  e.  { 0 }  ->  A  =  0 )
136 fveq2 5866 . . . . . . . . . . . . 13  |-  ( A  =  0  ->  ( cos `  A )  =  ( cos `  0
) )
137 cos0 13746 . . . . . . . . . . . . 13  |-  ( cos `  0 )  =  1
138136, 137syl6eq 2524 . . . . . . . . . . . 12  |-  ( A  =  0  ->  ( cos `  A )  =  1 )
139138oveq2d 6300 . . . . . . . . . . 11  |-  ( A  =  0  ->  (
1  +  ( cos `  A ) )  =  ( 1  +  1 ) )
140 df-2 10594 . . . . . . . . . . 11  |-  2  =  ( 1  +  1 )
141139, 140syl6eqr 2526 . . . . . . . . . 10  |-  ( A  =  0  ->  (
1  +  ( cos `  A ) )  =  2 )
14228a1i 11 . . . . . . . . . 10  |-  ( A  =  0  ->  2  =/=  0 )
143141, 142eqnetrd 2760 . . . . . . . . 9  |-  ( A  =  0  ->  (
1  +  ( cos `  A ) )  =/=  0 )
144135, 143syl 16 . . . . . . . 8  |-  ( A  e.  { 0 }  ->  ( 1  +  ( cos `  A
) )  =/=  0
)
145 sinq12gt0 22661 . . . . . . . . 9  |-  ( A  e.  ( 0 (,) pi )  ->  0  <  ( sin `  A
) )
146 ltne 9681 . . . . . . . . . . 11  |-  ( ( 0  e.  RR  /\  0  <  ( sin `  A
) )  ->  ( sin `  A )  =/=  0 )
1471, 146mpan 670 . . . . . . . . . 10  |-  ( 0  <  ( sin `  A
)  ->  ( sin `  A )  =/=  0
)
148 elioore 11559 . . . . . . . . . . . . 13  |-  ( A  e.  ( 0 (,) pi )  ->  A  e.  RR )
149148recnd 9622 . . . . . . . . . . . 12  |-  ( A  e.  ( 0 (,) pi )  ->  A  e.  CC )
150 oveq1 6291 . . . . . . . . . . . . . 14  |-  ( -u
1  =  ( cos `  A )  ->  ( -u 1 ^ 2 )  =  ( ( cos `  A ) ^ 2 ) )
151150a1i 11 . . . . . . . . . . . . 13  |-  ( A  e.  CC  ->  ( -u 1  =  ( cos `  A )  ->  ( -u 1 ^ 2 )  =  ( ( cos `  A ) ^ 2 ) ) )
152 df-neg 9808 . . . . . . . . . . . . . . 15  |-  -u 1  =  ( 0  -  1 )
153152eqeq1i 2474 . . . . . . . . . . . . . 14  |-  ( -u
1  =  ( cos `  A )  <->  ( 0  -  1 )  =  ( cos `  A
) )
154 coscl 13723 . . . . . . . . . . . . . . 15  |-  ( A  e.  CC  ->  ( cos `  A )  e.  CC )
155 0cn 9588 . . . . . . . . . . . . . . . 16  |-  0  e.  CC
156 subadd 9823 . . . . . . . . . . . . . . . 16  |-  ( ( 0  e.  CC  /\  1  e.  CC  /\  ( cos `  A )  e.  CC )  ->  (
( 0  -  1 )  =  ( cos `  A )  <->  ( 1  +  ( cos `  A
) )  =  0 ) )
157155, 121, 156mp3an12 1314 . . . . . . . . . . . . . . 15  |-  ( ( cos `  A )  e.  CC  ->  (
( 0  -  1 )  =  ( cos `  A )  <->  ( 1  +  ( cos `  A
) )  =  0 ) )
158154, 157syl 16 . . . . . . . . . . . . . 14  |-  ( A  e.  CC  ->  (
( 0  -  1 )  =  ( cos `  A )  <->  ( 1  +  ( cos `  A
) )  =  0 ) )
159153, 158syl5bb 257 . . . . . . . . . . . . 13  |-  ( A  e.  CC  ->  ( -u 1  =  ( cos `  A )  <->  ( 1  +  ( cos `  A
) )  =  0 ) )
160 sincl 13722 . . . . . . . . . . . . . . . 16  |-  ( A  e.  CC  ->  ( sin `  A )  e.  CC )
161160sqcld 12276 . . . . . . . . . . . . . . 15  |-  ( A  e.  CC  ->  (
( sin `  A
) ^ 2 )  e.  CC )
162 0cnd 9589 . . . . . . . . . . . . . . 15  |-  ( A  e.  CC  ->  0  e.  CC )
163154sqcld 12276 . . . . . . . . . . . . . . 15  |-  ( A  e.  CC  ->  (
( cos `  A
) ^ 2 )  e.  CC )
164161, 162, 163addcan2d 9783 . . . . . . . . . . . . . 14  |-  ( A  e.  CC  ->  (
( ( ( sin `  A ) ^ 2 )  +  ( ( cos `  A ) ^ 2 ) )  =  ( 0  +  ( ( cos `  A
) ^ 2 ) )  <->  ( ( sin `  A ) ^ 2 )  =  0 ) )
165 sincossq 13772 . . . . . . . . . . . . . . . 16  |-  ( A  e.  CC  ->  (
( ( sin `  A
) ^ 2 )  +  ( ( cos `  A ) ^ 2 ) )  =  1 )
166 neg1sqe1 12231 . . . . . . . . . . . . . . . 16  |-  ( -u
1 ^ 2 )  =  1
167165, 166syl6eqr 2526 . . . . . . . . . . . . . . 15  |-  ( A  e.  CC  ->  (
( ( sin `  A
) ^ 2 )  +  ( ( cos `  A ) ^ 2 ) )  =  (
-u 1 ^ 2 ) )
168163addid2d 9780 . . . . . . . . . . . . . . 15  |-  ( A  e.  CC  ->  (
0  +  ( ( cos `  A ) ^ 2 ) )  =  ( ( cos `  A ) ^ 2 ) )
169167, 168eqeq12d 2489 . . . . . . . . . . . . . 14  |-  ( A  e.  CC  ->  (
( ( ( sin `  A ) ^ 2 )  +  ( ( cos `  A ) ^ 2 ) )  =  ( 0  +  ( ( cos `  A
) ^ 2 ) )  <->  ( -u 1 ^ 2 )  =  ( ( cos `  A
) ^ 2 ) ) )
170 sqeq0 12200 . . . . . . . . . . . . . . 15  |-  ( ( sin `  A )  e.  CC  ->  (
( ( sin `  A
) ^ 2 )  =  0  <->  ( sin `  A )  =  0 ) )
171160, 170syl 16 . . . . . . . . . . . . . 14  |-  ( A  e.  CC  ->  (
( ( sin `  A
) ^ 2 )  =  0  <->  ( sin `  A )  =  0 ) )
172164, 169, 1713bitr3d 283 . . . . . . . . . . . . 13  |-  ( A  e.  CC  ->  (
( -u 1 ^ 2 )  =  ( ( cos `  A ) ^ 2 )  <->  ( sin `  A )  =  0 ) )
173151, 159, 1723imtr3d 267 . . . . . . . . . . . 12  |-  ( A  e.  CC  ->  (
( 1  +  ( cos `  A ) )  =  0  -> 
( sin `  A
)  =  0 ) )
174149, 173syl 16 . . . . . . . . . . 11  |-  ( A  e.  ( 0 (,) pi )  ->  (
( 1  +  ( cos `  A ) )  =  0  -> 
( sin `  A
)  =  0 ) )
175174necon3d 2691 . . . . . . . . . 10  |-  ( A  e.  ( 0 (,) pi )  ->  (
( sin `  A
)  =/=  0  -> 
( 1  +  ( cos `  A ) )  =/=  0 ) )
176147, 175syl5 32 . . . . . . . . 9  |-  ( A  e.  ( 0 (,) pi )  ->  (
0  <  ( sin `  A )  ->  (
1  +  ( cos `  A ) )  =/=  0 ) )
177145, 176mpd 15 . . . . . . . 8  |-  ( A  e.  ( 0 (,) pi )  ->  (
1  +  ( cos `  A ) )  =/=  0 )
178144, 177jaoi 379 . . . . . . 7  |-  ( ( A  e.  { 0 }  \/  A  e.  ( 0 (,) pi ) )  ->  (
1  +  ( cos `  A ) )  =/=  0 )
179134, 178sylbi 195 . . . . . 6  |-  ( A  e.  ( 0 [,) pi )  ->  (
1  +  ( cos `  A ) )  =/=  0 )
180114, 129, 179ne0gt0d 9721 . . . . 5  |-  ( A  e.  ( 0 [,) pi )  ->  0  <  ( 1  +  ( cos `  A ) ) )
181114, 180elrpd 11254 . . . 4  |-  ( A  e.  ( 0 [,) pi )  ->  (
1  +  ( cos `  A ) )  e.  RR+ )
182181rphalfcld 11268 . . 3  |-  ( A  e.  ( 0 [,) pi )  ->  (
( 1  +  ( cos `  A ) )  /  2 )  e.  RR+ )
183102, 112, 182sqrtdivd 13218 . 2  |-  ( A  e.  ( 0 [,) pi )  ->  ( sqr `  ( ( ( 1  -  ( cos `  A ) )  / 
2 )  /  (
( 1  +  ( cos `  A ) )  /  2 ) ) )  =  ( ( sqr `  (
( 1  -  ( cos `  A ) )  /  2 ) )  /  ( sqr `  (
( 1  +  ( cos `  A ) )  /  2 ) ) ) )
1847coscld 13727 . . . . 5  |-  ( A  e.  ( 0 [,) pi )  ->  ( cos `  A )  e.  CC )
185 subcl 9819 . . . . 5  |-  ( ( 1  e.  CC  /\  ( cos `  A )  e.  CC )  -> 
( 1  -  ( cos `  A ) )  e.  CC )
186121, 184, 185sylancr 663 . . . 4  |-  ( A  e.  ( 0 [,) pi )  ->  (
1  -  ( cos `  A ) )  e.  CC )
187 addcl 9574 . . . . 5  |-  ( ( 1  e.  CC  /\  ( cos `  A )  e.  CC )  -> 
( 1  +  ( cos `  A ) )  e.  CC )
188121, 184, 187sylancr 663 . . . 4  |-  ( A  e.  ( 0 [,) pi )  ->  (
1  +  ( cos `  A ) )  e.  CC )
189 2cnne0 10750 . . . . 5  |-  ( 2  e.  CC  /\  2  =/=  0 )
190 divcan7 10253 . . . . 5  |-  ( ( ( 1  -  ( cos `  A ) )  e.  CC  /\  (
( 1  +  ( cos `  A ) )  e.  CC  /\  ( 1  +  ( cos `  A ) )  =/=  0 )  /\  ( 2  e.  CC  /\  2  =/=  0 ) )  -> 
( ( ( 1  -  ( cos `  A
) )  /  2
)  /  ( ( 1  +  ( cos `  A ) )  / 
2 ) )  =  ( ( 1  -  ( cos `  A
) )  /  (
1  +  ( cos `  A ) ) ) )
191189, 190mp3an3 1313 . . . 4  |-  ( ( ( 1  -  ( cos `  A ) )  e.  CC  /\  (
( 1  +  ( cos `  A ) )  e.  CC  /\  ( 1  +  ( cos `  A ) )  =/=  0 ) )  ->  ( (
( 1  -  ( cos `  A ) )  /  2 )  / 
( ( 1  +  ( cos `  A
) )  /  2
) )  =  ( ( 1  -  ( cos `  A ) )  /  ( 1  +  ( cos `  A
) ) ) )
192186, 188, 179, 191syl12anc 1226 . . 3  |-  ( A  e.  ( 0 [,) pi )  ->  (
( ( 1  -  ( cos `  A
) )  /  2
)  /  ( ( 1  +  ( cos `  A ) )  / 
2 ) )  =  ( ( 1  -  ( cos `  A
) )  /  (
1  +  ( cos `  A ) ) ) )
193192fveq2d 5870 . 2  |-  ( A  e.  ( 0 [,) pi )  ->  ( sqr `  ( ( ( 1  -  ( cos `  A ) )  / 
2 )  /  (
( 1  +  ( cos `  A ) )  /  2 ) ) )  =  ( sqr `  ( ( 1  -  ( cos `  A ) )  / 
( 1  +  ( cos `  A ) ) ) ) )
19497, 183, 1933eqtr2d 2514 1  |-  ( A  e.  ( 0 [,) pi )  ->  ( tan `  ( A  / 
2 ) )  =  ( sqr `  (
( 1  -  ( cos `  A ) )  /  ( 1  +  ( cos `  A
) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    /\ w3a 973    = wceq 1379    e. wcel 1767    =/= wne 2662    u. cun 3474    C_ wss 3476   {csn 4027   class class class wbr 4447   ` cfv 5588  (class class class)co 6284   CCcc 9490   RRcr 9491   0cc0 9492   1c1 9493    + caddc 9495    x. cmul 9497   RR*cxr 9627    < clt 9628    <_ cle 9629    - cmin 9805   -ucneg 9806    / cdiv 10206   2c2 10585   (,)cioo 11529   [,)cico 11531   [,]cicc 11532   ^cexp 12134   Recre 12893   sqrcsqrt 13029   sincsin 13661   cosccos 13662   tanctan 13663   picpi 13664
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6576  ax-inf2 8058  ax-cnex 9548  ax-resscn 9549  ax-1cn 9550  ax-icn 9551  ax-addcl 9552  ax-addrcl 9553  ax-mulcl 9554  ax-mulrcl 9555  ax-mulcom 9556  ax-addass 9557  ax-mulass 9558  ax-distr 9559  ax-i2m1 9560  ax-1ne0 9561  ax-1rid 9562  ax-rnegex 9563  ax-rrecex 9564  ax-cnre 9565  ax-pre-lttri 9566  ax-pre-lttrn 9567  ax-pre-ltadd 9568  ax-pre-mulgt0 9569  ax-pre-sup 9570  ax-addf 9571  ax-mulf 9572
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-fal 1385  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-int 4283  df-iun 4327  df-iin 4328  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-se 4839  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5551  df-fun 5590  df-fn 5591  df-f 5592  df-f1 5593  df-fo 5594  df-f1o 5595  df-fv 5596  df-isom 5597  df-riota 6245  df-ov 6287  df-oprab 6288  df-mpt2 6289  df-of 6524  df-om 6685  df-1st 6784  df-2nd 6785  df-supp 6902  df-recs 7042  df-rdg 7076  df-1o 7130  df-2o 7131  df-oadd 7134  df-er 7311  df-map 7422  df-pm 7423  df-ixp 7470  df-en 7517  df-dom 7518  df-sdom 7519  df-fin 7520  df-fsupp 7830  df-fi 7871  df-sup 7901  df-oi 7935  df-card 8320  df-cda 8548  df-pnf 9630  df-mnf 9631  df-xr 9632  df-ltxr 9633  df-le 9634  df-sub 9807  df-neg 9808  df-div 10207  df-nn 10537  df-2 10594  df-3 10595  df-4 10596  df-5 10597  df-6 10598  df-7 10599  df-8 10600  df-9 10601  df-10 10602  df-n0 10796  df-z 10865  df-dec 10977  df-uz 11083  df-q 11183  df-rp 11221  df-xneg 11318  df-xadd 11319  df-xmul 11320  df-ioo 11533  df-ioc 11534  df-ico 11535  df-icc 11536  df-fz 11673  df-fzo 11793  df-fl 11897  df-mod 11965  df-seq 12076  df-exp 12135  df-fac 12322  df-bc 12349  df-hash 12374  df-shft 12863  df-cj 12895  df-re 12896  df-im 12897  df-sqrt 13031  df-abs 13032  df-limsup 13257  df-clim 13274  df-rlim 13275  df-sum 13472  df-ef 13665  df-sin 13667  df-cos 13668  df-tan 13669  df-pi 13670  df-struct 14492  df-ndx 14493  df-slot 14494  df-base 14495  df-sets 14496  df-ress 14497  df-plusg 14568  df-mulr 14569  df-starv 14570  df-sca 14571  df-vsca 14572  df-ip 14573  df-tset 14574  df-ple 14575  df-ds 14577  df-unif 14578  df-hom 14579  df-cco 14580  df-rest 14678  df-topn 14679  df-0g 14697  df-gsum 14698  df-topgen 14699  df-pt 14700  df-prds 14703  df-xrs 14757  df-qtop 14762  df-imas 14763  df-xps 14765  df-mre 14841  df-mrc 14842  df-acs 14844  df-mnd 15732  df-submnd 15787  df-mulg 15870  df-cntz 16160  df-cmn 16606  df-psmet 18210  df-xmet 18211  df-met 18212  df-bl 18213  df-mopn 18214  df-fbas 18215  df-fg 18216  df-cnfld 18220  df-top 19194  df-bases 19196  df-topon 19197  df-topsp 19198  df-cld 19314  df-ntr 19315  df-cls 19316  df-nei 19393  df-lp 19431  df-perf 19432  df-cn 19522  df-cnp 19523  df-haus 19610  df-tx 19826  df-hmeo 20019  df-fil 20110  df-fm 20202  df-flim 20203  df-flf 20204  df-xms 20586  df-ms 20587  df-tms 20588  df-cncf 21145  df-limc 22033  df-dv 22034
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator