Users' Mathboxes Mathbox for Jeff Hankins < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tailfb Structured version   Visualization version   Unicode version

Theorem tailfb 31104
Description: The collection of tails of a directed set is a filter base. (Contributed by Jeff Hankins, 25-Nov-2009.) (Revised by Mario Carneiro, 8-Aug-2015.)
Hypothesis
Ref Expression
tailfb.1  |-  X  =  dom  D
Assertion
Ref Expression
tailfb  |-  ( ( D  e.  DirRel  /\  X  =/=  (/) )  ->  ran  ( tail `  D )  e.  ( fBas `  X
) )

Proof of Theorem tailfb
Dummy variables  v  u  w  x  y 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tailfb.1 . . . . 5  |-  X  =  dom  D
21tailf 31102 . . . 4  |-  ( D  e.  DirRel  ->  ( tail `  D
) : X --> ~P X
)
3 frn 5747 . . . 4  |-  ( (
tail `  D ) : X --> ~P X  ->  ran  ( tail `  D
)  C_  ~P X
)
42, 3syl 17 . . 3  |-  ( D  e.  DirRel  ->  ran  ( tail `  D )  C_  ~P X )
54adantr 472 . 2  |-  ( ( D  e.  DirRel  /\  X  =/=  (/) )  ->  ran  ( tail `  D )  C_ 
~P X )
6 n0 3732 . . . . 5  |-  ( X  =/=  (/)  <->  E. x  x  e.  X )
7 ffn 5739 . . . . . . . 8  |-  ( (
tail `  D ) : X --> ~P X  -> 
( tail `  D )  Fn  X )
8 fnfvelrn 6034 . . . . . . . . 9  |-  ( ( ( tail `  D
)  Fn  X  /\  x  e.  X )  ->  ( ( tail `  D
) `  x )  e.  ran  ( tail `  D
) )
98ex 441 . . . . . . . 8  |-  ( (
tail `  D )  Fn  X  ->  ( x  e.  X  ->  (
( tail `  D ) `  x )  e.  ran  ( tail `  D )
) )
102, 7, 93syl 18 . . . . . . 7  |-  ( D  e.  DirRel  ->  ( x  e.  X  ->  ( ( tail `  D ) `  x )  e.  ran  ( tail `  D )
) )
11 ne0i 3728 . . . . . . 7  |-  ( ( ( tail `  D
) `  x )  e.  ran  ( tail `  D
)  ->  ran  ( tail `  D )  =/=  (/) )
1210, 11syl6 33 . . . . . 6  |-  ( D  e.  DirRel  ->  ( x  e.  X  ->  ran  ( tail `  D )  =/=  (/) ) )
1312exlimdv 1787 . . . . 5  |-  ( D  e.  DirRel  ->  ( E. x  x  e.  X  ->  ran  ( tail `  D
)  =/=  (/) ) )
146, 13syl5bi 225 . . . 4  |-  ( D  e.  DirRel  ->  ( X  =/=  (/)  ->  ran  ( tail `  D )  =/=  (/) ) )
1514imp 436 . . 3  |-  ( ( D  e.  DirRel  /\  X  =/=  (/) )  ->  ran  ( tail `  D )  =/=  (/) )
161tailini 31103 . . . . . . . 8  |-  ( ( D  e.  DirRel  /\  x  e.  X )  ->  x  e.  ( ( tail `  D
) `  x )
)
17 n0i 3727 . . . . . . . 8  |-  ( x  e.  ( ( tail `  D ) `  x
)  ->  -.  (
( tail `  D ) `  x )  =  (/) )
1816, 17syl 17 . . . . . . 7  |-  ( ( D  e.  DirRel  /\  x  e.  X )  ->  -.  ( ( tail `  D
) `  x )  =  (/) )
1918nrexdv 2842 . . . . . 6  |-  ( D  e.  DirRel  ->  -.  E. x  e.  X  ( ( tail `  D ) `  x )  =  (/) )
2019adantr 472 . . . . 5  |-  ( ( D  e.  DirRel  /\  X  =/=  (/) )  ->  -.  E. x  e.  X  ( ( tail `  D
) `  x )  =  (/) )
21 fvelrnb 5926 . . . . . . 7  |-  ( (
tail `  D )  Fn  X  ->  ( (/)  e.  ran  ( tail `  D
)  <->  E. x  e.  X  ( ( tail `  D
) `  x )  =  (/) ) )
222, 7, 213syl 18 . . . . . 6  |-  ( D  e.  DirRel  ->  ( (/)  e.  ran  ( tail `  D )  <->  E. x  e.  X  ( ( tail `  D
) `  x )  =  (/) ) )
2322adantr 472 . . . . 5  |-  ( ( D  e.  DirRel  /\  X  =/=  (/) )  ->  ( (/) 
e.  ran  ( tail `  D )  <->  E. x  e.  X  ( ( tail `  D ) `  x )  =  (/) ) )
2420, 23mtbird 308 . . . 4  |-  ( ( D  e.  DirRel  /\  X  =/=  (/) )  ->  -.  (/) 
e.  ran  ( tail `  D ) )
25 df-nel 2644 . . . 4  |-  ( (/)  e/ 
ran  ( tail `  D
)  <->  -.  (/)  e.  ran  ( tail `  D )
)
2624, 25sylibr 217 . . 3  |-  ( ( D  e.  DirRel  /\  X  =/=  (/) )  ->  (/)  e/  ran  ( tail `  D )
)
27 fvelrnb 5926 . . . . . . . 8  |-  ( (
tail `  D )  Fn  X  ->  ( x  e.  ran  ( tail `  D )  <->  E. u  e.  X  ( ( tail `  D ) `  u )  =  x ) )
28 fvelrnb 5926 . . . . . . . 8  |-  ( (
tail `  D )  Fn  X  ->  ( y  e.  ran  ( tail `  D )  <->  E. v  e.  X  ( ( tail `  D ) `  v )  =  y ) )
2927, 28anbi12d 725 . . . . . . 7  |-  ( (
tail `  D )  Fn  X  ->  ( ( x  e.  ran  ( tail `  D )  /\  y  e.  ran  ( tail `  D ) )  <->  ( E. u  e.  X  (
( tail `  D ) `  u )  =  x  /\  E. v  e.  X  ( ( tail `  D ) `  v
)  =  y ) ) )
302, 7, 293syl 18 . . . . . 6  |-  ( D  e.  DirRel  ->  ( ( x  e.  ran  ( tail `  D )  /\  y  e.  ran  ( tail `  D
) )  <->  ( E. u  e.  X  (
( tail `  D ) `  u )  =  x  /\  E. v  e.  X  ( ( tail `  D ) `  v
)  =  y ) ) )
31 reeanv 2944 . . . . . . 7  |-  ( E. u  e.  X  E. v  e.  X  (
( ( tail `  D
) `  u )  =  x  /\  (
( tail `  D ) `  v )  =  y )  <->  ( E. u  e.  X  ( ( tail `  D ) `  u )  =  x  /\  E. v  e.  X  ( ( tail `  D ) `  v
)  =  y ) )
321dirge 16561 . . . . . . . . . . 11  |-  ( ( D  e.  DirRel  /\  u  e.  X  /\  v  e.  X )  ->  E. w  e.  X  ( u D w  /\  v D w ) )
33323expb 1232 . . . . . . . . . 10  |-  ( ( D  e.  DirRel  /\  (
u  e.  X  /\  v  e.  X )
)  ->  E. w  e.  X  ( u D w  /\  v D w ) )
342, 7syl 17 . . . . . . . . . . . . 13  |-  ( D  e.  DirRel  ->  ( tail `  D
)  Fn  X )
35 fnfvelrn 6034 . . . . . . . . . . . . 13  |-  ( ( ( tail `  D
)  Fn  X  /\  w  e.  X )  ->  ( ( tail `  D
) `  w )  e.  ran  ( tail `  D
) )
3634, 35sylan 479 . . . . . . . . . . . 12  |-  ( ( D  e.  DirRel  /\  w  e.  X )  ->  (
( tail `  D ) `  w )  e.  ran  ( tail `  D )
)
3736ad2ant2r 761 . . . . . . . . . . 11  |-  ( ( ( D  e.  DirRel  /\  ( u  e.  X  /\  v  e.  X
) )  /\  (
w  e.  X  /\  ( u D w  /\  v D w ) ) )  -> 
( ( tail `  D
) `  w )  e.  ran  ( tail `  D
) )
38 vex 3034 . . . . . . . . . . . . . . . . . . . . . 22  |-  x  e. 
_V
39 dirtr 16560 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( D  e.  DirRel  /\  x  e.  _V )  /\  ( u D w  /\  w D x ) )  ->  u D x )
4039exp32 616 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( D  e.  DirRel  /\  x  e.  _V )  ->  (
u D w  -> 
( w D x  ->  u D x ) ) )
4138, 40mpan2 685 . . . . . . . . . . . . . . . . . . . . 21  |-  ( D  e.  DirRel  ->  ( u D w  ->  ( w D x  ->  u D x ) ) )
4241com23 80 . . . . . . . . . . . . . . . . . . . 20  |-  ( D  e.  DirRel  ->  ( w D x  ->  ( u D w  ->  u D x ) ) )
4342imp 436 . . . . . . . . . . . . . . . . . . 19  |-  ( ( D  e.  DirRel  /\  w D x )  -> 
( u D w  ->  u D x ) )
4443ad2ant2rl 763 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( D  e.  DirRel  /\  ( u  e.  X  /\  v  e.  X
) )  /\  (
w  e.  X  /\  w D x ) )  ->  ( u D w  ->  u D x ) )
45 dirtr 16560 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( D  e.  DirRel  /\  x  e.  _V )  /\  ( v D w  /\  w D x ) )  ->  v D x )
4645exp32 616 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( D  e.  DirRel  /\  x  e.  _V )  ->  (
v D w  -> 
( w D x  ->  v D x ) ) )
4738, 46mpan2 685 . . . . . . . . . . . . . . . . . . . . 21  |-  ( D  e.  DirRel  ->  ( v D w  ->  ( w D x  ->  v D x ) ) )
4847com23 80 . . . . . . . . . . . . . . . . . . . 20  |-  ( D  e.  DirRel  ->  ( w D x  ->  ( v D w  ->  v D x ) ) )
4948imp 436 . . . . . . . . . . . . . . . . . . 19  |-  ( ( D  e.  DirRel  /\  w D x )  -> 
( v D w  ->  v D x ) )
5049ad2ant2rl 763 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( D  e.  DirRel  /\  ( u  e.  X  /\  v  e.  X
) )  /\  (
w  e.  X  /\  w D x ) )  ->  ( v D w  ->  v D x ) )
5144, 50anim12d 572 . . . . . . . . . . . . . . . . 17  |-  ( ( ( D  e.  DirRel  /\  ( u  e.  X  /\  v  e.  X
) )  /\  (
w  e.  X  /\  w D x ) )  ->  ( ( u D w  /\  v D w )  -> 
( u D x  /\  v D x ) ) )
5251expr 626 . . . . . . . . . . . . . . . 16  |-  ( ( ( D  e.  DirRel  /\  ( u  e.  X  /\  v  e.  X
) )  /\  w  e.  X )  ->  (
w D x  -> 
( ( u D w  /\  v D w )  ->  (
u D x  /\  v D x ) ) ) )
5352com23 80 . . . . . . . . . . . . . . 15  |-  ( ( ( D  e.  DirRel  /\  ( u  e.  X  /\  v  e.  X
) )  /\  w  e.  X )  ->  (
( u D w  /\  v D w )  ->  ( w D x  ->  ( u D x  /\  v D x ) ) ) )
5453impr 631 . . . . . . . . . . . . . 14  |-  ( ( ( D  e.  DirRel  /\  ( u  e.  X  /\  v  e.  X
) )  /\  (
w  e.  X  /\  ( u D w  /\  v D w ) ) )  -> 
( w D x  ->  ( u D x  /\  v D x ) ) )
551eltail 31101 . . . . . . . . . . . . . . . 16  |-  ( ( D  e.  DirRel  /\  w  e.  X  /\  x  e.  _V )  ->  (
x  e.  ( (
tail `  D ) `  w )  <->  w D x ) )
5638, 55mp3an3 1379 . . . . . . . . . . . . . . 15  |-  ( ( D  e.  DirRel  /\  w  e.  X )  ->  (
x  e.  ( (
tail `  D ) `  w )  <->  w D x ) )
5756ad2ant2r 761 . . . . . . . . . . . . . 14  |-  ( ( ( D  e.  DirRel  /\  ( u  e.  X  /\  v  e.  X
) )  /\  (
w  e.  X  /\  ( u D w  /\  v D w ) ) )  -> 
( x  e.  ( ( tail `  D
) `  w )  <->  w D x ) )
581eltail 31101 . . . . . . . . . . . . . . . . . 18  |-  ( ( D  e.  DirRel  /\  u  e.  X  /\  x  e.  _V )  ->  (
x  e.  ( (
tail `  D ) `  u )  <->  u D x ) )
5938, 58mp3an3 1379 . . . . . . . . . . . . . . . . 17  |-  ( ( D  e.  DirRel  /\  u  e.  X )  ->  (
x  e.  ( (
tail `  D ) `  u )  <->  u D x ) )
6059adantrr 731 . . . . . . . . . . . . . . . 16  |-  ( ( D  e.  DirRel  /\  (
u  e.  X  /\  v  e.  X )
)  ->  ( x  e.  ( ( tail `  D
) `  u )  <->  u D x ) )
611eltail 31101 . . . . . . . . . . . . . . . . . 18  |-  ( ( D  e.  DirRel  /\  v  e.  X  /\  x  e.  _V )  ->  (
x  e.  ( (
tail `  D ) `  v )  <->  v D x ) )
6238, 61mp3an3 1379 . . . . . . . . . . . . . . . . 17  |-  ( ( D  e.  DirRel  /\  v  e.  X )  ->  (
x  e.  ( (
tail `  D ) `  v )  <->  v D x ) )
6362adantrl 730 . . . . . . . . . . . . . . . 16  |-  ( ( D  e.  DirRel  /\  (
u  e.  X  /\  v  e.  X )
)  ->  ( x  e.  ( ( tail `  D
) `  v )  <->  v D x ) )
6460, 63anbi12d 725 . . . . . . . . . . . . . . 15  |-  ( ( D  e.  DirRel  /\  (
u  e.  X  /\  v  e.  X )
)  ->  ( (
x  e.  ( (
tail `  D ) `  u )  /\  x  e.  ( ( tail `  D
) `  v )
)  <->  ( u D x  /\  v D x ) ) )
6564adantr 472 . . . . . . . . . . . . . 14  |-  ( ( ( D  e.  DirRel  /\  ( u  e.  X  /\  v  e.  X
) )  /\  (
w  e.  X  /\  ( u D w  /\  v D w ) ) )  -> 
( ( x  e.  ( ( tail `  D
) `  u )  /\  x  e.  (
( tail `  D ) `  v ) )  <->  ( u D x  /\  v D x ) ) )
6654, 57, 653imtr4d 276 . . . . . . . . . . . . 13  |-  ( ( ( D  e.  DirRel  /\  ( u  e.  X  /\  v  e.  X
) )  /\  (
w  e.  X  /\  ( u D w  /\  v D w ) ) )  -> 
( x  e.  ( ( tail `  D
) `  w )  ->  ( x  e.  ( ( tail `  D
) `  u )  /\  x  e.  (
( tail `  D ) `  v ) ) ) )
67 elin 3608 . . . . . . . . . . . . 13  |-  ( x  e.  ( ( (
tail `  D ) `  u )  i^i  (
( tail `  D ) `  v ) )  <->  ( x  e.  ( ( tail `  D
) `  u )  /\  x  e.  (
( tail `  D ) `  v ) ) )
6866, 67syl6ibr 235 . . . . . . . . . . . 12  |-  ( ( ( D  e.  DirRel  /\  ( u  e.  X  /\  v  e.  X
) )  /\  (
w  e.  X  /\  ( u D w  /\  v D w ) ) )  -> 
( x  e.  ( ( tail `  D
) `  w )  ->  x  e.  ( ( ( tail `  D
) `  u )  i^i  ( ( tail `  D
) `  v )
) ) )
6968ssrdv 3424 . . . . . . . . . . 11  |-  ( ( ( D  e.  DirRel  /\  ( u  e.  X  /\  v  e.  X
) )  /\  (
w  e.  X  /\  ( u D w  /\  v D w ) ) )  -> 
( ( tail `  D
) `  w )  C_  ( ( ( tail `  D ) `  u
)  i^i  ( ( tail `  D ) `  v ) ) )
70 sseq1 3439 . . . . . . . . . . . 12  |-  ( z  =  ( ( tail `  D ) `  w
)  ->  ( z  C_  ( ( ( tail `  D ) `  u
)  i^i  ( ( tail `  D ) `  v ) )  <->  ( ( tail `  D ) `  w )  C_  (
( ( tail `  D
) `  u )  i^i  ( ( tail `  D
) `  v )
) ) )
7170rspcev 3136 . . . . . . . . . . 11  |-  ( ( ( ( tail `  D
) `  w )  e.  ran  ( tail `  D
)  /\  ( ( tail `  D ) `  w )  C_  (
( ( tail `  D
) `  u )  i^i  ( ( tail `  D
) `  v )
) )  ->  E. z  e.  ran  ( tail `  D
) z  C_  (
( ( tail `  D
) `  u )  i^i  ( ( tail `  D
) `  v )
) )
7237, 69, 71syl2anc 673 . . . . . . . . . 10  |-  ( ( ( D  e.  DirRel  /\  ( u  e.  X  /\  v  e.  X
) )  /\  (
w  e.  X  /\  ( u D w  /\  v D w ) ) )  ->  E. z  e.  ran  ( tail `  D )
z  C_  ( (
( tail `  D ) `  u )  i^i  (
( tail `  D ) `  v ) ) )
7333, 72rexlimddv 2875 . . . . . . . . 9  |-  ( ( D  e.  DirRel  /\  (
u  e.  X  /\  v  e.  X )
)  ->  E. z  e.  ran  ( tail `  D
) z  C_  (
( ( tail `  D
) `  u )  i^i  ( ( tail `  D
) `  v )
) )
74 ineq1 3618 . . . . . . . . . . . 12  |-  ( ( ( tail `  D
) `  u )  =  x  ->  ( ( ( tail `  D
) `  u )  i^i  ( ( tail `  D
) `  v )
)  =  ( x  i^i  ( ( tail `  D ) `  v
) ) )
7574sseq2d 3446 . . . . . . . . . . 11  |-  ( ( ( tail `  D
) `  u )  =  x  ->  ( z 
C_  ( ( (
tail `  D ) `  u )  i^i  (
( tail `  D ) `  v ) )  <->  z  C_  ( x  i^i  (
( tail `  D ) `  v ) ) ) )
7675rexbidv 2892 . . . . . . . . . 10  |-  ( ( ( tail `  D
) `  u )  =  x  ->  ( E. z  e.  ran  ( tail `  D ) z 
C_  ( ( (
tail `  D ) `  u )  i^i  (
( tail `  D ) `  v ) )  <->  E. z  e.  ran  ( tail `  D
) z  C_  (
x  i^i  ( ( tail `  D ) `  v ) ) ) )
77 ineq2 3619 . . . . . . . . . . . 12  |-  ( ( ( tail `  D
) `  v )  =  y  ->  ( x  i^i  ( ( tail `  D ) `  v
) )  =  ( x  i^i  y ) )
7877sseq2d 3446 . . . . . . . . . . 11  |-  ( ( ( tail `  D
) `  v )  =  y  ->  ( z 
C_  ( x  i^i  ( ( tail `  D
) `  v )
)  <->  z  C_  (
x  i^i  y )
) )
7978rexbidv 2892 . . . . . . . . . 10  |-  ( ( ( tail `  D
) `  v )  =  y  ->  ( E. z  e.  ran  ( tail `  D ) z 
C_  ( x  i^i  ( ( tail `  D
) `  v )
)  <->  E. z  e.  ran  ( tail `  D )
z  C_  ( x  i^i  y ) ) )
8076, 79sylan9bb 714 . . . . . . . . 9  |-  ( ( ( ( tail `  D
) `  u )  =  x  /\  (
( tail `  D ) `  v )  =  y )  ->  ( E. z  e.  ran  ( tail `  D ) z  C_  ( ( ( tail `  D ) `  u
)  i^i  ( ( tail `  D ) `  v ) )  <->  E. z  e.  ran  ( tail `  D
) z  C_  (
x  i^i  y )
) )
8173, 80syl5ibcom 228 . . . . . . . 8  |-  ( ( D  e.  DirRel  /\  (
u  e.  X  /\  v  e.  X )
)  ->  ( (
( ( tail `  D
) `  u )  =  x  /\  (
( tail `  D ) `  v )  =  y )  ->  E. z  e.  ran  ( tail `  D
) z  C_  (
x  i^i  y )
) )
8281rexlimdvva 2878 . . . . . . 7  |-  ( D  e.  DirRel  ->  ( E. u  e.  X  E. v  e.  X  ( (
( tail `  D ) `  u )  =  x  /\  ( ( tail `  D ) `  v
)  =  y )  ->  E. z  e.  ran  ( tail `  D )
z  C_  ( x  i^i  y ) ) )
8331, 82syl5bir 226 . . . . . 6  |-  ( D  e.  DirRel  ->  ( ( E. u  e.  X  ( ( tail `  D
) `  u )  =  x  /\  E. v  e.  X  ( ( tail `  D ) `  v )  =  y )  ->  E. z  e.  ran  ( tail `  D
) z  C_  (
x  i^i  y )
) )
8430, 83sylbid 223 . . . . 5  |-  ( D  e.  DirRel  ->  ( ( x  e.  ran  ( tail `  D )  /\  y  e.  ran  ( tail `  D
) )  ->  E. z  e.  ran  ( tail `  D
) z  C_  (
x  i^i  y )
) )
8584adantr 472 . . . 4  |-  ( ( D  e.  DirRel  /\  X  =/=  (/) )  ->  (
( x  e.  ran  ( tail `  D )  /\  y  e.  ran  ( tail `  D )
)  ->  E. z  e.  ran  ( tail `  D
) z  C_  (
x  i^i  y )
) )
8685ralrimivv 2813 . . 3  |-  ( ( D  e.  DirRel  /\  X  =/=  (/) )  ->  A. x  e.  ran  ( tail `  D
) A. y  e. 
ran  ( tail `  D
) E. z  e. 
ran  ( tail `  D
) z  C_  (
x  i^i  y )
)
8715, 26, 863jca 1210 . 2  |-  ( ( D  e.  DirRel  /\  X  =/=  (/) )  ->  ( ran  ( tail `  D
)  =/=  (/)  /\  (/)  e/  ran  ( tail `  D )  /\  A. x  e.  ran  ( tail `  D ) A. y  e.  ran  ( tail `  D ) E. z  e.  ran  ( tail `  D )
z  C_  ( x  i^i  y ) ) )
88 dmexg 6743 . . . . 5  |-  ( D  e.  DirRel  ->  dom  D  e.  _V )
891, 88syl5eqel 2553 . . . 4  |-  ( D  e.  DirRel  ->  X  e.  _V )
9089adantr 472 . . 3  |-  ( ( D  e.  DirRel  /\  X  =/=  (/) )  ->  X  e.  _V )
91 isfbas2 20928 . . 3  |-  ( X  e.  _V  ->  ( ran  ( tail `  D
)  e.  ( fBas `  X )  <->  ( ran  ( tail `  D )  C_ 
~P X  /\  ( ran  ( tail `  D
)  =/=  (/)  /\  (/)  e/  ran  ( tail `  D )  /\  A. x  e.  ran  ( tail `  D ) A. y  e.  ran  ( tail `  D ) E. z  e.  ran  ( tail `  D )
z  C_  ( x  i^i  y ) ) ) ) )
9290, 91syl 17 . 2  |-  ( ( D  e.  DirRel  /\  X  =/=  (/) )  ->  ( ran  ( tail `  D
)  e.  ( fBas `  X )  <->  ( ran  ( tail `  D )  C_ 
~P X  /\  ( ran  ( tail `  D
)  =/=  (/)  /\  (/)  e/  ran  ( tail `  D )  /\  A. x  e.  ran  ( tail `  D ) A. y  e.  ran  ( tail `  D ) E. z  e.  ran  ( tail `  D )
z  C_  ( x  i^i  y ) ) ) ) )
935, 87, 92mpbir2and 936 1  |-  ( ( D  e.  DirRel  /\  X  =/=  (/) )  ->  ran  ( tail `  D )  e.  ( fBas `  X
) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 189    /\ wa 376    /\ w3a 1007    = wceq 1452   E.wex 1671    e. wcel 1904    =/= wne 2641    e/ wnel 2642   A.wral 2756   E.wrex 2757   _Vcvv 3031    i^i cin 3389    C_ wss 3390   (/)c0 3722   ~Pcpw 3942   class class class wbr 4395   dom cdm 4839   ran crn 4840    Fn wfn 5584   -->wf 5585   ` cfv 5589   DirRelcdir 16552   tailctail 16553   fBascfbas 19035
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-8 1906  ax-9 1913  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451  ax-rep 4508  ax-sep 4518  ax-nul 4527  ax-pow 4579  ax-pr 4639  ax-un 6602
This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-3an 1009  df-tru 1455  df-ex 1672  df-nf 1676  df-sb 1806  df-eu 2323  df-mo 2324  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ne 2643  df-nel 2644  df-ral 2761  df-rex 2762  df-reu 2763  df-rab 2765  df-v 3033  df-sbc 3256  df-csb 3350  df-dif 3393  df-un 3395  df-in 3397  df-ss 3404  df-nul 3723  df-if 3873  df-pw 3944  df-sn 3960  df-pr 3962  df-op 3966  df-uni 4191  df-iun 4271  df-br 4396  df-opab 4455  df-mpt 4456  df-id 4754  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-iota 5553  df-fun 5591  df-fn 5592  df-f 5593  df-f1 5594  df-fo 5595  df-f1o 5596  df-fv 5597  df-dir 16554  df-tail 16555  df-fbas 19044
This theorem is referenced by:  filnetlem4  31108
  Copyright terms: Public domain W3C validator