MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  t1conperf Structured version   Unicode version

Theorem t1conperf 19696
Description: A connected T1 space is perfect, unless it is the topology of a singleton. (Contributed by Mario Carneiro, 26-Dec-2016.)
Hypothesis
Ref Expression
t1conperf.1  |-  X  = 
U. J
Assertion
Ref Expression
t1conperf  |-  ( ( J  e.  Fre  /\  J  e.  Con  /\  -.  X  ~~  1o )  ->  J  e. Perf )

Proof of Theorem t1conperf
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 t1conperf.1 . . . . . . . 8  |-  X  = 
U. J
2 simplr 754 . . . . . . . 8  |-  ( ( ( J  e.  Fre  /\  J  e.  Con )  /\  ( x  e.  X  /\  { x }  e.  J ) )  ->  J  e.  Con )
3 simprr 756 . . . . . . . 8  |-  ( ( ( J  e.  Fre  /\  J  e.  Con )  /\  ( x  e.  X  /\  { x }  e.  J ) )  ->  { x }  e.  J )
4 vex 3109 . . . . . . . . . 10  |-  x  e. 
_V
54snnz 4138 . . . . . . . . 9  |-  { x }  =/=  (/)
65a1i 11 . . . . . . . 8  |-  ( ( ( J  e.  Fre  /\  J  e.  Con )  /\  ( x  e.  X  /\  { x }  e.  J ) )  ->  { x }  =/=  (/) )
71t1sncld 19586 . . . . . . . . 9  |-  ( ( J  e.  Fre  /\  x  e.  X )  ->  { x }  e.  ( Clsd `  J )
)
87ad2ant2r 746 . . . . . . . 8  |-  ( ( ( J  e.  Fre  /\  J  e.  Con )  /\  ( x  e.  X  /\  { x }  e.  J ) )  ->  { x }  e.  ( Clsd `  J )
)
91, 2, 3, 6, 8conclo 19675 . . . . . . 7  |-  ( ( ( J  e.  Fre  /\  J  e.  Con )  /\  ( x  e.  X  /\  { x }  e.  J ) )  ->  { x }  =  X )
104ensn1 7569 . . . . . . 7  |-  { x }  ~~  1o
119, 10syl6eqbrr 4478 . . . . . 6  |-  ( ( ( J  e.  Fre  /\  J  e.  Con )  /\  ( x  e.  X  /\  { x }  e.  J ) )  ->  X  ~~  1o )
1211rexlimdvaa 2949 . . . . 5  |-  ( ( J  e.  Fre  /\  J  e.  Con )  ->  ( E. x  e.  X  { x }  e.  J  ->  X  ~~  1o ) )
1312con3d 133 . . . 4  |-  ( ( J  e.  Fre  /\  J  e.  Con )  ->  ( -.  X  ~~  1o  ->  -.  E. x  e.  X  { x }  e.  J )
)
14 ralnex 2903 . . . 4  |-  ( A. x  e.  X  -.  { x }  e.  J  <->  -. 
E. x  e.  X  { x }  e.  J )
1513, 14syl6ibr 227 . . 3  |-  ( ( J  e.  Fre  /\  J  e.  Con )  ->  ( -.  X  ~~  1o  ->  A. x  e.  X  -.  { x }  e.  J ) )
16 t1top 19590 . . . . 5  |-  ( J  e.  Fre  ->  J  e.  Top )
1716adantr 465 . . . 4  |-  ( ( J  e.  Fre  /\  J  e.  Con )  ->  J  e.  Top )
181isperf3 19413 . . . . 5  |-  ( J  e. Perf 
<->  ( J  e.  Top  /\ 
A. x  e.  X  -.  { x }  e.  J ) )
1918baib 898 . . . 4  |-  ( J  e.  Top  ->  ( J  e. Perf  <->  A. x  e.  X  -.  { x }  e.  J ) )
2017, 19syl 16 . . 3  |-  ( ( J  e.  Fre  /\  J  e.  Con )  ->  ( J  e. Perf  <->  A. x  e.  X  -.  { x }  e.  J )
)
2115, 20sylibrd 234 . 2  |-  ( ( J  e.  Fre  /\  J  e.  Con )  ->  ( -.  X  ~~  1o  ->  J  e. Perf )
)
22213impia 1188 1  |-  ( ( J  e.  Fre  /\  J  e.  Con  /\  -.  X  ~~  1o )  ->  J  e. Perf )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 968    = wceq 1374    e. wcel 1762    =/= wne 2655   A.wral 2807   E.wrex 2808   (/)c0 3778   {csn 4020   U.cuni 4238   class class class wbr 4440   ` cfv 5579   1oc1o 7113    ~~ cen 7503   Topctop 19154   Clsdccld 19276  Perfcperf 19395   Frect1 19567   Conccon 19671
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-8 1764  ax-9 1766  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1961  ax-ext 2438  ax-rep 4551  ax-sep 4561  ax-nul 4569  ax-pow 4618  ax-pr 4679  ax-un 6567
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 970  df-tru 1377  df-ex 1592  df-nf 1595  df-sb 1707  df-eu 2272  df-mo 2273  df-clab 2446  df-cleq 2452  df-clel 2455  df-nfc 2610  df-ne 2657  df-ral 2812  df-rex 2813  df-reu 2814  df-rab 2816  df-v 3108  df-sbc 3325  df-csb 3429  df-dif 3472  df-un 3474  df-in 3476  df-ss 3483  df-nul 3779  df-if 3933  df-pw 4005  df-sn 4021  df-pr 4023  df-op 4027  df-uni 4239  df-int 4276  df-iun 4320  df-iin 4321  df-br 4441  df-opab 4499  df-mpt 4500  df-id 4788  df-suc 4877  df-xp 4998  df-rel 4999  df-cnv 5000  df-co 5001  df-dm 5002  df-rn 5003  df-res 5004  df-ima 5005  df-iota 5542  df-fun 5581  df-fn 5582  df-f 5583  df-f1 5584  df-fo 5585  df-f1o 5586  df-fv 5587  df-1o 7120  df-en 7507  df-top 19159  df-cld 19279  df-ntr 19280  df-cls 19281  df-lp 19396  df-perf 19397  df-t1 19574  df-con 19672
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator