MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  symgval Structured version   Unicode version

Theorem symgval 16728
Description: The value of the symmetric group function at  A. (Contributed by Paul Chapman, 25-Feb-2008.) (Revised by Mario Carneiro, 12-Jan-2015.)
Hypotheses
Ref Expression
symgval.1  |-  G  =  ( SymGrp `  A )
symgval.2  |-  B  =  { x  |  x : A -1-1-onto-> A }
symgval.3  |-  .+  =  ( f  e.  B ,  g  e.  B  |->  ( f  o.  g
) )
symgval.4  |-  J  =  ( Xt_ `  ( A  X.  { ~P A } ) )
Assertion
Ref Expression
symgval  |-  ( A  e.  V  ->  G  =  { <. ( Base `  ndx ) ,  B >. , 
<. ( +g  `  ndx ) ,  .+  >. ,  <. (TopSet `  ndx ) ,  J >. } )
Distinct variable group:    f, g, x, A
Allowed substitution hints:    B( x, f, g)    .+ ( x, f, g)    G( x, f, g)    J( x, f, g)    V( x, f, g)

Proof of Theorem symgval
Dummy variables  a 
b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 symgval.1 . 2  |-  G  =  ( SymGrp `  A )
2 elex 3068 . . 3  |-  ( A  e.  V  ->  A  e.  _V )
3 ovex 6306 . . . . . . 7  |-  ( a  ^m  a )  e. 
_V
4 f1of 5799 . . . . . . . . 9  |-  ( x : a -1-1-onto-> a  ->  x : a --> a )
5 vex 3062 . . . . . . . . . 10  |-  a  e. 
_V
65, 5elmap 7485 . . . . . . . . 9  |-  ( x  e.  ( a  ^m  a )  <->  x :
a --> a )
74, 6sylibr 212 . . . . . . . 8  |-  ( x : a -1-1-onto-> a  ->  x  e.  ( a  ^m  a
) )
87abssi 3514 . . . . . . 7  |-  { x  |  x : a -1-1-onto-> a } 
C_  ( a  ^m  a )
93, 8ssexi 4539 . . . . . 6  |-  { x  |  x : a -1-1-onto-> a }  e.  _V
109a1i 11 . . . . 5  |-  ( a  =  A  ->  { x  |  x : a -1-1-onto-> a }  e.  _V )
11 id 22 . . . . . . . 8  |-  ( b  =  { x  |  x : a -1-1-onto-> a }  ->  b  =  {
x  |  x : a -1-1-onto-> a } )
12 f1oeq23 5793 . . . . . . . . . . 11  |-  ( ( a  =  A  /\  a  =  A )  ->  ( x : a -1-1-onto-> a  <-> 
x : A -1-1-onto-> A ) )
1312anidms 643 . . . . . . . . . 10  |-  ( a  =  A  ->  (
x : a -1-1-onto-> a  <->  x : A
-1-1-onto-> A ) )
1413abbidv 2538 . . . . . . . . 9  |-  ( a  =  A  ->  { x  |  x : a -1-1-onto-> a }  =  { x  |  x : A -1-1-onto-> A }
)
15 symgval.2 . . . . . . . . 9  |-  B  =  { x  |  x : A -1-1-onto-> A }
1614, 15syl6eqr 2461 . . . . . . . 8  |-  ( a  =  A  ->  { x  |  x : a -1-1-onto-> a }  =  B )
1711, 16sylan9eqr 2465 . . . . . . 7  |-  ( ( a  =  A  /\  b  =  { x  |  x : a -1-1-onto-> a } )  ->  b  =  B )
1817opeq2d 4166 . . . . . 6  |-  ( ( a  =  A  /\  b  =  { x  |  x : a -1-1-onto-> a } )  ->  <. ( Base `  ndx ) ,  b
>.  =  <. ( Base `  ndx ) ,  B >. )
19 eqidd 2403 . . . . . . . . 9  |-  ( ( a  =  A  /\  b  =  { x  |  x : a -1-1-onto-> a } )  ->  ( f  o.  g )  =  ( f  o.  g ) )
2017, 17, 19mpt2eq123dv 6340 . . . . . . . 8  |-  ( ( a  =  A  /\  b  =  { x  |  x : a -1-1-onto-> a } )  ->  ( f  e.  b ,  g  e.  b  |->  ( f  o.  g ) )  =  ( f  e.  B ,  g  e.  B  |->  ( f  o.  g
) ) )
21 symgval.3 . . . . . . . 8  |-  .+  =  ( f  e.  B ,  g  e.  B  |->  ( f  o.  g
) )
2220, 21syl6eqr 2461 . . . . . . 7  |-  ( ( a  =  A  /\  b  =  { x  |  x : a -1-1-onto-> a } )  ->  ( f  e.  b ,  g  e.  b  |->  ( f  o.  g ) )  = 
.+  )
2322opeq2d 4166 . . . . . 6  |-  ( ( a  =  A  /\  b  =  { x  |  x : a -1-1-onto-> a } )  ->  <. ( +g  ` 
ndx ) ,  ( f  e.  b ,  g  e.  b  |->  ( f  o.  g ) ) >.  =  <. ( +g  `  ndx ) ,  .+  >. )
24 simpl 455 . . . . . . . . . 10  |-  ( ( a  =  A  /\  b  =  { x  |  x : a -1-1-onto-> a } )  ->  a  =  A )
2524pweqd 3960 . . . . . . . . . . 11  |-  ( ( a  =  A  /\  b  =  { x  |  x : a -1-1-onto-> a } )  ->  ~P a  =  ~P A )
2625sneqd 3984 . . . . . . . . . 10  |-  ( ( a  =  A  /\  b  =  { x  |  x : a -1-1-onto-> a } )  ->  { ~P a }  =  { ~P A } )
2724, 26xpeq12d 4848 . . . . . . . . 9  |-  ( ( a  =  A  /\  b  =  { x  |  x : a -1-1-onto-> a } )  ->  ( a  X.  { ~P a } )  =  ( A  X.  { ~P A } ) )
2827fveq2d 5853 . . . . . . . 8  |-  ( ( a  =  A  /\  b  =  { x  |  x : a -1-1-onto-> a } )  ->  ( Xt_ `  ( a  X.  { ~P a } ) )  =  ( Xt_ `  ( A  X.  { ~P A } ) ) )
29 symgval.4 . . . . . . . 8  |-  J  =  ( Xt_ `  ( A  X.  { ~P A } ) )
3028, 29syl6eqr 2461 . . . . . . 7  |-  ( ( a  =  A  /\  b  =  { x  |  x : a -1-1-onto-> a } )  ->  ( Xt_ `  ( a  X.  { ~P a } ) )  =  J )
3130opeq2d 4166 . . . . . 6  |-  ( ( a  =  A  /\  b  =  { x  |  x : a -1-1-onto-> a } )  ->  <. (TopSet `  ndx ) ,  ( Xt_ `  ( a  X.  { ~P a } ) )
>.  =  <. (TopSet `  ndx ) ,  J >. )
3218, 23, 31tpeq123d 4066 . . . . 5  |-  ( ( a  =  A  /\  b  =  { x  |  x : a -1-1-onto-> a } )  ->  { <. ( Base `  ndx ) ,  b >. ,  <. ( +g  `  ndx ) ,  ( f  e.  b ,  g  e.  b 
|->  ( f  o.  g
) ) >. ,  <. (TopSet `  ndx ) ,  (
Xt_ `  ( a  X.  { ~P a } ) ) >. }  =  { <. ( Base `  ndx ) ,  B >. , 
<. ( +g  `  ndx ) ,  .+  >. ,  <. (TopSet `  ndx ) ,  J >. } )
3310, 32csbied 3400 . . . 4  |-  ( a  =  A  ->  [_ {
x  |  x : a -1-1-onto-> a }  /  b ]_ { <. ( Base `  ndx ) ,  b >. , 
<. ( +g  `  ndx ) ,  ( f  e.  b ,  g  e.  b  |->  ( f  o.  g ) ) >. ,  <. (TopSet `  ndx ) ,  ( Xt_ `  ( a  X.  { ~P a } ) )
>. }  =  { <. (
Base `  ndx ) ,  B >. ,  <. ( +g  `  ndx ) , 
.+  >. ,  <. (TopSet ` 
ndx ) ,  J >. } )
34 df-symg 16727 . . . 4  |-  SymGrp  =  ( a  e.  _V  |->  [_ { x  |  x : a -1-1-onto-> a }  /  b ]_ { <. ( Base `  ndx ) ,  b >. , 
<. ( +g  `  ndx ) ,  ( f  e.  b ,  g  e.  b  |->  ( f  o.  g ) ) >. ,  <. (TopSet `  ndx ) ,  ( Xt_ `  ( a  X.  { ~P a } ) )
>. } )
35 tpex 6581 . . . 4  |-  { <. (
Base `  ndx ) ,  B >. ,  <. ( +g  `  ndx ) , 
.+  >. ,  <. (TopSet ` 
ndx ) ,  J >. }  e.  _V
3633, 34, 35fvmpt 5932 . . 3  |-  ( A  e.  _V  ->  ( SymGrp `
 A )  =  { <. ( Base `  ndx ) ,  B >. , 
<. ( +g  `  ndx ) ,  .+  >. ,  <. (TopSet `  ndx ) ,  J >. } )
372, 36syl 17 . 2  |-  ( A  e.  V  ->  ( SymGrp `
 A )  =  { <. ( Base `  ndx ) ,  B >. , 
<. ( +g  `  ndx ) ,  .+  >. ,  <. (TopSet `  ndx ) ,  J >. } )
381, 37syl5eq 2455 1  |-  ( A  e.  V  ->  G  =  { <. ( Base `  ndx ) ,  B >. , 
<. ( +g  `  ndx ) ,  .+  >. ,  <. (TopSet `  ndx ) ,  J >. } )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 367    = wceq 1405    e. wcel 1842   {cab 2387   _Vcvv 3059   [_csb 3373   ~Pcpw 3955   {csn 3972   {ctp 3976   <.cop 3978    X. cxp 4821    o. ccom 4827   -->wf 5565   -1-1-onto->wf1o 5568   ` cfv 5569  (class class class)co 6278    |-> cmpt2 6280    ^m cmap 7457   ndxcnx 14838   Basecbs 14841   +g cplusg 14909  TopSetcts 14915   Xt_cpt 15053   SymGrpcsymg 16726
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-8 1844  ax-9 1846  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026  ax-ext 2380  ax-sep 4517  ax-nul 4525  ax-pow 4572  ax-pr 4630  ax-un 6574
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3an 976  df-tru 1408  df-ex 1634  df-nf 1638  df-sb 1764  df-eu 2242  df-mo 2243  df-clab 2388  df-cleq 2394  df-clel 2397  df-nfc 2552  df-ne 2600  df-ral 2759  df-rex 2760  df-rab 2763  df-v 3061  df-sbc 3278  df-csb 3374  df-dif 3417  df-un 3419  df-in 3421  df-ss 3428  df-nul 3739  df-if 3886  df-pw 3957  df-sn 3973  df-pr 3975  df-tp 3977  df-op 3979  df-uni 4192  df-br 4396  df-opab 4454  df-mpt 4455  df-id 4738  df-xp 4829  df-rel 4830  df-cnv 4831  df-co 4832  df-dm 4833  df-rn 4834  df-iota 5533  df-fun 5571  df-fn 5572  df-f 5573  df-f1 5574  df-fo 5575  df-f1o 5576  df-fv 5577  df-ov 6281  df-oprab 6282  df-mpt2 6283  df-map 7459  df-symg 16727
This theorem is referenced by:  symgbas  16729  symgplusg  16738  symgtset  16748
  Copyright terms: Public domain W3C validator