MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  symgtgp Unicode version

Theorem symgtgp 18084
Description: The symmetric group is a topological group. (Contributed by Mario Carneiro, 2-Sep-2015.)
Hypothesis
Ref Expression
symgtgp.g  |-  G  =  ( SymGrp `  A )
Assertion
Ref Expression
symgtgp  |-  ( A  e.  V  ->  G  e.  TopGrp )

Proof of Theorem symgtgp
Dummy variables  t 
f  u  v  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 symgtgp.g . . 3  |-  G  =  ( SymGrp `  A )
21symggrp 15058 . 2  |-  ( A  e.  V  ->  G  e.  Grp )
3 grpmnd 14772 . . . 4  |-  ( G  e.  Grp  ->  G  e.  Mnd )
42, 3syl 16 . . 3  |-  ( A  e.  V  ->  G  e.  Mnd )
5 eqid 2404 . . . . . 6  |-  ( Base `  G )  =  (
Base `  G )
61, 5symgtopn 15063 . . . . 5  |-  ( A  e.  V  ->  (
( Xt_ `  ( A  X.  { ~P A } ) )t  ( Base `  G ) )  =  ( TopOpen `  G )
)
7 distopon 17016 . . . . . . 7  |-  ( A  e.  V  ->  ~P A  e.  (TopOn `  A
) )
8 eqid 2404 . . . . . . . 8  |-  ( Xt_ `  ( A  X.  { ~P A } ) )  =  ( Xt_ `  ( A  X.  { ~P A } ) )
98pttoponconst 17582 . . . . . . 7  |-  ( ( A  e.  V  /\  ~P A  e.  (TopOn `  A ) )  -> 
( Xt_ `  ( A  X.  { ~P A } ) )  e.  (TopOn `  ( A  ^m  A ) ) )
107, 9mpdan 650 . . . . . 6  |-  ( A  e.  V  ->  ( Xt_ `  ( A  X.  { ~P A } ) )  e.  (TopOn `  ( A  ^m  A ) ) )
111, 5elsymgbas 15052 . . . . . . . 8  |-  ( A  e.  V  ->  (
x  e.  ( Base `  G )  <->  x : A
-1-1-onto-> A ) )
12 f1of 5633 . . . . . . . . 9  |-  ( x : A -1-1-onto-> A  ->  x : A
--> A )
13 elmapg 6990 . . . . . . . . . 10  |-  ( ( A  e.  V  /\  A  e.  V )  ->  ( x  e.  ( A  ^m  A )  <-> 
x : A --> A ) )
1413anidms 627 . . . . . . . . 9  |-  ( A  e.  V  ->  (
x  e.  ( A  ^m  A )  <->  x : A
--> A ) )
1512, 14syl5ibr 213 . . . . . . . 8  |-  ( A  e.  V  ->  (
x : A -1-1-onto-> A  ->  x  e.  ( A  ^m  A ) ) )
1611, 15sylbid 207 . . . . . . 7  |-  ( A  e.  V  ->  (
x  e.  ( Base `  G )  ->  x  e.  ( A  ^m  A
) ) )
1716ssrdv 3314 . . . . . 6  |-  ( A  e.  V  ->  ( Base `  G )  C_  ( A  ^m  A ) )
18 resttopon 17179 . . . . . 6  |-  ( ( ( Xt_ `  ( A  X.  { ~P A } ) )  e.  (TopOn `  ( A  ^m  A ) )  /\  ( Base `  G )  C_  ( A  ^m  A
) )  ->  (
( Xt_ `  ( A  X.  { ~P A } ) )t  ( Base `  G ) )  e.  (TopOn `  ( Base `  G ) ) )
1910, 17, 18syl2anc 643 . . . . 5  |-  ( A  e.  V  ->  (
( Xt_ `  ( A  X.  { ~P A } ) )t  ( Base `  G ) )  e.  (TopOn `  ( Base `  G ) ) )
206, 19eqeltrrd 2479 . . . 4  |-  ( A  e.  V  ->  ( TopOpen
`  G )  e.  (TopOn `  ( Base `  G ) ) )
21 eqid 2404 . . . . 5  |-  ( TopOpen `  G )  =  (
TopOpen `  G )
225, 21istps 16956 . . . 4  |-  ( G  e.  TopSp 
<->  ( TopOpen `  G )  e.  (TopOn `  ( Base `  G ) ) )
2320, 22sylibr 204 . . 3  |-  ( A  e.  V  ->  G  e.  TopSp )
24 eqid 2404 . . . . . . . 8  |-  ( +g  `  G )  =  ( +g  `  G )
251, 5, 24symgplusg 15054 . . . . . . 7  |-  ( +g  `  G )  =  ( x  e.  ( Base `  G ) ,  y  e.  ( Base `  G
)  |->  ( x  o.  y ) )
26 eqid 2404 . . . . . . . 8  |-  ( ( ~P A  ^ k o  ~P A )t  ( Base `  G ) )  =  ( ( ~P A  ^ k o  ~P A
)t  ( Base `  G
) )
27 distop 17015 . . . . . . . . 9  |-  ( A  e.  V  ->  ~P A  e.  Top )
28 eqid 2404 . . . . . . . . . 10  |-  ( ~P A  ^ k o  ~P A )  =  ( ~P A  ^ k o  ~P A
)
2928xkotopon 17585 . . . . . . . . 9  |-  ( ( ~P A  e.  Top  /\ 
~P A  e.  Top )  ->  ( ~P A  ^ k o  ~P A
)  e.  (TopOn `  ( ~P A  Cn  ~P A ) ) )
3027, 27, 29syl2anc 643 . . . . . . . 8  |-  ( A  e.  V  ->  ( ~P A  ^ k o  ~P A )  e.  (TopOn `  ( ~P A  Cn  ~P A ) ) )
31 cndis 17309 . . . . . . . . . 10  |-  ( ( A  e.  V  /\  ~P A  e.  (TopOn `  A ) )  -> 
( ~P A  Cn  ~P A )  =  ( A  ^m  A ) )
327, 31mpdan 650 . . . . . . . . 9  |-  ( A  e.  V  ->  ( ~P A  Cn  ~P A
)  =  ( A  ^m  A ) )
3317, 32sseqtr4d 3345 . . . . . . . 8  |-  ( A  e.  V  ->  ( Base `  G )  C_  ( ~P A  Cn  ~P A ) )
34 disllycmp 17514 . . . . . . . . . 10  |-  ( A  e.  V  ->  ~P A  e. Locally  Comp )
35 llynlly 17493 . . . . . . . . . 10  |-  ( ~P A  e. Locally  Comp  ->  ~P A  e. 𝑛Locally  Comp )
3634, 35syl 16 . . . . . . . . 9  |-  ( A  e.  V  ->  ~P A  e. 𝑛Locally  Comp )
37 eqid 2404 . . . . . . . . . 10  |-  ( x  e.  ( ~P A  Cn  ~P A ) ,  y  e.  ( ~P A  Cn  ~P A
)  |->  ( x  o.  y ) )  =  ( x  e.  ( ~P A  Cn  ~P A ) ,  y  e.  ( ~P A  Cn  ~P A )  |->  ( x  o.  y ) )
3837xkococn 17645 . . . . . . . . 9  |-  ( ( ~P A  e.  Top  /\ 
~P A  e. 𝑛Locally  Comp  /\  ~P A  e.  Top )  ->  ( x  e.  ( ~P A  Cn  ~P A ) ,  y  e.  ( ~P A  Cn  ~P A )  |->  ( x  o.  y ) )  e.  ( ( ( ~P A  ^ k o  ~P A
)  tX  ( ~P A  ^ k o  ~P A ) )  Cn  ( ~P A  ^ k o  ~P A
) ) )
3927, 36, 27, 38syl3anc 1184 . . . . . . . 8  |-  ( A  e.  V  ->  (
x  e.  ( ~P A  Cn  ~P A
) ,  y  e.  ( ~P A  Cn  ~P A )  |->  ( x  o.  y ) )  e.  ( ( ( ~P A  ^ k o  ~P A )  tX  ( ~P A  ^ k o  ~P A ) )  Cn  ( ~P A  ^ k o  ~P A
) ) )
4026, 30, 33, 26, 30, 33, 39cnmpt2res 17662 . . . . . . 7  |-  ( A  e.  V  ->  (
x  e.  ( Base `  G ) ,  y  e.  ( Base `  G
)  |->  ( x  o.  y ) )  e.  ( ( ( ( ~P A  ^ k o  ~P A )t  ( Base `  G ) )  tX  ( ( ~P A  ^ k o  ~P A
)t  ( Base `  G
) ) )  Cn  ( ~P A  ^ k o  ~P A
) ) )
4125, 40syl5eqel 2488 . . . . . 6  |-  ( A  e.  V  ->  ( +g  `  G )  e.  ( ( ( ( ~P A  ^ k o  ~P A )t  ( Base `  G ) )  tX  ( ( ~P A  ^ k o  ~P A
)t  ( Base `  G
) ) )  Cn  ( ~P A  ^ k o  ~P A
) ) )
42 xkopt 17640 . . . . . . . . . . 11  |-  ( ( ~P A  e.  Top  /\  A  e.  V )  ->  ( ~P A  ^ k o  ~P A
)  =  ( Xt_ `  ( A  X.  { ~P A } ) ) )
4327, 42mpancom 651 . . . . . . . . . 10  |-  ( A  e.  V  ->  ( ~P A  ^ k o  ~P A )  =  ( Xt_ `  ( A  X.  { ~P A } ) ) )
4443oveq1d 6055 . . . . . . . . 9  |-  ( A  e.  V  ->  (
( ~P A  ^ k o  ~P A
)t  ( Base `  G
) )  =  ( ( Xt_ `  ( A  X.  { ~P A } ) )t  ( Base `  G ) ) )
4544, 6eqtrd 2436 . . . . . . . 8  |-  ( A  e.  V  ->  (
( ~P A  ^ k o  ~P A
)t  ( Base `  G
) )  =  (
TopOpen `  G ) )
4645, 45oveq12d 6058 . . . . . . 7  |-  ( A  e.  V  ->  (
( ( ~P A  ^ k o  ~P A
)t  ( Base `  G
) )  tX  (
( ~P A  ^ k o  ~P A
)t  ( Base `  G
) ) )  =  ( ( TopOpen `  G
)  tX  ( TopOpen `  G ) ) )
4746oveq1d 6055 . . . . . 6  |-  ( A  e.  V  ->  (
( ( ( ~P A  ^ k o  ~P A )t  ( Base `  G ) )  tX  ( ( ~P A  ^ k o  ~P A
)t  ( Base `  G
) ) )  Cn  ( ~P A  ^ k o  ~P A
) )  =  ( ( ( TopOpen `  G
)  tX  ( TopOpen `  G ) )  Cn  ( ~P A  ^ k o  ~P A
) ) )
4841, 47eleqtrd 2480 . . . . 5  |-  ( A  e.  V  ->  ( +g  `  G )  e.  ( ( ( TopOpen `  G )  tX  ( TopOpen
`  G ) )  Cn  ( ~P A  ^ k o  ~P A
) ) )
49 vex 2919 . . . . . . . . . . . 12  |-  x  e. 
_V
50 vex 2919 . . . . . . . . . . . 12  |-  y  e. 
_V
5149, 50coex 5372 . . . . . . . . . . 11  |-  ( x  o.  y )  e. 
_V
5225, 51fnmpt2i 6379 . . . . . . . . . 10  |-  ( +g  `  G )  Fn  (
( Base `  G )  X.  ( Base `  G
) )
53 eqid 2404 . . . . . . . . . . 11  |-  ( + f `  G )  =  ( + f `  G )
545, 24, 53plusfeq 14659 . . . . . . . . . 10  |-  ( ( +g  `  G )  Fn  ( ( Base `  G )  X.  ( Base `  G ) )  ->  ( + f `  G )  =  ( +g  `  G ) )
5552, 54ax-mp 8 . . . . . . . . 9  |-  ( + f `  G )  =  ( +g  `  G
)
5655eqcomi 2408 . . . . . . . 8  |-  ( +g  `  G )  =  ( + f `  G
)
575, 56grpplusf 14777 . . . . . . 7  |-  ( G  e.  Grp  ->  ( +g  `  G ) : ( ( Base `  G
)  X.  ( Base `  G ) ) --> (
Base `  G )
)
58 frn 5556 . . . . . . 7  |-  ( ( +g  `  G ) : ( ( Base `  G )  X.  ( Base `  G ) ) --> ( Base `  G
)  ->  ran  ( +g  `  G )  C_  ( Base `  G ) )
592, 57, 583syl 19 . . . . . 6  |-  ( A  e.  V  ->  ran  ( +g  `  G ) 
C_  ( Base `  G
) )
60 cnrest2 17304 . . . . . 6  |-  ( ( ( ~P A  ^ k o  ~P A
)  e.  (TopOn `  ( ~P A  Cn  ~P A ) )  /\  ran  ( +g  `  G
)  C_  ( Base `  G )  /\  ( Base `  G )  C_  ( ~P A  Cn  ~P A ) )  -> 
( ( +g  `  G
)  e.  ( ( ( TopOpen `  G )  tX  ( TopOpen `  G )
)  Cn  ( ~P A  ^ k o  ~P A ) )  <-> 
( +g  `  G )  e.  ( ( (
TopOpen `  G )  tX  ( TopOpen `  G )
)  Cn  ( ( ~P A  ^ k o  ~P A )t  ( Base `  G ) ) ) ) )
6130, 59, 33, 60syl3anc 1184 . . . . 5  |-  ( A  e.  V  ->  (
( +g  `  G )  e.  ( ( (
TopOpen `  G )  tX  ( TopOpen `  G )
)  Cn  ( ~P A  ^ k o  ~P A ) )  <-> 
( +g  `  G )  e.  ( ( (
TopOpen `  G )  tX  ( TopOpen `  G )
)  Cn  ( ( ~P A  ^ k o  ~P A )t  ( Base `  G ) ) ) ) )
6248, 61mpbid 202 . . . 4  |-  ( A  e.  V  ->  ( +g  `  G )  e.  ( ( ( TopOpen `  G )  tX  ( TopOpen
`  G ) )  Cn  ( ( ~P A  ^ k o  ~P A )t  ( Base `  G ) ) ) )
6345oveq2d 6056 . . . 4  |-  ( A  e.  V  ->  (
( ( TopOpen `  G
)  tX  ( TopOpen `  G ) )  Cn  ( ( ~P A  ^ k o  ~P A
)t  ( Base `  G
) ) )  =  ( ( ( TopOpen `  G )  tX  ( TopOpen
`  G ) )  Cn  ( TopOpen `  G
) ) )
6462, 63eleqtrd 2480 . . 3  |-  ( A  e.  V  ->  ( +g  `  G )  e.  ( ( ( TopOpen `  G )  tX  ( TopOpen
`  G ) )  Cn  ( TopOpen `  G
) ) )
6556, 21istmd 18057 . . 3  |-  ( G  e. TopMnd 
<->  ( G  e.  Mnd  /\  G  e.  TopSp  /\  ( +g  `  G )  e.  ( ( ( TopOpen `  G )  tX  ( TopOpen
`  G ) )  Cn  ( TopOpen `  G
) ) ) )
664, 23, 64, 65syl3anbrc 1138 . 2  |-  ( A  e.  V  ->  G  e. TopMnd )
67 id 20 . . . . . 6  |-  ( A  e.  V  ->  A  e.  V )
68 fconst6g 5591 . . . . . . 7  |-  ( ~P A  e.  Top  ->  ( A  X.  { ~P A } ) : A --> Top )
6927, 68syl 16 . . . . . 6  |-  ( A  e.  V  ->  ( A  X.  { ~P A } ) : A --> Top )
7011biimpa 471 . . . . . . . . . . . 12  |-  ( ( A  e.  V  /\  x  e.  ( Base `  G ) )  ->  x : A -1-1-onto-> A )
71 f1ocnv 5646 . . . . . . . . . . . 12  |-  ( x : A -1-1-onto-> A  ->  `' x : A -1-1-onto-> A )
72 f1of 5633 . . . . . . . . . . . 12  |-  ( `' x : A -1-1-onto-> A  ->  `' x : A --> A )
7370, 71, 723syl 19 . . . . . . . . . . 11  |-  ( ( A  e.  V  /\  x  e.  ( Base `  G ) )  ->  `' x : A --> A )
7473ffvelrnda 5829 . . . . . . . . . 10  |-  ( ( ( A  e.  V  /\  x  e.  ( Base `  G ) )  /\  y  e.  A
)  ->  ( `' x `  y )  e.  A )
7574an32s 780 . . . . . . . . 9  |-  ( ( ( A  e.  V  /\  y  e.  A
)  /\  x  e.  ( Base `  G )
)  ->  ( `' x `  y )  e.  A )
76 eqid 2404 . . . . . . . . 9  |-  ( x  e.  ( Base `  G
)  |->  ( `' x `  y ) )  =  ( x  e.  (
Base `  G )  |->  ( `' x `  y ) )
7775, 76fmptd 5852 . . . . . . . 8  |-  ( ( A  e.  V  /\  y  e.  A )  ->  ( x  e.  (
Base `  G )  |->  ( `' x `  y ) ) : ( Base `  G
) --> A )
7877adantr 452 . . . . . . . . . 10  |-  ( ( ( A  e.  V  /\  y  e.  A
)  /\  f  e.  ( Base `  G )
)  ->  ( x  e.  ( Base `  G
)  |->  ( `' x `  y ) ) : ( Base `  G
) --> A )
79 cnveq 5005 . . . . . . . . . . . . . . . 16  |-  ( x  =  f  ->  `' x  =  `' f
)
8079fveq1d 5689 . . . . . . . . . . . . . . 15  |-  ( x  =  f  ->  ( `' x `  y )  =  ( `' f `
 y ) )
81 fvex 5701 . . . . . . . . . . . . . . 15  |-  ( `' f `  y )  e.  _V
8280, 76, 81fvmpt 5765 . . . . . . . . . . . . . 14  |-  ( f  e.  ( Base `  G
)  ->  ( (
x  e.  ( Base `  G )  |->  ( `' x `  y ) ) `  f )  =  ( `' f `
 y ) )
8382ad2antlr 708 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  V  /\  y  e.  A )  /\  f  e.  ( Base `  G
) )  /\  t  e.  ~P A )  -> 
( ( x  e.  ( Base `  G
)  |->  ( `' x `  y ) ) `  f )  =  ( `' f `  y
) )
8483eleq1d 2470 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  V  /\  y  e.  A )  /\  f  e.  ( Base `  G
) )  /\  t  e.  ~P A )  -> 
( ( ( x  e.  ( Base `  G
)  |->  ( `' x `  y ) ) `  f )  e.  t  <-> 
( `' f `  y )  e.  t ) )
85 eqid 2404 . . . . . . . . . . . . . . . . . 18  |-  ( u  e.  ( Base `  G
)  |->  ( u `  ( `' f `  y
) ) )  =  ( u  e.  (
Base `  G )  |->  ( u `  ( `' f `  y
) ) )
8685mptiniseg 5323 . . . . . . . . . . . . . . . . 17  |-  ( y  e.  _V  ->  ( `' ( u  e.  ( Base `  G
)  |->  ( u `  ( `' f `  y
) ) ) " { y } )  =  { u  e.  ( Base `  G
)  |  ( u `
 ( `' f `
 y ) )  =  y } )
8750, 86ax-mp 8 . . . . . . . . . . . . . . . 16  |-  ( `' ( u  e.  (
Base `  G )  |->  ( u `  ( `' f `  y
) ) ) " { y } )  =  { u  e.  ( Base `  G
)  |  ( u `
 ( `' f `
 y ) )  =  y }
88 eqid 2404 . . . . . . . . . . . . . . . . . . 19  |-  ( (
Xt_ `  ( A  X.  { ~P A }
) )t  ( Base `  G
) )  =  ( ( Xt_ `  ( A  X.  { ~P A } ) )t  ( Base `  G ) )
8910ad2antrr 707 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( A  e.  V  /\  y  e.  A
)  /\  f  e.  ( Base `  G )
)  ->  ( Xt_ `  ( A  X.  { ~P A } ) )  e.  (TopOn `  ( A  ^m  A ) ) )
9017ad2antrr 707 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( A  e.  V  /\  y  e.  A
)  /\  f  e.  ( Base `  G )
)  ->  ( Base `  G )  C_  ( A  ^m  A ) )
91 toponuni 16947 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
Xt_ `  ( A  X.  { ~P A }
) )  e.  (TopOn `  ( A  ^m  A
) )  ->  ( A  ^m  A )  = 
U. ( Xt_ `  ( A  X.  { ~P A } ) ) )
92 mpteq1 4249 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( A  ^m  A )  =  U. ( Xt_ `  ( A  X.  { ~P A } ) )  ->  ( u  e.  ( A  ^m  A
)  |->  ( u `  ( `' f `  y
) ) )  =  ( u  e.  U. ( Xt_ `  ( A  X.  { ~P A } ) )  |->  ( u `  ( `' f `  y ) ) ) )
9389, 91, 923syl 19 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( A  e.  V  /\  y  e.  A
)  /\  f  e.  ( Base `  G )
)  ->  ( u  e.  ( A  ^m  A
)  |->  ( u `  ( `' f `  y
) ) )  =  ( u  e.  U. ( Xt_ `  ( A  X.  { ~P A } ) )  |->  ( u `  ( `' f `  y ) ) ) )
94 simpll 731 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( A  e.  V  /\  y  e.  A
)  /\  f  e.  ( Base `  G )
)  ->  A  e.  V )
9569ad2antrr 707 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( A  e.  V  /\  y  e.  A
)  /\  f  e.  ( Base `  G )
)  ->  ( A  X.  { ~P A }
) : A --> Top )
961, 5elsymgbas 15052 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( A  e.  V  ->  (
f  e.  ( Base `  G )  <->  f : A
-1-1-onto-> A ) )
9796adantr 452 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( A  e.  V  /\  y  e.  A )  ->  ( f  e.  (
Base `  G )  <->  f : A -1-1-onto-> A ) )
9897biimpa 471 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( A  e.  V  /\  y  e.  A
)  /\  f  e.  ( Base `  G )
)  ->  f : A
-1-1-onto-> A )
99 f1ocnv 5646 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( f : A -1-1-onto-> A  ->  `' f : A -1-1-onto-> A )
100 f1of 5633 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( `' f : A -1-1-onto-> A  ->  `' f : A --> A )
10198, 99, 1003syl 19 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( A  e.  V  /\  y  e.  A
)  /\  f  e.  ( Base `  G )
)  ->  `' f : A --> A )
102 simplr 732 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( A  e.  V  /\  y  e.  A
)  /\  f  e.  ( Base `  G )
)  ->  y  e.  A )
103101, 102ffvelrnd 5830 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( A  e.  V  /\  y  e.  A
)  /\  f  e.  ( Base `  G )
)  ->  ( `' f `  y )  e.  A )
104 eqid 2404 . . . . . . . . . . . . . . . . . . . . . . 23  |-  U. ( Xt_ `  ( A  X.  { ~P A } ) )  =  U. ( Xt_ `  ( A  X.  { ~P A } ) )
105104, 8ptpjcn 17596 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( A  e.  V  /\  ( A  X.  { ~P A } ) : A --> Top  /\  ( `' f `
 y )  e.  A )  ->  (
u  e.  U. ( Xt_ `  ( A  X.  { ~P A } ) )  |->  ( u `  ( `' f `  y
) ) )  e.  ( ( Xt_ `  ( A  X.  { ~P A } ) )  Cn  ( ( A  X.  { ~P A } ) `
 ( `' f `
 y ) ) ) )
10694, 95, 103, 105syl3anc 1184 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( A  e.  V  /\  y  e.  A
)  /\  f  e.  ( Base `  G )
)  ->  ( u  e.  U. ( Xt_ `  ( A  X.  { ~P A } ) )  |->  ( u `  ( `' f `  y ) ) )  e.  ( ( Xt_ `  ( A  X.  { ~P A } ) )  Cn  ( ( A  X.  { ~P A } ) `
 ( `' f `
 y ) ) ) )
10727ad2antrr 707 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( A  e.  V  /\  y  e.  A
)  /\  f  e.  ( Base `  G )
)  ->  ~P A  e.  Top )
108 fvconst2g 5904 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ~P A  e.  Top  /\  ( `' f `  y )  e.  A
)  ->  ( ( A  X.  { ~P A } ) `  ( `' f `  y
) )  =  ~P A )
109107, 103, 108syl2anc 643 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( A  e.  V  /\  y  e.  A
)  /\  f  e.  ( Base `  G )
)  ->  ( ( A  X.  { ~P A } ) `  ( `' f `  y
) )  =  ~P A )
110109oveq2d 6056 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( A  e.  V  /\  y  e.  A
)  /\  f  e.  ( Base `  G )
)  ->  ( ( Xt_ `  ( A  X.  { ~P A } ) )  Cn  ( ( A  X.  { ~P A } ) `  ( `' f `  y
) ) )  =  ( ( Xt_ `  ( A  X.  { ~P A } ) )  Cn 
~P A ) )
111106, 110eleqtrd 2480 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( A  e.  V  /\  y  e.  A
)  /\  f  e.  ( Base `  G )
)  ->  ( u  e.  U. ( Xt_ `  ( A  X.  { ~P A } ) )  |->  ( u `  ( `' f `  y ) ) )  e.  ( ( Xt_ `  ( A  X.  { ~P A } ) )  Cn 
~P A ) )
11293, 111eqeltrd 2478 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( A  e.  V  /\  y  e.  A
)  /\  f  e.  ( Base `  G )
)  ->  ( u  e.  ( A  ^m  A
)  |->  ( u `  ( `' f `  y
) ) )  e.  ( ( Xt_ `  ( A  X.  { ~P A } ) )  Cn 
~P A ) )
11388, 89, 90, 112cnmpt1res 17661 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  e.  V  /\  y  e.  A
)  /\  f  e.  ( Base `  G )
)  ->  ( u  e.  ( Base `  G
)  |->  ( u `  ( `' f `  y
) ) )  e.  ( ( ( Xt_ `  ( A  X.  { ~P A } ) )t  (
Base `  G )
)  Cn  ~P A
) )
1146oveq1d 6055 . . . . . . . . . . . . . . . . . . 19  |-  ( A  e.  V  ->  (
( ( Xt_ `  ( A  X.  { ~P A } ) )t  ( Base `  G ) )  Cn 
~P A )  =  ( ( TopOpen `  G
)  Cn  ~P A
) )
115114ad2antrr 707 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  e.  V  /\  y  e.  A
)  /\  f  e.  ( Base `  G )
)  ->  ( (
( Xt_ `  ( A  X.  { ~P A } ) )t  ( Base `  G ) )  Cn 
~P A )  =  ( ( TopOpen `  G
)  Cn  ~P A
) )
116113, 115eleqtrd 2480 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  V  /\  y  e.  A
)  /\  f  e.  ( Base `  G )
)  ->  ( u  e.  ( Base `  G
)  |->  ( u `  ( `' f `  y
) ) )  e.  ( ( TopOpen `  G
)  Cn  ~P A
) )
117 snelpwi 4369 . . . . . . . . . . . . . . . . . 18  |-  ( y  e.  A  ->  { y }  e.  ~P A
)
118117ad2antlr 708 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  V  /\  y  e.  A
)  /\  f  e.  ( Base `  G )
)  ->  { y }  e.  ~P A
)
119 cnima 17283 . . . . . . . . . . . . . . . . 17  |-  ( ( ( u  e.  (
Base `  G )  |->  ( u `  ( `' f `  y
) ) )  e.  ( ( TopOpen `  G
)  Cn  ~P A
)  /\  { y }  e.  ~P A
)  ->  ( `' ( u  e.  ( Base `  G )  |->  ( u `  ( `' f `  y ) ) ) " {
y } )  e.  ( TopOpen `  G )
)
120116, 118, 119syl2anc 643 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  V  /\  y  e.  A
)  /\  f  e.  ( Base `  G )
)  ->  ( `' ( u  e.  ( Base `  G )  |->  ( u `  ( `' f `  y ) ) ) " {
y } )  e.  ( TopOpen `  G )
)
12187, 120syl5eqelr 2489 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  V  /\  y  e.  A
)  /\  f  e.  ( Base `  G )
)  ->  { u  e.  ( Base `  G
)  |  ( u `
 ( `' f `
 y ) )  =  y }  e.  ( TopOpen `  G )
)
122121adantr 452 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  V  /\  y  e.  A )  /\  f  e.  ( Base `  G
) )  /\  (
t  e.  ~P A  /\  ( `' f `  y )  e.  t ) )  ->  { u  e.  ( Base `  G
)  |  ( u `
 ( `' f `
 y ) )  =  y }  e.  ( TopOpen `  G )
)
123 simplr 732 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e.  V  /\  y  e.  A )  /\  f  e.  ( Base `  G
) )  /\  (
t  e.  ~P A  /\  ( `' f `  y )  e.  t ) )  ->  f  e.  ( Base `  G
) )
12498adantr 452 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  e.  V  /\  y  e.  A )  /\  f  e.  ( Base `  G
) )  /\  (
t  e.  ~P A  /\  ( `' f `  y )  e.  t ) )  ->  f : A -1-1-onto-> A )
125 simpllr 736 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  e.  V  /\  y  e.  A )  /\  f  e.  ( Base `  G
) )  /\  (
t  e.  ~P A  /\  ( `' f `  y )  e.  t ) )  ->  y  e.  A )
126 f1ocnvfv2 5974 . . . . . . . . . . . . . . . 16  |-  ( ( f : A -1-1-onto-> A  /\  y  e.  A )  ->  ( f `  ( `' f `  y
) )  =  y )
127124, 125, 126syl2anc 643 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e.  V  /\  y  e.  A )  /\  f  e.  ( Base `  G
) )  /\  (
t  e.  ~P A  /\  ( `' f `  y )  e.  t ) )  ->  (
f `  ( `' f `  y )
)  =  y )
128 fveq1 5686 . . . . . . . . . . . . . . . . 17  |-  ( u  =  f  ->  (
u `  ( `' f `  y )
)  =  ( f `
 ( `' f `
 y ) ) )
129128eqeq1d 2412 . . . . . . . . . . . . . . . 16  |-  ( u  =  f  ->  (
( u `  ( `' f `  y
) )  =  y  <-> 
( f `  ( `' f `  y
) )  =  y ) )
130129elrab 3052 . . . . . . . . . . . . . . 15  |-  ( f  e.  { u  e.  ( Base `  G
)  |  ( u `
 ( `' f `
 y ) )  =  y }  <->  ( f  e.  ( Base `  G
)  /\  ( f `  ( `' f `  y ) )  =  y ) )
131123, 127, 130sylanbrc 646 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  V  /\  y  e.  A )  /\  f  e.  ( Base `  G
) )  /\  (
t  e.  ~P A  /\  ( `' f `  y )  e.  t ) )  ->  f  e.  { u  e.  (
Base `  G )  |  ( u `  ( `' f `  y
) )  =  y } )
132 ssrab2 3388 . . . . . . . . . . . . . . . . . 18  |-  { u  e.  ( Base `  G
)  |  ( u `
 ( `' f `
 y ) )  =  y }  C_  ( Base `  G )
133132a1i 11 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( A  e.  V  /\  y  e.  A )  /\  f  e.  ( Base `  G
) )  /\  (
t  e.  ~P A  /\  ( `' f `  y )  e.  t ) )  ->  { u  e.  ( Base `  G
)  |  ( u `
 ( `' f `
 y ) )  =  y }  C_  ( Base `  G )
)
13411ad3antrrr 711 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( A  e.  V  /\  y  e.  A )  /\  f  e.  ( Base `  G
) )  /\  (
t  e.  ~P A  /\  ( `' f `  y )  e.  t ) )  ->  (
x  e.  ( Base `  G )  <->  x : A
-1-1-onto-> A ) )
135134biimpa 471 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ( A  e.  V  /\  y  e.  A )  /\  f  e.  ( Base `  G
) )  /\  (
t  e.  ~P A  /\  ( `' f `  y )  e.  t ) )  /\  x  e.  ( Base `  G
) )  ->  x : A -1-1-onto-> A )
136103ad2antrr 707 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ( A  e.  V  /\  y  e.  A )  /\  f  e.  ( Base `  G
) )  /\  (
t  e.  ~P A  /\  ( `' f `  y )  e.  t ) )  /\  x  e.  ( Base `  G
) )  ->  ( `' f `  y
)  e.  A )
137 f1ocnvfv 5975 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( x : A -1-1-onto-> A  /\  ( `' f `  y
)  e.  A )  ->  ( ( x `
 ( `' f `
 y ) )  =  y  ->  ( `' x `  y )  =  ( `' f `
 y ) ) )
138135, 136, 137syl2anc 643 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( A  e.  V  /\  y  e.  A )  /\  f  e.  ( Base `  G
) )  /\  (
t  e.  ~P A  /\  ( `' f `  y )  e.  t ) )  /\  x  e.  ( Base `  G
) )  ->  (
( x `  ( `' f `  y
) )  =  y  ->  ( `' x `  y )  =  ( `' f `  y
) ) )
139 simplrr 738 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ( A  e.  V  /\  y  e.  A )  /\  f  e.  ( Base `  G
) )  /\  (
t  e.  ~P A  /\  ( `' f `  y )  e.  t ) )  /\  x  e.  ( Base `  G
) )  ->  ( `' f `  y
)  e.  t )
140 eleq1 2464 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( `' x `  y )  =  ( `' f `
 y )  -> 
( ( `' x `  y )  e.  t  <-> 
( `' f `  y )  e.  t ) )
141139, 140syl5ibrcom 214 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( A  e.  V  /\  y  e.  A )  /\  f  e.  ( Base `  G
) )  /\  (
t  e.  ~P A  /\  ( `' f `  y )  e.  t ) )  /\  x  e.  ( Base `  G
) )  ->  (
( `' x `  y )  =  ( `' f `  y
)  ->  ( `' x `  y )  e.  t ) )
142138, 141syld 42 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( A  e.  V  /\  y  e.  A )  /\  f  e.  ( Base `  G
) )  /\  (
t  e.  ~P A  /\  ( `' f `  y )  e.  t ) )  /\  x  e.  ( Base `  G
) )  ->  (
( x `  ( `' f `  y
) )  =  y  ->  ( `' x `  y )  e.  t ) )
143142ralrimiva 2749 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( A  e.  V  /\  y  e.  A )  /\  f  e.  ( Base `  G
) )  /\  (
t  e.  ~P A  /\  ( `' f `  y )  e.  t ) )  ->  A. x  e.  ( Base `  G
) ( ( x `
 ( `' f `
 y ) )  =  y  ->  ( `' x `  y )  e.  t ) )
144 fveq1 5686 . . . . . . . . . . . . . . . . . . . 20  |-  ( u  =  x  ->  (
u `  ( `' f `  y )
)  =  ( x `
 ( `' f `
 y ) ) )
145144eqeq1d 2412 . . . . . . . . . . . . . . . . . . 19  |-  ( u  =  x  ->  (
( u `  ( `' f `  y
) )  =  y  <-> 
( x `  ( `' f `  y
) )  =  y ) )
146145ralrab 3056 . . . . . . . . . . . . . . . . . 18  |-  ( A. x  e.  { u  e.  ( Base `  G
)  |  ( u `
 ( `' f `
 y ) )  =  y }  ( `' x `  y )  e.  t  <->  A. x  e.  ( Base `  G
) ( ( x `
 ( `' f `
 y ) )  =  y  ->  ( `' x `  y )  e.  t ) )
147143, 146sylibr 204 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( A  e.  V  /\  y  e.  A )  /\  f  e.  ( Base `  G
) )  /\  (
t  e.  ~P A  /\  ( `' f `  y )  e.  t ) )  ->  A. x  e.  { u  e.  (
Base `  G )  |  ( u `  ( `' f `  y
) )  =  y }  ( `' x `  y )  e.  t )
148 ssrab 3381 . . . . . . . . . . . . . . . . 17  |-  ( { u  e.  ( Base `  G )  |  ( u `  ( `' f `  y ) )  =  y } 
C_  { x  e.  ( Base `  G
)  |  ( `' x `  y )  e.  t }  <->  ( {
u  e.  ( Base `  G )  |  ( u `  ( `' f `  y ) )  =  y } 
C_  ( Base `  G
)  /\  A. x  e.  { u  e.  (
Base `  G )  |  ( u `  ( `' f `  y
) )  =  y }  ( `' x `  y )  e.  t ) )
149133, 147, 148sylanbrc 646 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  e.  V  /\  y  e.  A )  /\  f  e.  ( Base `  G
) )  /\  (
t  e.  ~P A  /\  ( `' f `  y )  e.  t ) )  ->  { u  e.  ( Base `  G
)  |  ( u `
 ( `' f `
 y ) )  =  y }  C_  { x  e.  ( Base `  G )  |  ( `' x `  y )  e.  t } )
15076mptpreima 5322 . . . . . . . . . . . . . . . 16  |-  ( `' ( x  e.  (
Base `  G )  |->  ( `' x `  y ) ) "
t )  =  {
x  e.  ( Base `  G )  |  ( `' x `  y )  e.  t }
151149, 150syl6sseqr 3355 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e.  V  /\  y  e.  A )  /\  f  e.  ( Base `  G
) )  /\  (
t  e.  ~P A  /\  ( `' f `  y )  e.  t ) )  ->  { u  e.  ( Base `  G
)  |  ( u `
 ( `' f `
 y ) )  =  y }  C_  ( `' ( x  e.  ( Base `  G
)  |->  ( `' x `  y ) ) "
t ) )
152 funmpt 5448 . . . . . . . . . . . . . . . 16  |-  Fun  (
x  e.  ( Base `  G )  |->  ( `' x `  y ) )
153 fvex 5701 . . . . . . . . . . . . . . . . . 18  |-  ( `' x `  y )  e.  _V
154153, 76dmmpti 5533 . . . . . . . . . . . . . . . . 17  |-  dom  (
x  e.  ( Base `  G )  |->  ( `' x `  y ) )  =  ( Base `  G )
155133, 154syl6sseqr 3355 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  e.  V  /\  y  e.  A )  /\  f  e.  ( Base `  G
) )  /\  (
t  e.  ~P A  /\  ( `' f `  y )  e.  t ) )  ->  { u  e.  ( Base `  G
)  |  ( u `
 ( `' f `
 y ) )  =  y }  C_  dom  ( x  e.  (
Base `  G )  |->  ( `' x `  y ) ) )
156 funimass3 5805 . . . . . . . . . . . . . . . 16  |-  ( ( Fun  ( x  e.  ( Base `  G
)  |->  ( `' x `  y ) )  /\  { u  e.  ( Base `  G )  |  ( u `  ( `' f `  y ) )  =  y } 
C_  dom  ( x  e.  ( Base `  G
)  |->  ( `' x `  y ) ) )  ->  ( ( ( x  e.  ( Base `  G )  |->  ( `' x `  y ) ) " { u  e.  ( Base `  G
)  |  ( u `
 ( `' f `
 y ) )  =  y } ) 
C_  t  <->  { u  e.  ( Base `  G
)  |  ( u `
 ( `' f `
 y ) )  =  y }  C_  ( `' ( x  e.  ( Base `  G
)  |->  ( `' x `  y ) ) "
t ) ) )
157152, 155, 156sylancr 645 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e.  V  /\  y  e.  A )  /\  f  e.  ( Base `  G
) )  /\  (
t  e.  ~P A  /\  ( `' f `  y )  e.  t ) )  ->  (
( ( x  e.  ( Base `  G
)  |->  ( `' x `  y ) ) " { u  e.  ( Base `  G )  |  ( u `  ( `' f `  y
) )  =  y } )  C_  t  <->  { u  e.  ( Base `  G )  |  ( u `  ( `' f `  y ) )  =  y } 
C_  ( `' ( x  e.  ( Base `  G )  |->  ( `' x `  y ) ) " t ) ) )
158151, 157mpbird 224 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  V  /\  y  e.  A )  /\  f  e.  ( Base `  G
) )  /\  (
t  e.  ~P A  /\  ( `' f `  y )  e.  t ) )  ->  (
( x  e.  (
Base `  G )  |->  ( `' x `  y ) ) " { u  e.  ( Base `  G )  |  ( u `  ( `' f `  y
) )  =  y } )  C_  t
)
159 eleq2 2465 . . . . . . . . . . . . . . . 16  |-  ( v  =  { u  e.  ( Base `  G
)  |  ( u `
 ( `' f `
 y ) )  =  y }  ->  ( f  e.  v  <->  f  e.  { u  e.  ( Base `  G )  |  ( u `  ( `' f `  y ) )  =  y } ) )
160 imaeq2 5158 . . . . . . . . . . . . . . . . 17  |-  ( v  =  { u  e.  ( Base `  G
)  |  ( u `
 ( `' f `
 y ) )  =  y }  ->  ( ( x  e.  (
Base `  G )  |->  ( `' x `  y ) ) "
v )  =  ( ( x  e.  (
Base `  G )  |->  ( `' x `  y ) ) " { u  e.  ( Base `  G )  |  ( u `  ( `' f `  y
) )  =  y } ) )
161160sseq1d 3335 . . . . . . . . . . . . . . . 16  |-  ( v  =  { u  e.  ( Base `  G
)  |  ( u `
 ( `' f `
 y ) )  =  y }  ->  ( ( ( x  e.  ( Base `  G
)  |->  ( `' x `  y ) ) "
v )  C_  t  <->  ( ( x  e.  (
Base `  G )  |->  ( `' x `  y ) ) " { u  e.  ( Base `  G )  |  ( u `  ( `' f `  y
) )  =  y } )  C_  t
) )
162159, 161anbi12d 692 . . . . . . . . . . . . . . 15  |-  ( v  =  { u  e.  ( Base `  G
)  |  ( u `
 ( `' f `
 y ) )  =  y }  ->  ( ( f  e.  v  /\  ( ( x  e.  ( Base `  G
)  |->  ( `' x `  y ) ) "
v )  C_  t
)  <->  ( f  e. 
{ u  e.  (
Base `  G )  |  ( u `  ( `' f `  y
) )  =  y }  /\  ( ( x  e.  ( Base `  G )  |->  ( `' x `  y ) ) " { u  e.  ( Base `  G
)  |  ( u `
 ( `' f `
 y ) )  =  y } ) 
C_  t ) ) )
163162rspcev 3012 . . . . . . . . . . . . . 14  |-  ( ( { u  e.  (
Base `  G )  |  ( u `  ( `' f `  y
) )  =  y }  e.  ( TopOpen `  G )  /\  (
f  e.  { u  e.  ( Base `  G
)  |  ( u `
 ( `' f `
 y ) )  =  y }  /\  ( ( x  e.  ( Base `  G
)  |->  ( `' x `  y ) ) " { u  e.  ( Base `  G )  |  ( u `  ( `' f `  y
) )  =  y } )  C_  t
) )  ->  E. v  e.  ( TopOpen `  G )
( f  e.  v  /\  ( ( x  e.  ( Base `  G
)  |->  ( `' x `  y ) ) "
v )  C_  t
) )
164122, 131, 158, 163syl12anc 1182 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  V  /\  y  e.  A )  /\  f  e.  ( Base `  G
) )  /\  (
t  e.  ~P A  /\  ( `' f `  y )  e.  t ) )  ->  E. v  e.  ( TopOpen `  G )
( f  e.  v  /\  ( ( x  e.  ( Base `  G
)  |->  ( `' x `  y ) ) "
v )  C_  t
) )
165164expr 599 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  V  /\  y  e.  A )  /\  f  e.  ( Base `  G
) )  /\  t  e.  ~P A )  -> 
( ( `' f `
 y )  e.  t  ->  E. v  e.  ( TopOpen `  G )
( f  e.  v  /\  ( ( x  e.  ( Base `  G
)  |->  ( `' x `  y ) ) "
v )  C_  t
) ) )
16684, 165sylbid 207 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  V  /\  y  e.  A )  /\  f  e.  ( Base `  G
) )  /\  t  e.  ~P A )  -> 
( ( ( x  e.  ( Base `  G
)  |->  ( `' x `  y ) ) `  f )  e.  t  ->  E. v  e.  (
TopOpen `  G ) ( f  e.  v  /\  ( ( x  e.  ( Base `  G
)  |->  ( `' x `  y ) ) "
v )  C_  t
) ) )
167166ralrimiva 2749 . . . . . . . . . 10  |-  ( ( ( A  e.  V  /\  y  e.  A
)  /\  f  e.  ( Base `  G )
)  ->  A. t  e.  ~P  A ( ( ( x  e.  (
Base `  G )  |->  ( `' x `  y ) ) `  f )  e.  t  ->  E. v  e.  (
TopOpen `  G ) ( f  e.  v  /\  ( ( x  e.  ( Base `  G
)  |->  ( `' x `  y ) ) "
v )  C_  t
) ) )
16820ad2antrr 707 . . . . . . . . . . 11  |-  ( ( ( A  e.  V  /\  y  e.  A
)  /\  f  e.  ( Base `  G )
)  ->  ( TopOpen `  G )  e.  (TopOn `  ( Base `  G
) ) )
1697ad2antrr 707 . . . . . . . . . . 11  |-  ( ( ( A  e.  V  /\  y  e.  A
)  /\  f  e.  ( Base `  G )
)  ->  ~P A  e.  (TopOn `  A )
)
170 simpr 448 . . . . . . . . . . 11  |-  ( ( ( A  e.  V  /\  y  e.  A
)  /\  f  e.  ( Base `  G )
)  ->  f  e.  ( Base `  G )
)
171 iscnp 17255 . . . . . . . . . . 11  |-  ( ( ( TopOpen `  G )  e.  (TopOn `  ( Base `  G ) )  /\  ~P A  e.  (TopOn `  A )  /\  f  e.  ( Base `  G
) )  ->  (
( x  e.  (
Base `  G )  |->  ( `' x `  y ) )  e.  ( ( ( TopOpen `  G )  CnP  ~P A ) `  f
)  <->  ( ( x  e.  ( Base `  G
)  |->  ( `' x `  y ) ) : ( Base `  G
) --> A  /\  A. t  e.  ~P  A
( ( ( x  e.  ( Base `  G
)  |->  ( `' x `  y ) ) `  f )  e.  t  ->  E. v  e.  (
TopOpen `  G ) ( f  e.  v  /\  ( ( x  e.  ( Base `  G
)  |->  ( `' x `  y ) ) "
v )  C_  t
) ) ) ) )
172168, 169, 170, 171syl3anc 1184 . . . . . . . . . 10  |-  ( ( ( A  e.  V  /\  y  e.  A
)  /\  f  e.  ( Base `  G )
)  ->  ( (
x  e.  ( Base `  G )  |->  ( `' x `  y ) )  e.  ( ( ( TopOpen `  G )  CnP  ~P A ) `  f )  <->  ( (
x  e.  ( Base `  G )  |->  ( `' x `  y ) ) : ( Base `  G ) --> A  /\  A. t  e.  ~P  A
( ( ( x  e.  ( Base `  G
)  |->  ( `' x `  y ) ) `  f )  e.  t  ->  E. v  e.  (
TopOpen `  G ) ( f  e.  v  /\  ( ( x  e.  ( Base `  G
)  |->  ( `' x `  y ) ) "
v )  C_  t
) ) ) ) )
17378, 167, 172mpbir2and 889 . . . . . . . . 9  |-  ( ( ( A  e.  V  /\  y  e.  A
)  /\  f  e.  ( Base `  G )
)  ->  ( x  e.  ( Base `  G
)  |->  ( `' x `  y ) )  e.  ( ( ( TopOpen `  G )  CnP  ~P A ) `  f
) )
174173ralrimiva 2749 . . . . . . . 8  |-  ( ( A  e.  V  /\  y  e.  A )  ->  A. f  e.  (
Base `  G )
( x  e.  (
Base `  G )  |->  ( `' x `  y ) )  e.  ( ( ( TopOpen `  G )  CnP  ~P A ) `  f
) )
175 cncnp 17298 . . . . . . . . . 10  |-  ( ( ( TopOpen `  G )  e.  (TopOn `  ( Base `  G ) )  /\  ~P A  e.  (TopOn `  A ) )  -> 
( ( x  e.  ( Base `  G
)  |->  ( `' x `  y ) )  e.  ( ( TopOpen `  G
)  Cn  ~P A
)  <->  ( ( x  e.  ( Base `  G
)  |->  ( `' x `  y ) ) : ( Base `  G
) --> A  /\  A. f  e.  ( Base `  G ) ( x  e.  ( Base `  G
)  |->  ( `' x `  y ) )  e.  ( ( ( TopOpen `  G )  CnP  ~P A ) `  f
) ) ) )
17620, 7, 175syl2anc 643 . . . . . . . . 9  |-  ( A  e.  V  ->  (
( x  e.  (
Base `  G )  |->  ( `' x `  y ) )  e.  ( ( TopOpen `  G
)  Cn  ~P A
)  <->  ( ( x  e.  ( Base `  G
)  |->  ( `' x `  y ) ) : ( Base `  G
) --> A  /\  A. f  e.  ( Base `  G ) ( x  e.  ( Base `  G
)  |->  ( `' x `  y ) )  e.  ( ( ( TopOpen `  G )  CnP  ~P A ) `  f
) ) ) )
177176adantr 452 . . . . . . . 8  |-  ( ( A  e.  V  /\  y  e.  A )  ->  ( ( x  e.  ( Base `  G
)  |->  ( `' x `  y ) )  e.  ( ( TopOpen `  G
)  Cn  ~P A
)  <->  ( ( x  e.  ( Base `  G
)  |->  ( `' x `  y ) ) : ( Base `  G
) --> A  /\  A. f  e.  ( Base `  G ) ( x  e.  ( Base `  G
)  |->  ( `' x `  y ) )  e.  ( ( ( TopOpen `  G )  CnP  ~P A ) `  f
) ) ) )
17877, 174, 177mpbir2and 889 . . . . . . 7  |-  ( ( A  e.  V  /\  y  e.  A )  ->  ( x  e.  (
Base `  G )  |->  ( `' x `  y ) )  e.  ( ( TopOpen `  G
)  Cn  ~P A
) )
179 fvconst2g 5904 . . . . . . . . 9  |-  ( ( ~P A  e.  Top  /\  y  e.  A )  ->  ( ( A  X.  { ~P A } ) `  y
)  =  ~P A
)
18027, 179sylan 458 . . . . . . . 8  |-  ( ( A  e.  V  /\  y  e.  A )  ->  ( ( A  X.  { ~P A } ) `
 y )  =  ~P A )
181180oveq2d 6056 . . . . . . 7  |-  ( ( A  e.  V  /\  y  e.  A )  ->  ( ( TopOpen `  G
)  Cn  ( ( A  X.  { ~P A } ) `  y
) )  =  ( ( TopOpen `  G )  Cn  ~P A ) )
182178, 181eleqtrrd 2481 . . . . . 6  |-  ( ( A  e.  V  /\  y  e.  A )  ->  ( x  e.  (
Base `  G )  |->  ( `' x `  y ) )  e.  ( ( TopOpen `  G
)  Cn  ( ( A  X.  { ~P A } ) `  y
) ) )
1838, 20, 67, 69, 182ptcn 17612 . . . . 5  |-  ( A  e.  V  ->  (
x  e.  ( Base `  G )  |->  ( y  e.  A  |->  ( `' x `  y ) ) )  e.  ( ( TopOpen `  G )  Cn  ( Xt_ `  ( A  X.  { ~P A } ) ) ) )
184 eqid 2404 . . . . . . . . 9  |-  ( inv g `  G )  =  ( inv g `  G )
1855, 184grpinvf 14804 . . . . . . . 8  |-  ( G  e.  Grp  ->  ( inv g `  G ) : ( Base `  G
) --> ( Base `  G
) )
1862, 185syl 16 . . . . . . 7  |-  ( A  e.  V  ->  ( inv g `  G ) : ( Base `  G
) --> ( Base `  G
) )
187186feqmptd 5738 . . . . . 6  |-  ( A  e.  V  ->  ( inv g `  G )  =  ( x  e.  ( Base `  G
)  |->  ( ( inv g `  G ) `
 x ) ) )
1881, 5, 184symginv 15060 . . . . . . . . 9  |-  ( x  e.  ( Base `  G
)  ->  ( ( inv g `  G ) `
 x )  =  `' x )
189188adantl 453 . . . . . . . 8  |-  ( ( A  e.  V  /\  x  e.  ( Base `  G ) )  -> 
( ( inv g `  G ) `  x
)  =  `' x
)
19073feqmptd 5738 . . . . . . . 8  |-  ( ( A  e.  V  /\  x  e.  ( Base `  G ) )  ->  `' x  =  (
y  e.  A  |->  ( `' x `  y ) ) )
191189, 190eqtrd 2436 . . . . . . 7  |-  ( ( A  e.  V  /\  x  e.  ( Base `  G ) )  -> 
( ( inv g `  G ) `  x
)  =  ( y  e.  A  |->  ( `' x `  y ) ) )
192191mpteq2dva 4255 . . . . . 6  |-  ( A  e.  V  ->  (
x  e.  ( Base `  G )  |->  ( ( inv g `  G
) `  x )
)  =  ( x  e.  ( Base `  G
)  |->  ( y  e.  A  |->  ( `' x `  y ) ) ) )
193187, 192eqtrd 2436 . . . . 5  |-  ( A  e.  V  ->  ( inv g `  G )  =  ( x  e.  ( Base `  G
)  |->  ( y  e.  A  |->  ( `' x `  y ) ) ) )
19443oveq2d 6056 . . . . 5  |-  ( A  e.  V  ->  (
( TopOpen `  G )  Cn  ( ~P A  ^ k o  ~P A
) )  =  ( ( TopOpen `  G )  Cn  ( Xt_ `  ( A  X.  { ~P A } ) ) ) )
195183, 193, 1943eltr4d 2485 . . . 4  |-  ( A  e.  V  ->  ( inv g `  G )  e.  ( ( TopOpen `  G )  Cn  ( ~P A  ^ k o  ~P A ) ) )
196 frn 5556 . . . . . 6  |-  ( ( inv g `  G
) : ( Base `  G ) --> ( Base `  G )  ->  ran  ( inv g `  G
)  C_  ( Base `  G ) )
1972, 185, 1963syl 19 . . . . 5  |-  ( A  e.  V  ->  ran  ( inv g `  G
)  C_  ( Base `  G ) )
198 cnrest2 17304 . . . . 5  |-  ( ( ( ~P A  ^ k o  ~P A
)  e.  (TopOn `  ( ~P A  Cn  ~P A ) )  /\  ran  ( inv g `  G )  C_  ( Base `  G )  /\  ( Base `  G )  C_  ( ~P A  Cn  ~P A ) )  -> 
( ( inv g `  G )  e.  ( ( TopOpen `  G )  Cn  ( ~P A  ^ k o  ~P A
) )  <->  ( inv g `  G )  e.  ( ( TopOpen `  G
)  Cn  ( ( ~P A  ^ k o  ~P A )t  ( Base `  G ) ) ) ) )
19930, 197, 33, 198syl3anc 1184 . . . 4  |-  ( A  e.  V  ->  (
( inv g `  G )  e.  ( ( TopOpen `  G )  Cn  ( ~P A  ^ k o  ~P A
) )  <->  ( inv g `  G )  e.  ( ( TopOpen `  G
)  Cn  ( ( ~P A  ^ k o  ~P A )t  ( Base `  G ) ) ) ) )
200195, 199mpbid 202 . . 3  |-  ( A  e.  V  ->  ( inv g `  G )  e.  ( ( TopOpen `  G )  Cn  (
( ~P A  ^ k o  ~P A
)t  ( Base `  G
) ) ) )
20145oveq2d 6056 . . 3  |-  ( A  e.  V  ->  (
( TopOpen `  G )  Cn  ( ( ~P A  ^ k o  ~P A
)t  ( Base `  G
) ) )  =  ( ( TopOpen `  G
)  Cn  ( TopOpen `  G ) ) )
202200, 201eleqtrd 2480 . 2  |-  ( A  e.  V  ->  ( inv g `  G )  e.  ( ( TopOpen `  G )  Cn  ( TopOpen
`  G ) ) )
20321, 184istgp 18060 . 2  |-  ( G  e.  TopGrp 
<->  ( G  e.  Grp  /\  G  e. TopMnd  /\  ( inv g `  G )  e.  ( ( TopOpen `  G )  Cn  ( TopOpen
`  G ) ) ) )
2042, 66, 202, 203syl3anbrc 1138 1  |-  ( A  e.  V  ->  G  e.  TopGrp )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1649    e. wcel 1721   A.wral 2666   E.wrex 2667   {crab 2670   _Vcvv 2916    C_ wss 3280   ~Pcpw 3759   {csn 3774   U.cuni 3975    e. cmpt 4226    X. cxp 4835   `'ccnv 4836   dom cdm 4837   ran crn 4838   "cima 4840    o. ccom 4841   Fun wfun 5407    Fn wfn 5408   -->wf 5409   -1-1-onto->wf1o 5412   ` cfv 5413  (class class class)co 6040    e. cmpt2 6042    ^m cmap 6977   Basecbs 13424   +g cplusg 13484   ↾t crest 13603   TopOpenctopn 13604   Xt_cpt 13621   Mndcmnd 14639   Grpcgrp 14640   inv gcminusg 14641   + fcplusf 14642   SymGrpcsymg 15047   Topctop 16913  TopOnctopon 16914   TopSpctps 16916    Cn ccn 17242    CnP ccnp 17243   Compccmp 17403  Locally clly 17480  𝑛Locally cnlly 17481    tX ctx 17545    ^ k o cxko 17546  TopMndctmd 18053   TopGrpctgp 18054
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-rep 4280  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-cnex 9002  ax-resscn 9003  ax-1cn 9004  ax-icn 9005  ax-addcl 9006  ax-addrcl 9007  ax-mulcl 9008  ax-mulrcl 9009  ax-mulcom 9010  ax-addass 9011  ax-mulass 9012  ax-distr 9013  ax-i2m1 9014  ax-1ne0 9015  ax-1rid 9016  ax-rnegex 9017  ax-rrecex 9018  ax-cnre 9019  ax-pre-lttri 9020  ax-pre-lttrn 9021  ax-pre-ltadd 9022  ax-pre-mulgt0 9023
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rmo 2674  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-int 4011  df-iun 4055  df-iin 4056  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-1st 6308  df-2nd 6309  df-riota 6508  df-recs 6592  df-rdg 6627  df-1o 6683  df-2o 6684  df-oadd 6687  df-er 6864  df-map 6979  df-ixp 7023  df-en 7069  df-dom 7070  df-sdom 7071  df-fin 7072  df-fi 7374  df-pnf 9078  df-mnf 9079  df-xr 9080  df-ltxr 9081  df-le 9082  df-sub 9249  df-neg 9250  df-nn 9957  df-2 10014  df-3 10015  df-4 10016  df-5 10017  df-6 10018  df-7 10019  df-8 10020  df-9 10021  df-n0 10178  df-z 10239  df-uz 10445  df-fz 11000  df-struct 13426  df-ndx 13427  df-slot 13428  df-base 13429  df-plusg 13497  df-tset 13503  df-rest 13605  df-topn 13606  df-topgen 13622  df-pt 13623  df-0g 13682  df-mnd 14645  df-plusf 14646  df-grp 14767  df-minusg 14768  df-symg 15048  df-top 16918  df-bases 16920  df-topon 16921  df-topsp 16922  df-ntr 17039  df-nei 17117  df-cn 17245  df-cnp 17246  df-cmp 17404  df-lly 17482  df-nlly 17483  df-tx 17547  df-xko 17548  df-tmd 18055  df-tgp 18056
  Copyright terms: Public domain W3C validator