MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  symggrp Structured version   Unicode version

Theorem symggrp 15924
Description: The symmetric group on a set  A is a group. (Contributed by Paul Chapman, 25-Feb-2008.) (Revised by Mario Carneiro, 13-Jan-2015.)
Hypothesis
Ref Expression
symggrp.1  |-  G  =  ( SymGrp `  A )
Assertion
Ref Expression
symggrp  |-  ( A  e.  V  ->  G  e.  Grp )

Proof of Theorem symggrp
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqidd 2444 . 2  |-  ( A  e.  V  ->  ( Base `  G )  =  ( Base `  G
) )
2 eqidd 2444 . 2  |-  ( A  e.  V  ->  ( +g  `  G )  =  ( +g  `  G
) )
3 symggrp.1 . . . 4  |-  G  =  ( SymGrp `  A )
4 eqid 2443 . . . 4  |-  ( Base `  G )  =  (
Base `  G )
5 eqid 2443 . . . 4  |-  ( +g  `  G )  =  ( +g  `  G )
63, 4, 5symgcl 15915 . . 3  |-  ( ( x  e.  ( Base `  G )  /\  y  e.  ( Base `  G
) )  ->  (
x ( +g  `  G
) y )  e.  ( Base `  G
) )
763adant1 1006 . 2  |-  ( ( A  e.  V  /\  x  e.  ( Base `  G )  /\  y  e.  ( Base `  G
) )  ->  (
x ( +g  `  G
) y )  e.  ( Base `  G
) )
8 coass 5375 . . . 4  |-  ( ( x  o.  y )  o.  z )  =  ( x  o.  (
y  o.  z ) )
9 simpr1 994 . . . . . 6  |-  ( ( A  e.  V  /\  ( x  e.  ( Base `  G )  /\  y  e.  ( Base `  G )  /\  z  e.  ( Base `  G
) ) )  ->  x  e.  ( Base `  G ) )
10 simpr2 995 . . . . . 6  |-  ( ( A  e.  V  /\  ( x  e.  ( Base `  G )  /\  y  e.  ( Base `  G )  /\  z  e.  ( Base `  G
) ) )  -> 
y  e.  ( Base `  G ) )
113, 4, 5symgov 15914 . . . . . 6  |-  ( ( x  e.  ( Base `  G )  /\  y  e.  ( Base `  G
) )  ->  (
x ( +g  `  G
) y )  =  ( x  o.  y
) )
129, 10, 11syl2anc 661 . . . . 5  |-  ( ( A  e.  V  /\  ( x  e.  ( Base `  G )  /\  y  e.  ( Base `  G )  /\  z  e.  ( Base `  G
) ) )  -> 
( x ( +g  `  G ) y )  =  ( x  o.  y ) )
1312coeq1d 5020 . . . 4  |-  ( ( A  e.  V  /\  ( x  e.  ( Base `  G )  /\  y  e.  ( Base `  G )  /\  z  e.  ( Base `  G
) ) )  -> 
( ( x ( +g  `  G ) y )  o.  z
)  =  ( ( x  o.  y )  o.  z ) )
14 simpr3 996 . . . . . 6  |-  ( ( A  e.  V  /\  ( x  e.  ( Base `  G )  /\  y  e.  ( Base `  G )  /\  z  e.  ( Base `  G
) ) )  -> 
z  e.  ( Base `  G ) )
153, 4, 5symgov 15914 . . . . . 6  |-  ( ( y  e.  ( Base `  G )  /\  z  e.  ( Base `  G
) )  ->  (
y ( +g  `  G
) z )  =  ( y  o.  z
) )
1610, 14, 15syl2anc 661 . . . . 5  |-  ( ( A  e.  V  /\  ( x  e.  ( Base `  G )  /\  y  e.  ( Base `  G )  /\  z  e.  ( Base `  G
) ) )  -> 
( y ( +g  `  G ) z )  =  ( y  o.  z ) )
1716coeq2d 5021 . . . 4  |-  ( ( A  e.  V  /\  ( x  e.  ( Base `  G )  /\  y  e.  ( Base `  G )  /\  z  e.  ( Base `  G
) ) )  -> 
( x  o.  (
y ( +g  `  G
) z ) )  =  ( x  o.  ( y  o.  z
) ) )
188, 13, 173eqtr4a 2501 . . 3  |-  ( ( A  e.  V  /\  ( x  e.  ( Base `  G )  /\  y  e.  ( Base `  G )  /\  z  e.  ( Base `  G
) ) )  -> 
( ( x ( +g  `  G ) y )  o.  z
)  =  ( x  o.  ( y ( +g  `  G ) z ) ) )
199, 10, 6syl2anc 661 . . . 4  |-  ( ( A  e.  V  /\  ( x  e.  ( Base `  G )  /\  y  e.  ( Base `  G )  /\  z  e.  ( Base `  G
) ) )  -> 
( x ( +g  `  G ) y )  e.  ( Base `  G
) )
203, 4, 5symgov 15914 . . . 4  |-  ( ( ( x ( +g  `  G ) y )  e.  ( Base `  G
)  /\  z  e.  ( Base `  G )
)  ->  ( (
x ( +g  `  G
) y ) ( +g  `  G ) z )  =  ( ( x ( +g  `  G ) y )  o.  z ) )
2119, 14, 20syl2anc 661 . . 3  |-  ( ( A  e.  V  /\  ( x  e.  ( Base `  G )  /\  y  e.  ( Base `  G )  /\  z  e.  ( Base `  G
) ) )  -> 
( ( x ( +g  `  G ) y ) ( +g  `  G ) z )  =  ( ( x ( +g  `  G
) y )  o.  z ) )
223, 4, 5symgcl 15915 . . . . 5  |-  ( ( y  e.  ( Base `  G )  /\  z  e.  ( Base `  G
) )  ->  (
y ( +g  `  G
) z )  e.  ( Base `  G
) )
2310, 14, 22syl2anc 661 . . . 4  |-  ( ( A  e.  V  /\  ( x  e.  ( Base `  G )  /\  y  e.  ( Base `  G )  /\  z  e.  ( Base `  G
) ) )  -> 
( y ( +g  `  G ) z )  e.  ( Base `  G
) )
243, 4, 5symgov 15914 . . . 4  |-  ( ( x  e.  ( Base `  G )  /\  (
y ( +g  `  G
) z )  e.  ( Base `  G
) )  ->  (
x ( +g  `  G
) ( y ( +g  `  G ) z ) )  =  ( x  o.  (
y ( +g  `  G
) z ) ) )
259, 23, 24syl2anc 661 . . 3  |-  ( ( A  e.  V  /\  ( x  e.  ( Base `  G )  /\  y  e.  ( Base `  G )  /\  z  e.  ( Base `  G
) ) )  -> 
( x ( +g  `  G ) ( y ( +g  `  G
) z ) )  =  ( x  o.  ( y ( +g  `  G ) z ) ) )
2618, 21, 253eqtr4d 2485 . 2  |-  ( ( A  e.  V  /\  ( x  e.  ( Base `  G )  /\  y  e.  ( Base `  G )  /\  z  e.  ( Base `  G
) ) )  -> 
( ( x ( +g  `  G ) y ) ( +g  `  G ) z )  =  ( x ( +g  `  G ) ( y ( +g  `  G ) z ) ) )
27 f1oi 5695 . . 3  |-  (  _I  |`  A ) : A -1-1-onto-> A
283, 4elsymgbas 15906 . . 3  |-  ( A  e.  V  ->  (
(  _I  |`  A )  e.  ( Base `  G
)  <->  (  _I  |`  A ) : A -1-1-onto-> A ) )
2927, 28mpbiri 233 . 2  |-  ( A  e.  V  ->  (  _I  |`  A )  e.  ( Base `  G
) )
303, 4, 5symgov 15914 . . . 4  |-  ( ( (  _I  |`  A )  e.  ( Base `  G
)  /\  x  e.  ( Base `  G )
)  ->  ( (  _I  |`  A ) ( +g  `  G ) x )  =  ( (  _I  |`  A )  o.  x ) )
3129, 30sylan 471 . . 3  |-  ( ( A  e.  V  /\  x  e.  ( Base `  G ) )  -> 
( (  _I  |`  A ) ( +g  `  G
) x )  =  ( (  _I  |`  A )  o.  x ) )
323, 4elsymgbas 15906 . . . . 5  |-  ( A  e.  V  ->  (
x  e.  ( Base `  G )  <->  x : A
-1-1-onto-> A ) )
3332biimpa 484 . . . 4  |-  ( ( A  e.  V  /\  x  e.  ( Base `  G ) )  ->  x : A -1-1-onto-> A )
34 f1of 5660 . . . 4  |-  ( x : A -1-1-onto-> A  ->  x : A
--> A )
35 fcoi2 5605 . . . 4  |-  ( x : A --> A  -> 
( (  _I  |`  A )  o.  x )  =  x )
3633, 34, 353syl 20 . . 3  |-  ( ( A  e.  V  /\  x  e.  ( Base `  G ) )  -> 
( (  _I  |`  A )  o.  x )  =  x )
3731, 36eqtrd 2475 . 2  |-  ( ( A  e.  V  /\  x  e.  ( Base `  G ) )  -> 
( (  _I  |`  A ) ( +g  `  G
) x )  =  x )
38 f1ocnv 5672 . . . . 5  |-  ( x : A -1-1-onto-> A  ->  `' x : A -1-1-onto-> A )
3938a1i 11 . . . 4  |-  ( A  e.  V  ->  (
x : A -1-1-onto-> A  ->  `' x : A -1-1-onto-> A ) )
403, 4elsymgbas 15906 . . . 4  |-  ( A  e.  V  ->  ( `' x  e.  ( Base `  G )  <->  `' x : A -1-1-onto-> A ) )
4139, 32, 403imtr4d 268 . . 3  |-  ( A  e.  V  ->  (
x  e.  ( Base `  G )  ->  `' x  e.  ( Base `  G ) ) )
4241imp 429 . 2  |-  ( ( A  e.  V  /\  x  e.  ( Base `  G ) )  ->  `' x  e.  ( Base `  G ) )
433, 4, 5symgov 15914 . . . 4  |-  ( ( `' x  e.  ( Base `  G )  /\  x  e.  ( Base `  G ) )  -> 
( `' x ( +g  `  G ) x )  =  ( `' x  o.  x
) )
4442, 43sylancom 667 . . 3  |-  ( ( A  e.  V  /\  x  e.  ( Base `  G ) )  -> 
( `' x ( +g  `  G ) x )  =  ( `' x  o.  x
) )
45 f1ococnv1 5688 . . . 4  |-  ( x : A -1-1-onto-> A  ->  ( `' x  o.  x )  =  (  _I  |`  A ) )
4633, 45syl 16 . . 3  |-  ( ( A  e.  V  /\  x  e.  ( Base `  G ) )  -> 
( `' x  o.  x )  =  (  _I  |`  A )
)
4744, 46eqtrd 2475 . 2  |-  ( ( A  e.  V  /\  x  e.  ( Base `  G ) )  -> 
( `' x ( +g  `  G ) x )  =  (  _I  |`  A )
)
481, 2, 7, 26, 29, 37, 42, 47isgrpd 15582 1  |-  ( A  e.  V  ->  G  e.  Grp )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 965    = wceq 1369    e. wcel 1756    _I cid 4650   `'ccnv 4858    |` cres 4861    o. ccom 4863   -->wf 5433   -1-1-onto->wf1o 5436   ` cfv 5437  (class class class)co 6110   Basecbs 14193   +g cplusg 14257   Grpcgrp 15429   SymGrpcsymg 15901
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4422  ax-sep 4432  ax-nul 4440  ax-pow 4489  ax-pr 4550  ax-un 6391  ax-cnex 9357  ax-resscn 9358  ax-1cn 9359  ax-icn 9360  ax-addcl 9361  ax-addrcl 9362  ax-mulcl 9363  ax-mulrcl 9364  ax-mulcom 9365  ax-addass 9366  ax-mulass 9367  ax-distr 9368  ax-i2m1 9369  ax-1ne0 9370  ax-1rid 9371  ax-rnegex 9372  ax-rrecex 9373  ax-cnre 9374  ax-pre-lttri 9375  ax-pre-lttrn 9376  ax-pre-ltadd 9377  ax-pre-mulgt0 9378
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2577  df-ne 2622  df-nel 2623  df-ral 2739  df-rex 2740  df-reu 2741  df-rmo 2742  df-rab 2743  df-v 2993  df-sbc 3206  df-csb 3308  df-dif 3350  df-un 3352  df-in 3354  df-ss 3361  df-pss 3363  df-nul 3657  df-if 3811  df-pw 3881  df-sn 3897  df-pr 3899  df-tp 3901  df-op 3903  df-uni 4111  df-int 4148  df-iun 4192  df-br 4312  df-opab 4370  df-mpt 4371  df-tr 4405  df-eprel 4651  df-id 4655  df-po 4660  df-so 4661  df-fr 4698  df-we 4700  df-ord 4741  df-on 4742  df-lim 4743  df-suc 4744  df-xp 4865  df-rel 4866  df-cnv 4867  df-co 4868  df-dm 4869  df-rn 4870  df-res 4871  df-ima 4872  df-iota 5400  df-fun 5439  df-fn 5440  df-f 5441  df-f1 5442  df-fo 5443  df-f1o 5444  df-fv 5445  df-riota 6071  df-ov 6113  df-oprab 6114  df-mpt2 6115  df-om 6496  df-1st 6596  df-2nd 6597  df-recs 6851  df-rdg 6885  df-1o 6939  df-oadd 6943  df-er 7120  df-map 7235  df-en 7330  df-dom 7331  df-sdom 7332  df-fin 7333  df-pnf 9439  df-mnf 9440  df-xr 9441  df-ltxr 9442  df-le 9443  df-sub 9616  df-neg 9617  df-nn 10342  df-2 10399  df-3 10400  df-4 10401  df-5 10402  df-6 10403  df-7 10404  df-8 10405  df-9 10406  df-n0 10599  df-z 10666  df-uz 10881  df-fz 11457  df-struct 14195  df-ndx 14196  df-slot 14197  df-base 14198  df-plusg 14270  df-tset 14276  df-0g 14399  df-mnd 15434  df-grp 15564  df-symg 15902
This theorem is referenced by:  symgid  15925  symginv  15926  galactghm  15927  symgga  15930  pgrpsubgsymgbi  15931  pgrpsubgsymg  15932  idressubgsymg  15934  gsumccatsymgsn  15950  symgsssg  15992  symgfisg  15993  symggen  15995  symgtrinv  15997  psgnunilem5  16019  psgnunilem2  16020  psgnuni  16024  psgneldm2  16029  psgnfitr  16042  psgnghm  18029  zrhpsgninv  18034  evpmodpmf1o  18045  mdetleib2  18418  mdet1  18427  mdetralt  18433  mdetunilem7  18443  symgtgp  19691  pgrple2abel  30791  mdetdiag  30959
  Copyright terms: Public domain W3C validator