MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  symggen Structured version   Unicode version

Theorem symggen 17054
Description: The span of the transpositions is the subgroup that moves finitely many points. (Contributed by Stefan O'Rear, 28-Aug-2015.)
Hypotheses
Ref Expression
symgtrf.t  |-  T  =  ran  (pmTrsp `  D
)
symgtrf.g  |-  G  =  ( SymGrp `  D )
symgtrf.b  |-  B  =  ( Base `  G
)
symggen.k  |-  K  =  (mrCls `  (SubMnd `  G
) )
Assertion
Ref Expression
symggen  |-  ( D  e.  V  ->  ( K `  T )  =  { x  e.  B  |  dom  ( x  \  _I  )  e.  Fin } )
Distinct variable groups:    x, B    x, T    x, K    x, D    x, G    x, V

Proof of Theorem symggen
Dummy variables  u  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 3031 . . . 4  |-  ( D  e.  V  ->  D  e.  _V )
2 symgtrf.g . . . . . . 7  |-  G  =  ( SymGrp `  D )
32symggrp 16984 . . . . . 6  |-  ( D  e.  _V  ->  G  e.  Grp )
4 grpmnd 16621 . . . . . 6  |-  ( G  e.  Grp  ->  G  e.  Mnd )
53, 4syl 17 . . . . 5  |-  ( D  e.  _V  ->  G  e.  Mnd )
6 symgtrf.b . . . . . 6  |-  B  =  ( Base `  G
)
76submacs 16555 . . . . 5  |-  ( G  e.  Mnd  ->  (SubMnd `  G )  e.  (ACS
`  B ) )
8 acsmre 15501 . . . . 5  |-  ( (SubMnd `  G )  e.  (ACS
`  B )  -> 
(SubMnd `  G )  e.  (Moore `  B )
)
95, 7, 83syl 18 . . . 4  |-  ( D  e.  _V  ->  (SubMnd `  G )  e.  (Moore `  B ) )
101, 9syl 17 . . 3  |-  ( D  e.  V  ->  (SubMnd `  G )  e.  (Moore `  B ) )
11 symgtrf.t . . . . . 6  |-  T  =  ran  (pmTrsp `  D
)
1211, 2, 6symgtrf 17053 . . . . 5  |-  T  C_  B
1312a1i 11 . . . 4  |-  ( D  e.  V  ->  T  C_  B )
14 2onn 7296 . . . . . 6  |-  2o  e.  om
15 nnfi 7718 . . . . . 6  |-  ( 2o  e.  om  ->  2o  e.  Fin )
1614, 15ax-mp 5 . . . . 5  |-  2o  e.  Fin
17 eqid 2428 . . . . . . . . 9  |-  (pmTrsp `  D )  =  (pmTrsp `  D )
1817, 11pmtrfb 17049 . . . . . . . 8  |-  ( x  e.  T  <->  ( D  e.  _V  /\  x : D -1-1-onto-> D  /\  dom  (
x  \  _I  )  ~~  2o ) )
1918simp3bi 1022 . . . . . . 7  |-  ( x  e.  T  ->  dom  ( x  \  _I  )  ~~  2o )
20 enfi 7741 . . . . . . 7  |-  ( dom  ( x  \  _I  )  ~~  2o  ->  ( dom  ( x  \  _I  )  e.  Fin  <->  2o  e.  Fin ) )
2119, 20syl 17 . . . . . 6  |-  ( x  e.  T  ->  ( dom  ( x  \  _I  )  e.  Fin  <->  2o  e.  Fin ) )
2221adantl 467 . . . . 5  |-  ( ( D  e.  V  /\  x  e.  T )  ->  ( dom  ( x 
\  _I  )  e. 
Fin 
<->  2o  e.  Fin )
)
2316, 22mpbiri 236 . . . 4  |-  ( ( D  e.  V  /\  x  e.  T )  ->  dom  ( x  \  _I  )  e.  Fin )
2413, 23ssrabdv 3483 . . 3  |-  ( D  e.  V  ->  T  C_ 
{ x  e.  B  |  dom  ( x  \  _I  )  e.  Fin } )
252, 6symgfisg 17052 . . . 4  |-  ( D  e.  V  ->  { x  e.  B  |  dom  ( x  \  _I  )  e.  Fin }  e.  (SubGrp `  G ) )
26 subgsubm 16782 . . . 4  |-  ( { x  e.  B  |  dom  ( x  \  _I  )  e.  Fin }  e.  (SubGrp `  G )  ->  { x  e.  B  |  dom  ( x  \  _I  )  e.  Fin }  e.  (SubMnd `  G
) )
2725, 26syl 17 . . 3  |-  ( D  e.  V  ->  { x  e.  B  |  dom  ( x  \  _I  )  e.  Fin }  e.  (SubMnd `  G ) )
28 symggen.k . . . 4  |-  K  =  (mrCls `  (SubMnd `  G
) )
2928mrcsscl 15469 . . 3  |-  ( ( (SubMnd `  G )  e.  (Moore `  B )  /\  T  C_  { x  e.  B  |  dom  ( x  \  _I  )  e.  Fin }  /\  {
x  e.  B  |  dom  ( x  \  _I  )  e.  Fin }  e.  (SubMnd `  G ) )  ->  ( K `  T )  C_  { x  e.  B  |  dom  ( x  \  _I  )  e.  Fin } )
3010, 24, 27, 29syl3anc 1264 . 2  |-  ( D  e.  V  ->  ( K `  T )  C_ 
{ x  e.  B  |  dom  ( x  \  _I  )  e.  Fin } )
31 vex 3025 . . . . . . 7  |-  x  e. 
_V
3231a1i 11 . . . . . 6  |-  ( dom  ( x  \  _I  )  e.  Fin  ->  x  e.  _V )
33 finnum 8334 . . . . . 6  |-  ( dom  ( x  \  _I  )  e.  Fin  ->  dom  ( x  \  _I  )  e.  dom  card )
34 domfi 7746 . . . . . . . 8  |-  ( ( dom  ( x  \  _I  )  e.  Fin  /\ 
dom  ( y  \  _I  )  ~<_  dom  ( x 
\  _I  ) )  ->  dom  ( y  \  _I  )  e.  Fin )
352, 6symgbasf1o 16967 . . . . . . . . . . . . . . 15  |-  ( y  e.  B  ->  y : D -1-1-onto-> D )
3635adantl 467 . . . . . . . . . . . . . 14  |-  ( ( dom  ( y  \  _I  )  e.  Fin  /\  y  e.  B )  ->  y : D -1-1-onto-> D
)
37 f1ofn 5775 . . . . . . . . . . . . . 14  |-  ( y : D -1-1-onto-> D  ->  y  Fn  D )
38 fnnfpeq0 6054 . . . . . . . . . . . . . 14  |-  ( y  Fn  D  ->  ( dom  ( y  \  _I  )  =  (/)  <->  y  =  (  _I  |`  D ) ) )
3936, 37, 383syl 18 . . . . . . . . . . . . 13  |-  ( ( dom  ( y  \  _I  )  e.  Fin  /\  y  e.  B )  ->  ( dom  (
y  \  _I  )  =  (/)  <->  y  =  (  _I  |`  D )
) )
402, 6elbasfv 15113 . . . . . . . . . . . . . . . . 17  |-  ( y  e.  B  ->  D  e.  _V )
4140adantl 467 . . . . . . . . . . . . . . . 16  |-  ( ( dom  ( y  \  _I  )  e.  Fin  /\  y  e.  B )  ->  D  e.  _V )
422symgid 16985 . . . . . . . . . . . . . . . 16  |-  ( D  e.  _V  ->  (  _I  |`  D )  =  ( 0g `  G
) )
4341, 42syl 17 . . . . . . . . . . . . . . 15  |-  ( ( dom  ( y  \  _I  )  e.  Fin  /\  y  e.  B )  ->  (  _I  |`  D )  =  ( 0g `  G ) )
4441, 9syl 17 . . . . . . . . . . . . . . . . 17  |-  ( ( dom  ( y  \  _I  )  e.  Fin  /\  y  e.  B )  ->  (SubMnd `  G )  e.  (Moore `  B )
)
4528mrccl 15460 . . . . . . . . . . . . . . . . 17  |-  ( ( (SubMnd `  G )  e.  (Moore `  B )  /\  T  C_  B )  ->  ( K `  T )  e.  (SubMnd `  G ) )
4644, 12, 45sylancl 666 . . . . . . . . . . . . . . . 16  |-  ( ( dom  ( y  \  _I  )  e.  Fin  /\  y  e.  B )  ->  ( K `  T )  e.  (SubMnd `  G ) )
47 eqid 2428 . . . . . . . . . . . . . . . . 17  |-  ( 0g
`  G )  =  ( 0g `  G
)
4847subm0cl 16542 . . . . . . . . . . . . . . . 16  |-  ( ( K `  T )  e.  (SubMnd `  G
)  ->  ( 0g `  G )  e.  ( K `  T ) )
4946, 48syl 17 . . . . . . . . . . . . . . 15  |-  ( ( dom  ( y  \  _I  )  e.  Fin  /\  y  e.  B )  ->  ( 0g `  G )  e.  ( K `  T ) )
5043, 49eqeltrd 2506 . . . . . . . . . . . . . 14  |-  ( ( dom  ( y  \  _I  )  e.  Fin  /\  y  e.  B )  ->  (  _I  |`  D )  e.  ( K `  T ) )
51 eleq1a 2501 . . . . . . . . . . . . . 14  |-  ( (  _I  |`  D )  e.  ( K `  T
)  ->  ( y  =  (  _I  |`  D )  ->  y  e.  ( K `  T ) ) )
5250, 51syl 17 . . . . . . . . . . . . 13  |-  ( ( dom  ( y  \  _I  )  e.  Fin  /\  y  e.  B )  ->  ( y  =  (  _I  |`  D )  ->  y  e.  ( K `  T ) ) )
5339, 52sylbid 218 . . . . . . . . . . . 12  |-  ( ( dom  ( y  \  _I  )  e.  Fin  /\  y  e.  B )  ->  ( dom  (
y  \  _I  )  =  (/)  ->  y  e.  ( K `  T ) ) )
5453adantr 466 . . . . . . . . . . 11  |-  ( ( ( dom  ( y 
\  _I  )  e. 
Fin  /\  y  e.  B )  /\  A. z ( dom  (
z  \  _I  )  ~<  dom  ( y  \  _I  )  ->  ( z  e.  B  ->  z  e.  ( K `  T
) ) ) )  ->  ( dom  (
y  \  _I  )  =  (/)  ->  y  e.  ( K `  T ) ) )
55 n0 3714 . . . . . . . . . . . 12  |-  ( dom  ( y  \  _I  )  =/=  (/)  <->  E. u  u  e. 
dom  ( y  \  _I  ) )
5641adantr 466 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( dom  ( y 
\  _I  )  e. 
Fin  /\  y  e.  B )  /\  u  e.  dom  ( y  \  _I  ) )  ->  D  e.  _V )
57 simpr 462 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( dom  ( y 
\  _I  )  e. 
Fin  /\  y  e.  B )  /\  u  e.  dom  ( y  \  _I  ) )  ->  u  e.  dom  ( y  \  _I  ) )
58 f1omvdmvd 17027 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( y : D -1-1-onto-> D  /\  u  e.  dom  ( y 
\  _I  ) )  ->  ( y `  u )  e.  ( dom  ( y  \  _I  )  \  { u } ) )
5936, 58sylan 473 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( dom  ( y 
\  _I  )  e. 
Fin  /\  y  e.  B )  /\  u  e.  dom  ( y  \  _I  ) )  ->  (
y `  u )  e.  ( dom  ( y 
\  _I  )  \  { u } ) )
6059eldifad 3391 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( dom  ( y 
\  _I  )  e. 
Fin  /\  y  e.  B )  /\  u  e.  dom  ( y  \  _I  ) )  ->  (
y `  u )  e.  dom  ( y  \  _I  ) )
61 prssi 4099 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( u  e.  dom  (
y  \  _I  )  /\  ( y `  u
)  e.  dom  (
y  \  _I  )
)  ->  { u ,  ( y `  u ) }  C_  dom  ( y  \  _I  ) )
6257, 60, 61syl2anc 665 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( dom  ( y 
\  _I  )  e. 
Fin  /\  y  e.  B )  /\  u  e.  dom  ( y  \  _I  ) )  ->  { u ,  ( y `  u ) }  C_  dom  ( y  \  _I  ) )
63 difss 3535 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( y 
\  _I  )  C_  y
64 dmss 4996 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( y  \  _I  )  C_  y  ->  dom  ( y 
\  _I  )  C_  dom  y )
6563, 64ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  dom  (
y  \  _I  )  C_ 
dom  y
66 f1odm 5778 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( y : D -1-1-onto-> D  ->  dom  y  =  D )
6736, 66syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( dom  ( y  \  _I  )  e.  Fin  /\  y  e.  B )  ->  dom  y  =  D )
6865, 67syl5sseq 3455 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( dom  ( y  \  _I  )  e.  Fin  /\  y  e.  B )  ->  dom  ( y  \  _I  )  C_  D )
6968adantr 466 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( dom  ( y 
\  _I  )  e. 
Fin  /\  y  e.  B )  /\  u  e.  dom  ( y  \  _I  ) )  ->  dom  ( y  \  _I  )  C_  D )
7062, 69sstrd 3417 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( dom  ( y 
\  _I  )  e. 
Fin  /\  y  e.  B )  /\  u  e.  dom  ( y  \  _I  ) )  ->  { u ,  ( y `  u ) }  C_  D )
7136adantr 466 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( dom  ( y 
\  _I  )  e. 
Fin  /\  y  e.  B )  /\  u  e.  dom  ( y  \  _I  ) )  ->  y : D -1-1-onto-> D )
7271, 37syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( dom  ( y 
\  _I  )  e. 
Fin  /\  y  e.  B )  /\  u  e.  dom  ( y  \  _I  ) )  ->  y  Fn  D )
7368sselda 3407 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( dom  ( y 
\  _I  )  e. 
Fin  /\  y  e.  B )  /\  u  e.  dom  ( y  \  _I  ) )  ->  u  e.  D )
74 fnelnfp 6053 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( y  Fn  D  /\  u  e.  D )  ->  ( u  e.  dom  ( y  \  _I  ) 
<->  ( y `  u
)  =/=  u ) )
7572, 73, 74syl2anc 665 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( dom  ( y 
\  _I  )  e. 
Fin  /\  y  e.  B )  /\  u  e.  dom  ( y  \  _I  ) )  ->  (
u  e.  dom  (
y  \  _I  )  <->  ( y `  u )  =/=  u ) )
7657, 75mpbid 213 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( dom  ( y 
\  _I  )  e. 
Fin  /\  y  e.  B )  /\  u  e.  dom  ( y  \  _I  ) )  ->  (
y `  u )  =/=  u )
7776necomd 2656 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( dom  ( y 
\  _I  )  e. 
Fin  /\  y  e.  B )  /\  u  e.  dom  ( y  \  _I  ) )  ->  u  =/=  ( y `  u
) )
78 vex 3025 . . . . . . . . . . . . . . . . . . . . . . 23  |-  u  e. 
_V
79 fvex 5835 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( y `
 u )  e. 
_V
80 pr2nelem 8387 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( u  e.  _V  /\  ( y `  u
)  e.  _V  /\  u  =/=  ( y `  u ) )  ->  { u ,  ( y `  u ) }  ~~  2o )
8178, 79, 80mp3an12 1350 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( u  =/=  ( y `  u )  ->  { u ,  ( y `  u ) }  ~~  2o )
8277, 81syl 17 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( dom  ( y 
\  _I  )  e. 
Fin  /\  y  e.  B )  /\  u  e.  dom  ( y  \  _I  ) )  ->  { u ,  ( y `  u ) }  ~~  2o )
8317, 11pmtrrn 17041 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( D  e.  _V  /\  { u ,  ( y `
 u ) } 
C_  D  /\  {
u ,  ( y `
 u ) } 
~~  2o )  -> 
( (pmTrsp `  D
) `  { u ,  ( y `  u ) } )  e.  T )
8456, 70, 82, 83syl3anc 1264 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( dom  ( y 
\  _I  )  e. 
Fin  /\  y  e.  B )  /\  u  e.  dom  ( y  \  _I  ) )  ->  (
(pmTrsp `  D ) `  { u ,  ( y `  u ) } )  e.  T
)
8512, 84sseldi 3405 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( dom  ( y 
\  _I  )  e. 
Fin  /\  y  e.  B )  /\  u  e.  dom  ( y  \  _I  ) )  ->  (
(pmTrsp `  D ) `  { u ,  ( y `  u ) } )  e.  B
)
86 simplr 760 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( dom  ( y 
\  _I  )  e. 
Fin  /\  y  e.  B )  /\  u  e.  dom  ( y  \  _I  ) )  ->  y  e.  B )
87 eqid 2428 . . . . . . . . . . . . . . . . . . . 20  |-  ( +g  `  G )  =  ( +g  `  G )
882, 6, 87symgov 16974 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( (pmTrsp `  D
) `  { u ,  ( y `  u ) } )  e.  B  /\  y  e.  B )  ->  (
( (pmTrsp `  D
) `  { u ,  ( y `  u ) } ) ( +g  `  G
) y )  =  ( ( (pmTrsp `  D ) `  {
u ,  ( y `
 u ) } )  o.  y ) )
8985, 86, 88syl2anc 665 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( dom  ( y 
\  _I  )  e. 
Fin  /\  y  e.  B )  /\  u  e.  dom  ( y  \  _I  ) )  ->  (
( (pmTrsp `  D
) `  { u ,  ( y `  u ) } ) ( +g  `  G
) y )  =  ( ( (pmTrsp `  D ) `  {
u ,  ( y `
 u ) } )  o.  y ) )
9089oveq2d 6265 . . . . . . . . . . . . . . . . 17  |-  ( ( ( dom  ( y 
\  _I  )  e. 
Fin  /\  y  e.  B )  /\  u  e.  dom  ( y  \  _I  ) )  ->  (
( (pmTrsp `  D
) `  { u ,  ( y `  u ) } ) ( +g  `  G
) ( ( (pmTrsp `  D ) `  {
u ,  ( y `
 u ) } ) ( +g  `  G
) y ) )  =  ( ( (pmTrsp `  D ) `  {
u ,  ( y `
 u ) } ) ( +g  `  G
) ( ( (pmTrsp `  D ) `  {
u ,  ( y `
 u ) } )  o.  y ) ) )
9141, 3syl 17 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( dom  ( y  \  _I  )  e.  Fin  /\  y  e.  B )  ->  G  e.  Grp )
9291adantr 466 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( dom  ( y 
\  _I  )  e. 
Fin  /\  y  e.  B )  /\  u  e.  dom  ( y  \  _I  ) )  ->  G  e.  Grp )
936, 87grpcl 16622 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( G  e.  Grp  /\  ( (pmTrsp `  D ) `  { u ,  ( y `  u ) } )  e.  B  /\  y  e.  B
)  ->  ( (
(pmTrsp `  D ) `  { u ,  ( y `  u ) } ) ( +g  `  G ) y )  e.  B )
9492, 85, 86, 93syl3anc 1264 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( dom  ( y 
\  _I  )  e. 
Fin  /\  y  e.  B )  /\  u  e.  dom  ( y  \  _I  ) )  ->  (
( (pmTrsp `  D
) `  { u ,  ( y `  u ) } ) ( +g  `  G
) y )  e.  B )
9589, 94eqeltrrd 2507 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( dom  ( y 
\  _I  )  e. 
Fin  /\  y  e.  B )  /\  u  e.  dom  ( y  \  _I  ) )  ->  (
( (pmTrsp `  D
) `  { u ,  ( y `  u ) } )  o.  y )  e.  B )
962, 6, 87symgov 16974 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( (pmTrsp `  D
) `  { u ,  ( y `  u ) } )  e.  B  /\  (
( (pmTrsp `  D
) `  { u ,  ( y `  u ) } )  o.  y )  e.  B )  ->  (
( (pmTrsp `  D
) `  { u ,  ( y `  u ) } ) ( +g  `  G
) ( ( (pmTrsp `  D ) `  {
u ,  ( y `
 u ) } )  o.  y ) )  =  ( ( (pmTrsp `  D ) `  { u ,  ( y `  u ) } )  o.  (
( (pmTrsp `  D
) `  { u ,  ( y `  u ) } )  o.  y ) ) )
9785, 95, 96syl2anc 665 . . . . . . . . . . . . . . . . 17  |-  ( ( ( dom  ( y 
\  _I  )  e. 
Fin  /\  y  e.  B )  /\  u  e.  dom  ( y  \  _I  ) )  ->  (
( (pmTrsp `  D
) `  { u ,  ( y `  u ) } ) ( +g  `  G
) ( ( (pmTrsp `  D ) `  {
u ,  ( y `
 u ) } )  o.  y ) )  =  ( ( (pmTrsp `  D ) `  { u ,  ( y `  u ) } )  o.  (
( (pmTrsp `  D
) `  { u ,  ( y `  u ) } )  o.  y ) ) )
98 coass 5316 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( (pmTrsp `  D
) `  { u ,  ( y `  u ) } )  o.  ( (pmTrsp `  D ) `  {
u ,  ( y `
 u ) } ) )  o.  y
)  =  ( ( (pmTrsp `  D ) `  { u ,  ( y `  u ) } )  o.  (
( (pmTrsp `  D
) `  { u ,  ( y `  u ) } )  o.  y ) )
9917, 11pmtrfinv 17045 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( (pmTrsp `  D ) `  { u ,  ( y `  u ) } )  e.  T  ->  ( ( (pmTrsp `  D ) `  {
u ,  ( y `
 u ) } )  o.  ( (pmTrsp `  D ) `  {
u ,  ( y `
 u ) } ) )  =  (  _I  |`  D )
)
10084, 99syl 17 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( dom  ( y 
\  _I  )  e. 
Fin  /\  y  e.  B )  /\  u  e.  dom  ( y  \  _I  ) )  ->  (
( (pmTrsp `  D
) `  { u ,  ( y `  u ) } )  o.  ( (pmTrsp `  D ) `  {
u ,  ( y `
 u ) } ) )  =  (  _I  |`  D )
)
101100coeq1d 4958 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( dom  ( y 
\  _I  )  e. 
Fin  /\  y  e.  B )  /\  u  e.  dom  ( y  \  _I  ) )  ->  (
( ( (pmTrsp `  D ) `  {
u ,  ( y `
 u ) } )  o.  ( (pmTrsp `  D ) `  {
u ,  ( y `
 u ) } ) )  o.  y
)  =  ( (  _I  |`  D )  o.  y ) )
102 f1of 5774 . . . . . . . . . . . . . . . . . . . 20  |-  ( y : D -1-1-onto-> D  ->  y : D
--> D )
103 fcoi2 5718 . . . . . . . . . . . . . . . . . . . 20  |-  ( y : D --> D  -> 
( (  _I  |`  D )  o.  y )  =  y )
10471, 102, 1033syl 18 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( dom  ( y 
\  _I  )  e. 
Fin  /\  y  e.  B )  /\  u  e.  dom  ( y  \  _I  ) )  ->  (
(  _I  |`  D )  o.  y )  =  y )
105101, 104eqtrd 2462 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( dom  ( y 
\  _I  )  e. 
Fin  /\  y  e.  B )  /\  u  e.  dom  ( y  \  _I  ) )  ->  (
( ( (pmTrsp `  D ) `  {
u ,  ( y `
 u ) } )  o.  ( (pmTrsp `  D ) `  {
u ,  ( y `
 u ) } ) )  o.  y
)  =  y )
10698, 105syl5eqr 2476 . . . . . . . . . . . . . . . . 17  |-  ( ( ( dom  ( y 
\  _I  )  e. 
Fin  /\  y  e.  B )  /\  u  e.  dom  ( y  \  _I  ) )  ->  (
( (pmTrsp `  D
) `  { u ,  ( y `  u ) } )  o.  ( ( (pmTrsp `  D ) `  {
u ,  ( y `
 u ) } )  o.  y ) )  =  y )
10790, 97, 1063eqtrd 2466 . . . . . . . . . . . . . . . 16  |-  ( ( ( dom  ( y 
\  _I  )  e. 
Fin  /\  y  e.  B )  /\  u  e.  dom  ( y  \  _I  ) )  ->  (
( (pmTrsp `  D
) `  { u ,  ( y `  u ) } ) ( +g  `  G
) ( ( (pmTrsp `  D ) `  {
u ,  ( y `
 u ) } ) ( +g  `  G
) y ) )  =  y )
108107adantlr 719 . . . . . . . . . . . . . . 15  |-  ( ( ( ( dom  (
y  \  _I  )  e.  Fin  /\  y  e.  B )  /\  A. z ( dom  (
z  \  _I  )  ~<  dom  ( y  \  _I  )  ->  ( z  e.  B  ->  z  e.  ( K `  T
) ) ) )  /\  u  e.  dom  ( y  \  _I  ) )  ->  (
( (pmTrsp `  D
) `  { u ,  ( y `  u ) } ) ( +g  `  G
) ( ( (pmTrsp `  D ) `  {
u ,  ( y `
 u ) } ) ( +g  `  G
) y ) )  =  y )
10946ad2antrr 730 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( dom  (
y  \  _I  )  e.  Fin  /\  y  e.  B )  /\  A. z ( dom  (
z  \  _I  )  ~<  dom  ( y  \  _I  )  ->  ( z  e.  B  ->  z  e.  ( K `  T
) ) ) )  /\  u  e.  dom  ( y  \  _I  ) )  ->  ( K `  T )  e.  (SubMnd `  G )
)
11028mrcssid 15466 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( (SubMnd `  G )  e.  (Moore `  B )  /\  T  C_  B )  ->  T  C_  ( K `  T )
)
11144, 12, 110sylancl 666 . . . . . . . . . . . . . . . . . . 19  |-  ( ( dom  ( y  \  _I  )  e.  Fin  /\  y  e.  B )  ->  T  C_  ( K `  T )
)
112111adantr 466 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( dom  ( y 
\  _I  )  e. 
Fin  /\  y  e.  B )  /\  u  e.  dom  ( y  \  _I  ) )  ->  T  C_  ( K `  T
) )
113112, 84sseldd 3408 . . . . . . . . . . . . . . . . 17  |-  ( ( ( dom  ( y 
\  _I  )  e. 
Fin  /\  y  e.  B )  /\  u  e.  dom  ( y  \  _I  ) )  ->  (
(pmTrsp `  D ) `  { u ,  ( y `  u ) } )  e.  ( K `  T ) )
114113adantlr 719 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( dom  (
y  \  _I  )  e.  Fin  /\  y  e.  B )  /\  A. z ( dom  (
z  \  _I  )  ~<  dom  ( y  \  _I  )  ->  ( z  e.  B  ->  z  e.  ( K `  T
) ) ) )  /\  u  e.  dom  ( y  \  _I  ) )  ->  (
(pmTrsp `  D ) `  { u ,  ( y `  u ) } )  e.  ( K `  T ) )
11589difeq1d 3525 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( dom  ( y 
\  _I  )  e. 
Fin  /\  y  e.  B )  /\  u  e.  dom  ( y  \  _I  ) )  ->  (
( ( (pmTrsp `  D ) `  {
u ,  ( y `
 u ) } ) ( +g  `  G
) y )  \  _I  )  =  (
( ( (pmTrsp `  D ) `  {
u ,  ( y `
 u ) } )  o.  y ) 
\  _I  ) )
116115dmeqd 4999 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( dom  ( y 
\  _I  )  e. 
Fin  /\  y  e.  B )  /\  u  e.  dom  ( y  \  _I  ) )  ->  dom  ( ( ( (pmTrsp `  D ) `  {
u ,  ( y `
 u ) } ) ( +g  `  G
) y )  \  _I  )  =  dom  ( ( ( (pmTrsp `  D ) `  {
u ,  ( y `
 u ) } )  o.  y ) 
\  _I  ) )
117 simpll 758 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( dom  ( y 
\  _I  )  e. 
Fin  /\  y  e.  B )  /\  u  e.  dom  ( y  \  _I  ) )  ->  dom  ( y  \  _I  )  e.  Fin )
118 mvdco 17029 . . . . . . . . . . . . . . . . . . . . . 22  |-  dom  (
( ( (pmTrsp `  D ) `  {
u ,  ( y `
 u ) } )  o.  y ) 
\  _I  )  C_  ( dom  ( ( (pmTrsp `  D ) `  {
u ,  ( y `
 u ) } )  \  _I  )  u.  dom  ( y  \  _I  ) )
11917pmtrmvd 17040 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( D  e.  _V  /\  { u ,  ( y `
 u ) } 
C_  D  /\  {
u ,  ( y `
 u ) } 
~~  2o )  ->  dom  ( ( (pmTrsp `  D ) `  {
u ,  ( y `
 u ) } )  \  _I  )  =  { u ,  ( y `  u ) } )
12056, 70, 82, 119syl3anc 1264 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( dom  ( y 
\  _I  )  e. 
Fin  /\  y  e.  B )  /\  u  e.  dom  ( y  \  _I  ) )  ->  dom  ( ( (pmTrsp `  D ) `  {
u ,  ( y `
 u ) } )  \  _I  )  =  { u ,  ( y `  u ) } )
121120, 62eqsstrd 3441 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( dom  ( y 
\  _I  )  e. 
Fin  /\  y  e.  B )  /\  u  e.  dom  ( y  \  _I  ) )  ->  dom  ( ( (pmTrsp `  D ) `  {
u ,  ( y `
 u ) } )  \  _I  )  C_ 
dom  ( y  \  _I  ) )
122 ssid 3426 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  dom  (
y  \  _I  )  C_ 
dom  ( y  \  _I  )
123122a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( dom  ( y 
\  _I  )  e. 
Fin  /\  y  e.  B )  /\  u  e.  dom  ( y  \  _I  ) )  ->  dom  ( y  \  _I  )  C_  dom  ( y 
\  _I  ) )
124121, 123unssd 3585 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( dom  ( y 
\  _I  )  e. 
Fin  /\  y  e.  B )  /\  u  e.  dom  ( y  \  _I  ) )  ->  ( dom  ( ( (pmTrsp `  D ) `  {
u ,  ( y `
 u ) } )  \  _I  )  u.  dom  ( y  \  _I  ) )  C_  dom  ( y  \  _I  ) )
125118, 124syl5ss 3418 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( dom  ( y 
\  _I  )  e. 
Fin  /\  y  e.  B )  /\  u  e.  dom  ( y  \  _I  ) )  ->  dom  ( ( ( (pmTrsp `  D ) `  {
u ,  ( y `
 u ) } )  o.  y ) 
\  _I  )  C_  dom  ( y  \  _I  ) )
126 fvco2 5900 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( y  Fn  D  /\  u  e.  D )  ->  ( ( ( (pmTrsp `  D ) `  {
u ,  ( y `
 u ) } )  o.  y ) `
 u )  =  ( ( (pmTrsp `  D ) `  {
u ,  ( y `
 u ) } ) `  ( y `
 u ) ) )
12772, 73, 126syl2anc 665 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( dom  ( y 
\  _I  )  e. 
Fin  /\  y  e.  B )  /\  u  e.  dom  ( y  \  _I  ) )  ->  (
( ( (pmTrsp `  D ) `  {
u ,  ( y `
 u ) } )  o.  y ) `
 u )  =  ( ( (pmTrsp `  D ) `  {
u ,  ( y `
 u ) } ) `  ( y `
 u ) ) )
128 prcom 4021 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  { u ,  ( y `  u ) }  =  { ( y `  u ) ,  u }
129128fveq2i 5828 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( (pmTrsp `  D ) `  {
u ,  ( y `
 u ) } )  =  ( (pmTrsp `  D ) `  {
( y `  u
) ,  u }
)
130129fveq1i 5826 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( (pmTrsp `  D ) `  { u ,  ( y `  u ) } ) `  (
y `  u )
)  =  ( ( (pmTrsp `  D ) `  { ( y `  u ) ,  u } ) `  (
y `  u )
)
13169, 60sseldd 3408 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( dom  ( y 
\  _I  )  e. 
Fin  /\  y  e.  B )  /\  u  e.  dom  ( y  \  _I  ) )  ->  (
y `  u )  e.  D )
13217pmtrprfv 17037 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( D  e.  _V  /\  ( ( y `  u )  e.  D  /\  u  e.  D  /\  ( y `  u
)  =/=  u ) )  ->  ( (
(pmTrsp `  D ) `  { ( y `  u ) ,  u } ) `  (
y `  u )
)  =  u )
13356, 131, 73, 76, 132syl13anc 1266 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( dom  ( y 
\  _I  )  e. 
Fin  /\  y  e.  B )  /\  u  e.  dom  ( y  \  _I  ) )  ->  (
( (pmTrsp `  D
) `  { (
y `  u ) ,  u } ) `  ( y `  u
) )  =  u )
134130, 133syl5eq 2474 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( dom  ( y 
\  _I  )  e. 
Fin  /\  y  e.  B )  /\  u  e.  dom  ( y  \  _I  ) )  ->  (
( (pmTrsp `  D
) `  { u ,  ( y `  u ) } ) `
 ( y `  u ) )  =  u )
135127, 134eqtrd 2462 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( dom  ( y 
\  _I  )  e. 
Fin  /\  y  e.  B )  /\  u  e.  dom  ( y  \  _I  ) )  ->  (
( ( (pmTrsp `  D ) `  {
u ,  ( y `
 u ) } )  o.  y ) `
 u )  =  u )
1362, 6symgbasf1o 16967 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( (pmTrsp `  D
) `  { u ,  ( y `  u ) } )  o.  y )  e.  B  ->  ( (
(pmTrsp `  D ) `  { u ,  ( y `  u ) } )  o.  y
) : D -1-1-onto-> D )
137 f1ofn 5775 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( (pmTrsp `  D
) `  { u ,  ( y `  u ) } )  o.  y ) : D -1-1-onto-> D  ->  ( (
(pmTrsp `  D ) `  { u ,  ( y `  u ) } )  o.  y
)  Fn  D )
13895, 136, 1373syl 18 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( dom  ( y 
\  _I  )  e. 
Fin  /\  y  e.  B )  /\  u  e.  dom  ( y  \  _I  ) )  ->  (
( (pmTrsp `  D
) `  { u ,  ( y `  u ) } )  o.  y )  Fn  D )
139 fnelnfp 6053 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( (pmTrsp `  D ) `  {
u ,  ( y `
 u ) } )  o.  y )  Fn  D  /\  u  e.  D )  ->  (
u  e.  dom  (
( ( (pmTrsp `  D ) `  {
u ,  ( y `
 u ) } )  o.  y ) 
\  _I  )  <->  ( (
( (pmTrsp `  D
) `  { u ,  ( y `  u ) } )  o.  y ) `  u )  =/=  u
) )
140139necon2bbid 2644 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( (pmTrsp `  D ) `  {
u ,  ( y `
 u ) } )  o.  y )  Fn  D  /\  u  e.  D )  ->  (
( ( ( (pmTrsp `  D ) `  {
u ,  ( y `
 u ) } )  o.  y ) `
 u )  =  u  <->  -.  u  e.  dom  ( ( ( (pmTrsp `  D ) `  {
u ,  ( y `
 u ) } )  o.  y ) 
\  _I  ) ) )
141138, 73, 140syl2anc 665 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( dom  ( y 
\  _I  )  e. 
Fin  /\  y  e.  B )  /\  u  e.  dom  ( y  \  _I  ) )  ->  (
( ( ( (pmTrsp `  D ) `  {
u ,  ( y `
 u ) } )  o.  y ) `
 u )  =  u  <->  -.  u  e.  dom  ( ( ( (pmTrsp `  D ) `  {
u ,  ( y `
 u ) } )  o.  y ) 
\  _I  ) ) )
142135, 141mpbid 213 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( dom  ( y 
\  _I  )  e. 
Fin  /\  y  e.  B )  /\  u  e.  dom  ( y  \  _I  ) )  ->  -.  u  e.  dom  ( ( ( (pmTrsp `  D
) `  { u ,  ( y `  u ) } )  o.  y )  \  _I  ) )
143125, 57, 142ssnelpssd 3803 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( dom  ( y 
\  _I  )  e. 
Fin  /\  y  e.  B )  /\  u  e.  dom  ( y  \  _I  ) )  ->  dom  ( ( ( (pmTrsp `  D ) `  {
u ,  ( y `
 u ) } )  o.  y ) 
\  _I  )  C.  dom  ( y  \  _I  ) )
144 php3 7711 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( dom  ( y  \  _I  )  e.  Fin  /\ 
dom  ( ( ( (pmTrsp `  D ) `  { u ,  ( y `  u ) } )  o.  y
)  \  _I  )  C. 
dom  ( y  \  _I  ) )  ->  dom  ( ( ( (pmTrsp `  D ) `  {
u ,  ( y `
 u ) } )  o.  y ) 
\  _I  )  ~<  dom  ( y  \  _I  ) )
145117, 143, 144syl2anc 665 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( dom  ( y 
\  _I  )  e. 
Fin  /\  y  e.  B )  /\  u  e.  dom  ( y  \  _I  ) )  ->  dom  ( ( ( (pmTrsp `  D ) `  {
u ,  ( y `
 u ) } )  o.  y ) 
\  _I  )  ~<  dom  ( y  \  _I  ) )
146116, 145eqbrtrd 4387 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( dom  ( y 
\  _I  )  e. 
Fin  /\  y  e.  B )  /\  u  e.  dom  ( y  \  _I  ) )  ->  dom  ( ( ( (pmTrsp `  D ) `  {
u ,  ( y `
 u ) } ) ( +g  `  G
) y )  \  _I  )  ~<  dom  (
y  \  _I  )
)
147146adantlr 719 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( dom  (
y  \  _I  )  e.  Fin  /\  y  e.  B )  /\  A. z ( dom  (
z  \  _I  )  ~<  dom  ( y  \  _I  )  ->  ( z  e.  B  ->  z  e.  ( K `  T
) ) ) )  /\  u  e.  dom  ( y  \  _I  ) )  ->  dom  ( ( ( (pmTrsp `  D ) `  {
u ,  ( y `
 u ) } ) ( +g  `  G
) y )  \  _I  )  ~<  dom  (
y  \  _I  )
)
14894adantlr 719 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( dom  (
y  \  _I  )  e.  Fin  /\  y  e.  B )  /\  A. z ( dom  (
z  \  _I  )  ~<  dom  ( y  \  _I  )  ->  ( z  e.  B  ->  z  e.  ( K `  T
) ) ) )  /\  u  e.  dom  ( y  \  _I  ) )  ->  (
( (pmTrsp `  D
) `  { u ,  ( y `  u ) } ) ( +g  `  G
) y )  e.  B )
149 ovex 6277 . . . . . . . . . . . . . . . . . . 19  |-  ( ( (pmTrsp `  D ) `  { u ,  ( y `  u ) } ) ( +g  `  G ) y )  e.  _V
150 difeq1 3519 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( z  =  ( ( (pmTrsp `  D ) `  {
u ,  ( y `
 u ) } ) ( +g  `  G
) y )  -> 
( z  \  _I  )  =  ( (
( (pmTrsp `  D
) `  { u ,  ( y `  u ) } ) ( +g  `  G
) y )  \  _I  ) )
151150dmeqd 4999 . . . . . . . . . . . . . . . . . . . . 21  |-  ( z  =  ( ( (pmTrsp `  D ) `  {
u ,  ( y `
 u ) } ) ( +g  `  G
) y )  ->  dom  ( z  \  _I  )  =  dom  ( ( ( (pmTrsp `  D
) `  { u ,  ( y `  u ) } ) ( +g  `  G
) y )  \  _I  ) )
152151breq1d 4376 . . . . . . . . . . . . . . . . . . . 20  |-  ( z  =  ( ( (pmTrsp `  D ) `  {
u ,  ( y `
 u ) } ) ( +g  `  G
) y )  -> 
( dom  ( z  \  _I  )  ~<  dom  ( y  \  _I  ) 
<->  dom  ( ( ( (pmTrsp `  D ) `  { u ,  ( y `  u ) } ) ( +g  `  G ) y ) 
\  _I  )  ~<  dom  ( y  \  _I  ) ) )
153 eleq1 2494 . . . . . . . . . . . . . . . . . . . . 21  |-  ( z  =  ( ( (pmTrsp `  D ) `  {
u ,  ( y `
 u ) } ) ( +g  `  G
) y )  -> 
( z  e.  B  <->  ( ( (pmTrsp `  D
) `  { u ,  ( y `  u ) } ) ( +g  `  G
) y )  e.  B ) )
154 eleq1 2494 . . . . . . . . . . . . . . . . . . . . 21  |-  ( z  =  ( ( (pmTrsp `  D ) `  {
u ,  ( y `
 u ) } ) ( +g  `  G
) y )  -> 
( z  e.  ( K `  T )  <-> 
( ( (pmTrsp `  D ) `  {
u ,  ( y `
 u ) } ) ( +g  `  G
) y )  e.  ( K `  T
) ) )
155153, 154imbi12d 321 . . . . . . . . . . . . . . . . . . . 20  |-  ( z  =  ( ( (pmTrsp `  D ) `  {
u ,  ( y `
 u ) } ) ( +g  `  G
) y )  -> 
( ( z  e.  B  ->  z  e.  ( K `  T ) )  <->  ( ( ( (pmTrsp `  D ) `  { u ,  ( y `  u ) } ) ( +g  `  G ) y )  e.  B  ->  (
( (pmTrsp `  D
) `  { u ,  ( y `  u ) } ) ( +g  `  G
) y )  e.  ( K `  T
) ) ) )
156152, 155imbi12d 321 . . . . . . . . . . . . . . . . . . 19  |-  ( z  =  ( ( (pmTrsp `  D ) `  {
u ,  ( y `
 u ) } ) ( +g  `  G
) y )  -> 
( ( dom  (
z  \  _I  )  ~<  dom  ( y  \  _I  )  ->  ( z  e.  B  ->  z  e.  ( K `  T
) ) )  <->  ( dom  ( ( ( (pmTrsp `  D ) `  {
u ,  ( y `
 u ) } ) ( +g  `  G
) y )  \  _I  )  ~<  dom  (
y  \  _I  )  ->  ( ( ( (pmTrsp `  D ) `  {
u ,  ( y `
 u ) } ) ( +g  `  G
) y )  e.  B  ->  ( (
(pmTrsp `  D ) `  { u ,  ( y `  u ) } ) ( +g  `  G ) y )  e.  ( K `  T ) ) ) ) )
157149, 156spcv 3115 . . . . . . . . . . . . . . . . . 18  |-  ( A. z ( dom  (
z  \  _I  )  ~<  dom  ( y  \  _I  )  ->  ( z  e.  B  ->  z  e.  ( K `  T
) ) )  -> 
( dom  ( (
( (pmTrsp `  D
) `  { u ,  ( y `  u ) } ) ( +g  `  G
) y )  \  _I  )  ~<  dom  (
y  \  _I  )  ->  ( ( ( (pmTrsp `  D ) `  {
u ,  ( y `
 u ) } ) ( +g  `  G
) y )  e.  B  ->  ( (
(pmTrsp `  D ) `  { u ,  ( y `  u ) } ) ( +g  `  G ) y )  e.  ( K `  T ) ) ) )
158157ad2antlr 731 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( dom  (
y  \  _I  )  e.  Fin  /\  y  e.  B )  /\  A. z ( dom  (
z  \  _I  )  ~<  dom  ( y  \  _I  )  ->  ( z  e.  B  ->  z  e.  ( K `  T
) ) ) )  /\  u  e.  dom  ( y  \  _I  ) )  ->  ( dom  ( ( ( (pmTrsp `  D ) `  {
u ,  ( y `
 u ) } ) ( +g  `  G
) y )  \  _I  )  ~<  dom  (
y  \  _I  )  ->  ( ( ( (pmTrsp `  D ) `  {
u ,  ( y `
 u ) } ) ( +g  `  G
) y )  e.  B  ->  ( (
(pmTrsp `  D ) `  { u ,  ( y `  u ) } ) ( +g  `  G ) y )  e.  ( K `  T ) ) ) )
159147, 148, 158mp2d 46 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( dom  (
y  \  _I  )  e.  Fin  /\  y  e.  B )  /\  A. z ( dom  (
z  \  _I  )  ~<  dom  ( y  \  _I  )  ->  ( z  e.  B  ->  z  e.  ( K `  T
) ) ) )  /\  u  e.  dom  ( y  \  _I  ) )  ->  (
( (pmTrsp `  D
) `  { u ,  ( y `  u ) } ) ( +g  `  G
) y )  e.  ( K `  T
) )
16087submcl 16543 . . . . . . . . . . . . . . . 16  |-  ( ( ( K `  T
)  e.  (SubMnd `  G )  /\  (
(pmTrsp `  D ) `  { u ,  ( y `  u ) } )  e.  ( K `  T )  /\  ( ( (pmTrsp `  D ) `  {
u ,  ( y `
 u ) } ) ( +g  `  G
) y )  e.  ( K `  T
) )  ->  (
( (pmTrsp `  D
) `  { u ,  ( y `  u ) } ) ( +g  `  G
) ( ( (pmTrsp `  D ) `  {
u ,  ( y `
 u ) } ) ( +g  `  G
) y ) )  e.  ( K `  T ) )
161109, 114, 159, 160syl3anc 1264 . . . . . . . . . . . . . . 15  |-  ( ( ( ( dom  (
y  \  _I  )  e.  Fin  /\  y  e.  B )  /\  A. z ( dom  (
z  \  _I  )  ~<  dom  ( y  \  _I  )  ->  ( z  e.  B  ->  z  e.  ( K `  T
) ) ) )  /\  u  e.  dom  ( y  \  _I  ) )  ->  (
( (pmTrsp `  D
) `  { u ,  ( y `  u ) } ) ( +g  `  G
) ( ( (pmTrsp `  D ) `  {
u ,  ( y `
 u ) } ) ( +g  `  G
) y ) )  e.  ( K `  T ) )
162108, 161eqeltrrd 2507 . . . . . . . . . . . . . 14  |-  ( ( ( ( dom  (
y  \  _I  )  e.  Fin  /\  y  e.  B )  /\  A. z ( dom  (
z  \  _I  )  ~<  dom  ( y  \  _I  )  ->  ( z  e.  B  ->  z  e.  ( K `  T
) ) ) )  /\  u  e.  dom  ( y  \  _I  ) )  ->  y  e.  ( K `  T
) )
163162ex 435 . . . . . . . . . . . . 13  |-  ( ( ( dom  ( y 
\  _I  )  e. 
Fin  /\  y  e.  B )  /\  A. z ( dom  (
z  \  _I  )  ~<  dom  ( y  \  _I  )  ->  ( z  e.  B  ->  z  e.  ( K `  T
) ) ) )  ->  ( u  e. 
dom  ( y  \  _I  )  ->  y  e.  ( K `  T
) ) )
164163exlimdv 1772 . . . . . . . . . . . 12  |-  ( ( ( dom  ( y 
\  _I  )  e. 
Fin  /\  y  e.  B )  /\  A. z ( dom  (
z  \  _I  )  ~<  dom  ( y  \  _I  )  ->  ( z  e.  B  ->  z  e.  ( K `  T
) ) ) )  ->  ( E. u  u  e.  dom  ( y 
\  _I  )  -> 
y  e.  ( K `
 T ) ) )
16555, 164syl5bi 220 . . . . . . . . . . 11  |-  ( ( ( dom  ( y 
\  _I  )  e. 
Fin  /\  y  e.  B )  /\  A. z ( dom  (
z  \  _I  )  ~<  dom  ( y  \  _I  )  ->  ( z  e.  B  ->  z  e.  ( K `  T
) ) ) )  ->  ( dom  (
y  \  _I  )  =/=  (/)  ->  y  e.  ( K `  T ) ) )
16654, 165pm2.61dne 2687 . . . . . . . . . 10  |-  ( ( ( dom  ( y 
\  _I  )  e. 
Fin  /\  y  e.  B )  /\  A. z ( dom  (
z  \  _I  )  ~<  dom  ( y  \  _I  )  ->  ( z  e.  B  ->  z  e.  ( K `  T
) ) ) )  ->  y  e.  ( K `  T ) )
167166exp31 607 . . . . . . . . 9  |-  ( dom  ( y  \  _I  )  e.  Fin  ->  (
y  e.  B  -> 
( A. z ( dom  ( z  \  _I  )  ~<  dom  (
y  \  _I  )  ->  ( z  e.  B  ->  z  e.  ( K `
 T ) ) )  ->  y  e.  ( K `  T ) ) ) )
168167com23 81 . . . . . . . 8  |-  ( dom  ( y  \  _I  )  e.  Fin  ->  ( A. z ( dom  (
z  \  _I  )  ~<  dom  ( y  \  _I  )  ->  ( z  e.  B  ->  z  e.  ( K `  T
) ) )  -> 
( y  e.  B  ->  y  e.  ( K `
 T ) ) ) )
16934, 168syl 17 . . . . . . 7  |-  ( ( dom  ( x  \  _I  )  e.  Fin  /\ 
dom  ( y  \  _I  )  ~<_  dom  ( x 
\  _I  ) )  ->  ( A. z
( dom  ( z  \  _I  )  ~<  dom  ( y  \  _I  )  ->  ( z  e.  B  ->  z  e.  ( K `  T ) ) )  ->  (
y  e.  B  -> 
y  e.  ( K `
 T ) ) ) )
1701693impia 1202 . . . . . 6  |-  ( ( dom  ( x  \  _I  )  e.  Fin  /\ 
dom  ( y  \  _I  )  ~<_  dom  ( x 
\  _I  )  /\  A. z ( dom  (
z  \  _I  )  ~<  dom  ( y  \  _I  )  ->  ( z  e.  B  ->  z  e.  ( K `  T
) ) ) )  ->  ( y  e.  B  ->  y  e.  ( K `  T ) ) )
171 eleq1 2494 . . . . . . 7  |-  ( y  =  z  ->  (
y  e.  B  <->  z  e.  B ) )
172 eleq1 2494 . . . . . . 7  |-  ( y  =  z  ->  (
y  e.  ( K `
 T )  <->  z  e.  ( K `  T ) ) )
173171, 172imbi12d 321 . . . . . 6  |-  ( y  =  z  ->  (
( y  e.  B  ->  y  e.  ( K `
 T ) )  <-> 
( z  e.  B  ->  z  e.  ( K `
 T ) ) ) )
174 eleq1 2494 . . . . . . 7  |-  ( y  =  x  ->  (
y  e.  B  <->  x  e.  B ) )
175 eleq1 2494 . . . . . . 7  |-  ( y  =  x  ->  (
y  e.  ( K `
 T )  <->  x  e.  ( K `  T ) ) )
176174, 175imbi12d 321 . . . . . 6  |-  ( y  =  x  ->  (
( y  e.  B  ->  y  e.  ( K `
 T ) )  <-> 
( x  e.  B  ->  x  e.  ( K `
 T ) ) ) )
177 difeq1 3519 . . . . . . 7  |-  ( y  =  z  ->  (
y  \  _I  )  =  ( z  \  _I  ) )
178177dmeqd 4999 . . . . . 6  |-  ( y  =  z  ->  dom  ( y  \  _I  )  =  dom  ( z 
\  _I  ) )
179 difeq1 3519 . . . . . . 7  |-  ( y  =  x  ->  (
y  \  _I  )  =  ( x  \  _I  ) )
180179dmeqd 4999 . . . . . 6  |-  ( y  =  x  ->  dom  ( y  \  _I  )  =  dom  ( x 
\  _I  ) )
18132, 33, 170, 173, 176, 178, 180indcardi 8423 . . . . 5  |-  ( dom  ( x  \  _I  )  e.  Fin  ->  (
x  e.  B  ->  x  e.  ( K `  T ) ) )
182181impcom 431 . . . 4  |-  ( ( x  e.  B  /\  dom  ( x  \  _I  )  e.  Fin )  ->  x  e.  ( K `
 T ) )
1831823adant1 1023 . . 3  |-  ( ( D  e.  V  /\  x  e.  B  /\  dom  ( x  \  _I  )  e.  Fin )  ->  x  e.  ( K `
 T ) )
184183rabssdv 3484 . 2  |-  ( D  e.  V  ->  { x  e.  B  |  dom  ( x  \  _I  )  e.  Fin }  C_  ( K `  T )
)
18530, 184eqssd 3424 1  |-  ( D  e.  V  ->  ( K `  T )  =  { x  e.  B  |  dom  ( x  \  _I  )  e.  Fin } )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 187    /\ wa 370   A.wal 1435    = wceq 1437   E.wex 1657    e. wcel 1872    =/= wne 2599   {crab 2718   _Vcvv 3022    \ cdif 3376    u. cun 3377    C_ wss 3379    C. wpss 3380   (/)c0 3704   {csn 3941   {cpr 3943   class class class wbr 4366    _I cid 4706   dom cdm 4796   ran crn 4797    |` cres 4798    o. ccom 4800    Fn wfn 5539   -->wf 5540   -1-1-onto->wf1o 5543   ` cfv 5544  (class class class)co 6249   omcom 6650   2oc2o 7131    ~~ cen 7521    ~<_ cdom 7522    ~< csdm 7523   Fincfn 7524   Basecbs 15064   +g cplusg 15133   0gc0g 15281  Moorecmre 15431  mrClscmrc 15432  ACScacs 15434   Mndcmnd 16478  SubMndcsubmnd 16524   Grpcgrp 16612  SubGrpcsubg 16754   SymGrpcsymg 16961  pmTrspcpmtr 17025
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1663  ax-4 1676  ax-5 1752  ax-6 1798  ax-7 1843  ax-8 1874  ax-9 1876  ax-10 1891  ax-11 1896  ax-12 1909  ax-13 2063  ax-ext 2408  ax-rep 4479  ax-sep 4489  ax-nul 4498  ax-pow 4545  ax-pr 4603  ax-un 6541  ax-cnex 9546  ax-resscn 9547  ax-1cn 9548  ax-icn 9549  ax-addcl 9550  ax-addrcl 9551  ax-mulcl 9552  ax-mulrcl 9553  ax-mulcom 9554  ax-addass 9555  ax-mulass 9556  ax-distr 9557  ax-i2m1 9558  ax-1ne0 9559  ax-1rid 9560  ax-rnegex 9561  ax-rrecex 9562  ax-cnre 9563  ax-pre-lttri 9564  ax-pre-lttrn 9565  ax-pre-ltadd 9566  ax-pre-mulgt0 9567
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-ex 1658  df-nf 1662  df-sb 1791  df-eu 2280  df-mo 2281  df-clab 2415  df-cleq 2421  df-clel 2424  df-nfc 2558  df-ne 2601  df-nel 2602  df-ral 2719  df-rex 2720  df-reu 2721  df-rmo 2722  df-rab 2723  df-v 3024  df-sbc 3243  df-csb 3339  df-dif 3382  df-un 3384  df-in 3386  df-ss 3393  df-pss 3395  df-nul 3705  df-if 3855  df-pw 3926  df-sn 3942  df-pr 3944  df-tp 3946  df-op 3948  df-uni 4163  df-int 4199  df-iun 4244  df-iin 4245  df-br 4367  df-opab 4426  df-mpt 4427  df-tr 4462  df-eprel 4707  df-id 4711  df-po 4717  df-so 4718  df-fr 4755  df-se 4756  df-we 4757  df-xp 4802  df-rel 4803  df-cnv 4804  df-co 4805  df-dm 4806  df-rn 4807  df-res 4808  df-ima 4809  df-pred 5342  df-ord 5388  df-on 5389  df-lim 5390  df-suc 5391  df-iota 5508  df-fun 5546  df-fn 5547  df-f 5548  df-f1 5549  df-fo 5550  df-f1o 5551  df-fv 5552  df-isom 5553  df-riota 6211  df-ov 6252  df-oprab 6253  df-mpt2 6254  df-om 6651  df-1st 6751  df-2nd 6752  df-wrecs 6983  df-recs 7045  df-rdg 7083  df-1o 7137  df-2o 7138  df-oadd 7141  df-er 7318  df-map 7429  df-en 7525  df-dom 7526  df-sdom 7527  df-fin 7528  df-card 8325  df-pnf 9628  df-mnf 9629  df-xr 9630  df-ltxr 9631  df-le 9632  df-sub 9813  df-neg 9814  df-nn 10561  df-2 10619  df-3 10620  df-4 10621  df-5 10622  df-6 10623  df-7 10624  df-8 10625  df-9 10626  df-n0 10821  df-z 10889  df-uz 11111  df-fz 11736  df-struct 15066  df-ndx 15067  df-slot 15068  df-base 15069  df-sets 15070  df-ress 15071  df-plusg 15146  df-tset 15152  df-0g 15283  df-mre 15435  df-mrc 15436  df-acs 15438  df-mgm 16431  df-sgrp 16470  df-mnd 16480  df-submnd 16526  df-grp 16616  df-minusg 16617  df-subg 16757  df-symg 16962  df-pmtr 17026
This theorem is referenced by:  symggen2  17055  psgneldm2  17088
  Copyright terms: Public domain W3C validator