MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  symgbasfi Structured version   Unicode version

Theorem symgbasfi 16538
Description: The symmetric group on a finite index set is finite. (Contributed by SO, 9-Jul-2018.)
Hypotheses
Ref Expression
symgbas.1  |-  G  =  ( SymGrp `  A )
symgbas.2  |-  B  =  ( Base `  G
)
Assertion
Ref Expression
symgbasfi  |-  ( A  e.  Fin  ->  B  e.  Fin )

Proof of Theorem symgbasfi
Dummy variable  f is distinct from all other variables.
StepHypRef Expression
1 mapfi 7834 . . 3  |-  ( ( A  e.  Fin  /\  A  e.  Fin )  ->  ( A  ^m  A
)  e.  Fin )
21anidms 645 . 2  |-  ( A  e.  Fin  ->  ( A  ^m  A )  e. 
Fin )
3 symgbas.1 . . . . 5  |-  G  =  ( SymGrp `  A )
4 symgbas.2 . . . . 5  |-  B  =  ( Base `  G
)
53, 4symgbas 16532 . . . 4  |-  B  =  { f  |  f : A -1-1-onto-> A }
6 f1of 5822 . . . . 5  |-  ( f : A -1-1-onto-> A  ->  f : A
--> A )
76ss2abi 3568 . . . 4  |-  { f  |  f : A -1-1-onto-> A }  C_  { f  |  f : A --> A }
85, 7eqsstri 3529 . . 3  |-  B  C_  { f  |  f : A --> A }
9 mapvalg 7448 . . . 4  |-  ( ( A  e.  Fin  /\  A  e.  Fin )  ->  ( A  ^m  A
)  =  { f  |  f : A --> A } )
109anidms 645 . . 3  |-  ( A  e.  Fin  ->  ( A  ^m  A )  =  { f  |  f : A --> A }
)
118, 10syl5sseqr 3548 . 2  |-  ( A  e.  Fin  ->  B  C_  ( A  ^m  A
) )
12 ssfi 7759 . 2  |-  ( ( ( A  ^m  A
)  e.  Fin  /\  B  C_  ( A  ^m  A ) )  ->  B  e.  Fin )
132, 11, 12syl2anc 661 1  |-  ( A  e.  Fin  ->  B  e.  Fin )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1395    e. wcel 1819   {cab 2442    C_ wss 3471   -->wf 5590   -1-1-onto->wf1o 5593   ` cfv 5594  (class class class)co 6296    ^m cmap 7438   Fincfn 7535   Basecbs 14644   SymGrpcsymg 16529
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-8 1821  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-sep 4578  ax-nul 4586  ax-pow 4634  ax-pr 4695  ax-un 6591  ax-cnex 9565  ax-resscn 9566  ax-1cn 9567  ax-icn 9568  ax-addcl 9569  ax-addrcl 9570  ax-mulcl 9571  ax-mulrcl 9572  ax-mulcom 9573  ax-addass 9574  ax-mulass 9575  ax-distr 9576  ax-i2m1 9577  ax-1ne0 9578  ax-1rid 9579  ax-rnegex 9580  ax-rrecex 9581  ax-cnre 9582  ax-pre-lttri 9583  ax-pre-lttrn 9584  ax-pre-ltadd 9585  ax-pre-mulgt0 9586
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-nel 2655  df-ral 2812  df-rex 2813  df-reu 2814  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-pss 3487  df-nul 3794  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-tp 4037  df-op 4039  df-uni 4252  df-int 4289  df-iun 4334  df-br 4457  df-opab 4516  df-mpt 4517  df-tr 4551  df-eprel 4800  df-id 4804  df-po 4809  df-so 4810  df-fr 4847  df-we 4849  df-ord 4890  df-on 4891  df-lim 4892  df-suc 4893  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-rn 5019  df-res 5020  df-ima 5021  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-riota 6258  df-ov 6299  df-oprab 6300  df-mpt2 6301  df-om 6700  df-1st 6799  df-2nd 6800  df-recs 7060  df-rdg 7094  df-1o 7148  df-2o 7149  df-oadd 7152  df-er 7329  df-map 7440  df-pm 7441  df-en 7536  df-dom 7537  df-sdom 7538  df-fin 7539  df-pnf 9647  df-mnf 9648  df-xr 9649  df-ltxr 9650  df-le 9651  df-sub 9826  df-neg 9827  df-nn 10557  df-2 10615  df-3 10616  df-4 10617  df-5 10618  df-6 10619  df-7 10620  df-8 10621  df-9 10622  df-n0 10817  df-z 10886  df-uz 11107  df-fz 11698  df-struct 14646  df-ndx 14647  df-slot 14648  df-base 14649  df-plusg 14725  df-tset 14731  df-symg 16530
This theorem is referenced by:  mdetleib2  19217  mdetf  19224  mdetrlin  19231  mdetrsca  19232  mdetralt  19237  m2detleib  19260  smadiadetlem3  19297  smadiadet  19299
  Copyright terms: Public domain W3C validator