MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  symgbas Structured version   Unicode version

Theorem symgbas 16532
Description: The base set of the symmetric group. (Contributed by Mario Carneiro, 12-Jan-2015.)
Hypotheses
Ref Expression
symgbas.1  |-  G  =  ( SymGrp `  A )
symgbas.2  |-  B  =  ( Base `  G
)
Assertion
Ref Expression
symgbas  |-  B  =  { x  |  x : A -1-1-onto-> A }
Distinct variable group:    x, A
Allowed substitution hints:    B( x)    G( x)

Proof of Theorem symgbas
Dummy variables  f 
g are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 symgbas.2 . 2  |-  B  =  ( Base `  G
)
2 f1of 5822 . . . . . . . 8  |-  ( x : A -1-1-onto-> A  ->  x : A
--> A )
3 elmapg 7451 . . . . . . . . 9  |-  ( ( A  e.  _V  /\  A  e.  _V )  ->  ( x  e.  ( A  ^m  A )  <-> 
x : A --> A ) )
43anidms 645 . . . . . . . 8  |-  ( A  e.  _V  ->  (
x  e.  ( A  ^m  A )  <->  x : A
--> A ) )
52, 4syl5ibr 221 . . . . . . 7  |-  ( A  e.  _V  ->  (
x : A -1-1-onto-> A  ->  x  e.  ( A  ^m  A ) ) )
65abssdv 3570 . . . . . 6  |-  ( A  e.  _V  ->  { x  |  x : A -1-1-onto-> A }  C_  ( A  ^m  A
) )
7 ovex 6324 . . . . . 6  |-  ( A  ^m  A )  e. 
_V
8 ssexg 4602 . . . . . 6  |-  ( ( { x  |  x : A -1-1-onto-> A }  C_  ( A  ^m  A )  /\  ( A  ^m  A )  e.  _V )  ->  { x  |  x : A -1-1-onto-> A }  e.  _V )
96, 7, 8sylancl 662 . . . . 5  |-  ( A  e.  _V  ->  { x  |  x : A -1-1-onto-> A }  e.  _V )
10 eqid 2457 . . . . . 6  |-  { <. (
Base `  ndx ) ,  { x  |  x : A -1-1-onto-> A } >. ,  <. ( +g  `  ndx ) ,  ( f  e. 
{ x  |  x : A -1-1-onto-> A } ,  g  e.  { x  |  x : A -1-1-onto-> A }  |->  ( f  o.  g
) ) >. ,  <. (TopSet `  ndx ) ,  (
Xt_ `  ( A  X.  { ~P A }
) ) >. }  =  { <. ( Base `  ndx ) ,  { x  |  x : A -1-1-onto-> A } >. ,  <. ( +g  `  ndx ) ,  ( f  e.  { x  |  x : A -1-1-onto-> A } ,  g  e.  { x  |  x : A -1-1-onto-> A }  |->  ( f  o.  g
) ) >. ,  <. (TopSet `  ndx ) ,  (
Xt_ `  ( A  X.  { ~P A }
) ) >. }
1110topgrpbas 14806 . . . . 5  |-  ( { x  |  x : A -1-1-onto-> A }  e.  _V  ->  { x  |  x : A -1-1-onto-> A }  =  (
Base `  { <. ( Base `  ndx ) ,  { x  |  x : A -1-1-onto-> A } >. ,  <. ( +g  `  ndx ) ,  ( f  e. 
{ x  |  x : A -1-1-onto-> A } ,  g  e.  { x  |  x : A -1-1-onto-> A }  |->  ( f  o.  g
) ) >. ,  <. (TopSet `  ndx ) ,  (
Xt_ `  ( A  X.  { ~P A }
) ) >. } ) )
129, 11syl 16 . . . 4  |-  ( A  e.  _V  ->  { x  |  x : A -1-1-onto-> A }  =  ( Base `  { <. ( Base `  ndx ) ,  { x  |  x : A -1-1-onto-> A } >. ,  <. ( +g  `  ndx ) ,  ( f  e.  { x  |  x : A -1-1-onto-> A } ,  g  e.  { x  |  x : A -1-1-onto-> A }  |->  ( f  o.  g
) ) >. ,  <. (TopSet `  ndx ) ,  (
Xt_ `  ( A  X.  { ~P A }
) ) >. } ) )
13 symgbas.1 . . . . . 6  |-  G  =  ( SymGrp `  A )
14 eqid 2457 . . . . . 6  |-  { x  |  x : A -1-1-onto-> A }  =  { x  |  x : A -1-1-onto-> A }
15 eqid 2457 . . . . . 6  |-  ( f  e.  { x  |  x : A -1-1-onto-> A } ,  g  e.  { x  |  x : A -1-1-onto-> A }  |->  ( f  o.  g
) )  =  ( f  e.  { x  |  x : A -1-1-onto-> A } ,  g  e.  { x  |  x : A -1-1-onto-> A }  |->  ( f  o.  g
) )
16 eqid 2457 . . . . . 6  |-  ( Xt_ `  ( A  X.  { ~P A } ) )  =  ( Xt_ `  ( A  X.  { ~P A } ) )
1713, 14, 15, 16symgval 16531 . . . . 5  |-  ( A  e.  _V  ->  G  =  { <. ( Base `  ndx ) ,  { x  |  x : A -1-1-onto-> A } >. ,  <. ( +g  `  ndx ) ,  ( f  e.  { x  |  x : A -1-1-onto-> A } ,  g  e.  { x  |  x : A -1-1-onto-> A }  |->  ( f  o.  g
) ) >. ,  <. (TopSet `  ndx ) ,  (
Xt_ `  ( A  X.  { ~P A }
) ) >. } )
1817fveq2d 5876 . . . 4  |-  ( A  e.  _V  ->  ( Base `  G )  =  ( Base `  { <. ( Base `  ndx ) ,  { x  |  x : A -1-1-onto-> A } >. ,  <. ( +g  `  ndx ) ,  ( f  e.  { x  |  x : A -1-1-onto-> A } ,  g  e.  { x  |  x : A -1-1-onto-> A }  |->  ( f  o.  g
) ) >. ,  <. (TopSet `  ndx ) ,  (
Xt_ `  ( A  X.  { ~P A }
) ) >. } ) )
1912, 18eqtr4d 2501 . . 3  |-  ( A  e.  _V  ->  { x  |  x : A -1-1-onto-> A }  =  ( Base `  G
) )
20 base0 14685 . . . 4  |-  (/)  =  (
Base `  (/) )
21 f1odm 5826 . . . . . . . . 9  |-  ( x : A -1-1-onto-> A  ->  dom  x  =  A )
22 vex 3112 . . . . . . . . . 10  |-  x  e. 
_V
2322dmex 6732 . . . . . . . . 9  |-  dom  x  e.  _V
2421, 23syl6eqelr 2554 . . . . . . . 8  |-  ( x : A -1-1-onto-> A  ->  A  e.  _V )
2524con3i 135 . . . . . . 7  |-  ( -.  A  e.  _V  ->  -.  x : A -1-1-onto-> A )
2625pm2.21d 106 . . . . . 6  |-  ( -.  A  e.  _V  ->  ( x : A -1-1-onto-> A  ->  x  e.  (/) ) )
2726abssdv 3570 . . . . 5  |-  ( -.  A  e.  _V  ->  { x  |  x : A -1-1-onto-> A }  C_  (/) )
28 ss0 3825 . . . . 5  |-  ( { x  |  x : A -1-1-onto-> A }  C_  (/)  ->  { x  |  x : A -1-1-onto-> A }  =  (/) )
2927, 28syl 16 . . . 4  |-  ( -.  A  e.  _V  ->  { x  |  x : A -1-1-onto-> A }  =  (/) )
30 fvprc 5866 . . . . . 6  |-  ( -.  A  e.  _V  ->  (
SymGrp `  A )  =  (/) )
3113, 30syl5eq 2510 . . . . 5  |-  ( -.  A  e.  _V  ->  G  =  (/) )
3231fveq2d 5876 . . . 4  |-  ( -.  A  e.  _V  ->  (
Base `  G )  =  ( Base `  (/) ) )
3320, 29, 323eqtr4a 2524 . . 3  |-  ( -.  A  e.  _V  ->  { x  |  x : A -1-1-onto-> A }  =  (
Base `  G )
)
3419, 33pm2.61i 164 . 2  |-  { x  |  x : A -1-1-onto-> A }  =  ( Base `  G
)
351, 34eqtr4i 2489 1  |-  B  =  { x  |  x : A -1-1-onto-> A }
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    <-> wb 184    = wceq 1395    e. wcel 1819   {cab 2442   _Vcvv 3109    C_ wss 3471   (/)c0 3793   ~Pcpw 4015   {csn 4032   {ctp 4036   <.cop 4038    X. cxp 5006   dom cdm 5008    o. ccom 5012   -->wf 5590   -1-1-onto->wf1o 5593   ` cfv 5594  (class class class)co 6296    |-> cmpt2 6298    ^m cmap 7438   ndxcnx 14641   Basecbs 14644   +g cplusg 14712  TopSetcts 14718   Xt_cpt 14856   SymGrpcsymg 16529
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-8 1821  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-sep 4578  ax-nul 4586  ax-pow 4634  ax-pr 4695  ax-un 6591  ax-cnex 9565  ax-resscn 9566  ax-1cn 9567  ax-icn 9568  ax-addcl 9569  ax-addrcl 9570  ax-mulcl 9571  ax-mulrcl 9572  ax-mulcom 9573  ax-addass 9574  ax-mulass 9575  ax-distr 9576  ax-i2m1 9577  ax-1ne0 9578  ax-1rid 9579  ax-rnegex 9580  ax-rrecex 9581  ax-cnre 9582  ax-pre-lttri 9583  ax-pre-lttrn 9584  ax-pre-ltadd 9585  ax-pre-mulgt0 9586
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-nel 2655  df-ral 2812  df-rex 2813  df-reu 2814  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-pss 3487  df-nul 3794  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-tp 4037  df-op 4039  df-uni 4252  df-int 4289  df-iun 4334  df-br 4457  df-opab 4516  df-mpt 4517  df-tr 4551  df-eprel 4800  df-id 4804  df-po 4809  df-so 4810  df-fr 4847  df-we 4849  df-ord 4890  df-on 4891  df-lim 4892  df-suc 4893  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-rn 5019  df-res 5020  df-ima 5021  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-riota 6258  df-ov 6299  df-oprab 6300  df-mpt2 6301  df-om 6700  df-1st 6799  df-2nd 6800  df-recs 7060  df-rdg 7094  df-1o 7148  df-oadd 7152  df-er 7329  df-map 7440  df-en 7536  df-dom 7537  df-sdom 7538  df-fin 7539  df-pnf 9647  df-mnf 9648  df-xr 9649  df-ltxr 9650  df-le 9651  df-sub 9826  df-neg 9827  df-nn 10557  df-2 10615  df-3 10616  df-4 10617  df-5 10618  df-6 10619  df-7 10620  df-8 10621  df-9 10622  df-n0 10817  df-z 10886  df-uz 11107  df-fz 11698  df-struct 14646  df-ndx 14647  df-slot 14648  df-base 14649  df-plusg 14725  df-tset 14731  df-symg 16530
This theorem is referenced by:  elsymgbas2  16533  symghash  16537  symgbasfi  16538  symgplusg  16541  symgbas0  16546  symg1bas  16548  symgtset  16551
  Copyright terms: Public domain W3C validator