Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  symdifv Structured version   Visualization version   Unicode version

Theorem symdifv 4347
 Description: Symmetric difference with the universal class. (Contributed by Scott Fenton, 24-Apr-2012.)
Assertion
Ref Expression
symdifv

Proof of Theorem symdifv
StepHypRef Expression
1 df-symdif 3654 . 2
2 ssv 3438 . . . . 5
3 ssdif0 3741 . . . . 5
42, 3mpbi 213 . . . 4
54uneq1i 3575 . . 3
6 uncom 3569 . . . 4
7 un0 3762 . . . 4
86, 7eqtri 2493 . . 3
95, 8eqtri 2493 . 2
101, 9eqtri 2493 1
 Colors of variables: wff setvar class Syntax hints:   wceq 1452  cvv 3031   cdif 3387   cun 3388   wss 3390   csymdif 3653  c0 3722 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451 This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-tru 1455  df-ex 1672  df-nf 1676  df-sb 1806  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ne 2643  df-v 3033  df-dif 3393  df-un 3395  df-in 3397  df-ss 3404  df-symdif 3654  df-nul 3723 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator