MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sylow3lem6 Structured version   Unicode version

Theorem sylow3lem6 16124
Description: Lemma for sylow3 16125, second part. Using the lemma sylow2a 16111, show that the number of sylow subgroups is equivalent  mod  P to the number of fixed points under the group action. But  K is the unique element of the set of Sylow subgroups that is fixed under the group action, so there is exactly one fixed point and so  ( ( # `  ( P pSyl  G ) )  mod  P )  =  1. (Contributed by Mario Carneiro, 19-Jan-2015.)
Hypotheses
Ref Expression
sylow3.x  |-  X  =  ( Base `  G
)
sylow3.g  |-  ( ph  ->  G  e.  Grp )
sylow3.xf  |-  ( ph  ->  X  e.  Fin )
sylow3.p  |-  ( ph  ->  P  e.  Prime )
sylow3lem5.a  |-  .+  =  ( +g  `  G )
sylow3lem5.d  |-  .-  =  ( -g `  G )
sylow3lem5.k  |-  ( ph  ->  K  e.  ( P pSyl 
G ) )
sylow3lem5.m  |-  .(+)  =  ( x  e.  K , 
y  e.  ( P pSyl 
G )  |->  ran  (
z  e.  y  |->  ( ( x  .+  z
)  .-  x )
) )
sylow3lem6.n  |-  N  =  { x  e.  X  |  A. y  e.  X  ( ( x  .+  y )  e.  s  <-> 
( y  .+  x
)  e.  s ) }
Assertion
Ref Expression
sylow3lem6  |-  ( ph  ->  ( ( # `  ( P pSyl  G ) )  mod 
P )  =  1 )
Distinct variable groups:    x, y,
z,  .-    x, s, y, z,  .(+)    K, s, x, y, z    z, N   
x, X, y, z    G, s, x, y, z    ph, s, x, y, z   
x,  .+ , y, z    P, s, x, y, z
Allowed substitution hints:    .+ ( s)    .- ( s)    N( x, y, s)    X( s)

Proof of Theorem sylow3lem6
Dummy variables  w  g  h are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2441 . . . . 5  |-  ( Base `  ( Gs  K ) )  =  ( Base `  ( Gs  K ) )
2 sylow3.x . . . . . 6  |-  X  =  ( Base `  G
)
3 sylow3.g . . . . . 6  |-  ( ph  ->  G  e.  Grp )
4 sylow3.xf . . . . . 6  |-  ( ph  ->  X  e.  Fin )
5 sylow3.p . . . . . 6  |-  ( ph  ->  P  e.  Prime )
6 sylow3lem5.a . . . . . 6  |-  .+  =  ( +g  `  G )
7 sylow3lem5.d . . . . . 6  |-  .-  =  ( -g `  G )
8 sylow3lem5.k . . . . . 6  |-  ( ph  ->  K  e.  ( P pSyl 
G ) )
9 sylow3lem5.m . . . . . 6  |-  .(+)  =  ( x  e.  K , 
y  e.  ( P pSyl 
G )  |->  ran  (
z  e.  y  |->  ( ( x  .+  z
)  .-  x )
) )
102, 3, 4, 5, 6, 7, 8, 9sylow3lem5 16123 . . . . 5  |-  ( ph  -> 
.(+)  e.  ( ( Gs  K )  GrpAct  ( P pSyl 
G ) ) )
11 eqid 2441 . . . . . . 7  |-  ( Gs  K )  =  ( Gs  K )
1211slwpgp 16105 . . . . . 6  |-  ( K  e.  ( P pSyl  G
)  ->  P pGrp  ( Gs  K ) )
138, 12syl 16 . . . . 5  |-  ( ph  ->  P pGrp  ( Gs  K ) )
14 slwsubg 16102 . . . . . . . 8  |-  ( K  e.  ( P pSyl  G
)  ->  K  e.  (SubGrp `  G ) )
158, 14syl 16 . . . . . . 7  |-  ( ph  ->  K  e.  (SubGrp `  G ) )
1611subgbas 15678 . . . . . . 7  |-  ( K  e.  (SubGrp `  G
)  ->  K  =  ( Base `  ( Gs  K
) ) )
1715, 16syl 16 . . . . . 6  |-  ( ph  ->  K  =  ( Base `  ( Gs  K ) ) )
182subgss 15675 . . . . . . . 8  |-  ( K  e.  (SubGrp `  G
)  ->  K  C_  X
)
1915, 18syl 16 . . . . . . 7  |-  ( ph  ->  K  C_  X )
20 ssfi 7529 . . . . . . 7  |-  ( ( X  e.  Fin  /\  K  C_  X )  ->  K  e.  Fin )
214, 19, 20syl2anc 656 . . . . . 6  |-  ( ph  ->  K  e.  Fin )
2217, 21eqeltrrd 2516 . . . . 5  |-  ( ph  ->  ( Base `  ( Gs  K ) )  e. 
Fin )
23 pwfi 7602 . . . . . . 7  |-  ( X  e.  Fin  <->  ~P X  e.  Fin )
244, 23sylib 196 . . . . . 6  |-  ( ph  ->  ~P X  e.  Fin )
25 slwsubg 16102 . . . . . . . . 9  |-  ( x  e.  ( P pSyl  G
)  ->  x  e.  (SubGrp `  G ) )
262subgss 15675 . . . . . . . . 9  |-  ( x  e.  (SubGrp `  G
)  ->  x  C_  X
)
2725, 26syl 16 . . . . . . . 8  |-  ( x  e.  ( P pSyl  G
)  ->  x  C_  X
)
28 selpw 3864 . . . . . . . 8  |-  ( x  e.  ~P X  <->  x  C_  X
)
2927, 28sylibr 212 . . . . . . 7  |-  ( x  e.  ( P pSyl  G
)  ->  x  e.  ~P X )
3029ssriv 3357 . . . . . 6  |-  ( P pSyl 
G )  C_  ~P X
31 ssfi 7529 . . . . . 6  |-  ( ( ~P X  e.  Fin  /\  ( P pSyl  G ) 
C_  ~P X )  -> 
( P pSyl  G )  e.  Fin )
3224, 30, 31sylancl 657 . . . . 5  |-  ( ph  ->  ( P pSyl  G )  e.  Fin )
33 eqid 2441 . . . . 5  |-  { s  e.  ( P pSyl  G
)  |  A. g  e.  ( Base `  ( Gs  K ) ) ( g  .(+)  s )  =  s }  =  { s  e.  ( P pSyl  G )  | 
A. g  e.  (
Base `  ( Gs  K
) ) ( g 
.(+)  s )  =  s }
34 eqid 2441 . . . . 5  |-  { <. z ,  w >.  |  ( { z ,  w }  C_  ( P pSyl  G
)  /\  E. h  e.  ( Base `  ( Gs  K ) ) ( h  .(+)  z )  =  w ) }  =  { <. z ,  w >.  |  ( { z ,  w }  C_  ( P pSyl  G )  /\  E. h  e.  (
Base `  ( Gs  K
) ) ( h 
.(+)  z )  =  w ) }
351, 10, 13, 22, 32, 33, 34sylow2a 16111 . . . 4  |-  ( ph  ->  P  ||  ( (
# `  ( P pSyl  G ) )  -  ( # `
 { s  e.  ( P pSyl  G )  |  A. g  e.  ( Base `  ( Gs  K ) ) ( g  .(+)  s )  =  s } ) ) )
36 eqcom 2443 . . . . . . . . . . . . . 14  |-  ( ran  ( z  e.  s 
|->  ( ( g  .+  z )  .-  g
) )  =  s  <-> 
s  =  ran  (
z  e.  s  |->  ( ( g  .+  z
)  .-  g )
) )
3719adantr 462 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  s  e.  ( P pSyl  G )
)  ->  K  C_  X
)
3837sselda 3353 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  s  e.  ( P pSyl  G ) )  /\  g  e.  K )  ->  g  e.  X )
3938biantrurd 505 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  s  e.  ( P pSyl  G ) )  /\  g  e.  K )  ->  (
s  =  ran  (
z  e.  s  |->  ( ( g  .+  z
)  .-  g )
)  <->  ( g  e.  X  /\  s  =  ran  ( z  e.  s  |->  ( ( g 
.+  z )  .-  g ) ) ) ) )
4036, 39syl5bb 257 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  s  e.  ( P pSyl  G ) )  /\  g  e.  K )  ->  ( ran  ( z  e.  s 
|->  ( ( g  .+  z )  .-  g
) )  =  s  <-> 
( g  e.  X  /\  s  =  ran  ( z  e.  s 
|->  ( ( g  .+  z )  .-  g
) ) ) ) )
41 simpr 458 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  s  e.  ( P pSyl  G ) )  /\  g  e.  K )  ->  g  e.  K )
42 simplr 749 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  s  e.  ( P pSyl  G ) )  /\  g  e.  K )  ->  s  e.  ( P pSyl  G ) )
43 simpr 458 . . . . . . . . . . . . . . . . . 18  |-  ( ( x  =  g  /\  y  =  s )  ->  y  =  s )
44 simpl 454 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( x  =  g  /\  y  =  s )  ->  x  =  g )
4544oveq1d 6105 . . . . . . . . . . . . . . . . . . 19  |-  ( ( x  =  g  /\  y  =  s )  ->  ( x  .+  z
)  =  ( g 
.+  z ) )
4645, 44oveq12d 6108 . . . . . . . . . . . . . . . . . 18  |-  ( ( x  =  g  /\  y  =  s )  ->  ( ( x  .+  z )  .-  x
)  =  ( ( g  .+  z ) 
.-  g ) )
4743, 46mpteq12dv 4367 . . . . . . . . . . . . . . . . 17  |-  ( ( x  =  g  /\  y  =  s )  ->  ( z  e.  y 
|->  ( ( x  .+  z )  .-  x
) )  =  ( z  e.  s  |->  ( ( g  .+  z
)  .-  g )
) )
4847rneqd 5063 . . . . . . . . . . . . . . . 16  |-  ( ( x  =  g  /\  y  =  s )  ->  ran  ( z  e.  y  |->  ( ( x 
.+  z )  .-  x ) )  =  ran  ( z  e.  s  |->  ( ( g 
.+  z )  .-  g ) ) )
49 vex 2973 . . . . . . . . . . . . . . . . . 18  |-  s  e. 
_V
5049mptex 5945 . . . . . . . . . . . . . . . . 17  |-  ( z  e.  s  |->  ( ( g  .+  z ) 
.-  g ) )  e.  _V
5150rnex 6511 . . . . . . . . . . . . . . . 16  |-  ran  (
z  e.  s  |->  ( ( g  .+  z
)  .-  g )
)  e.  _V
5248, 9, 51ovmpt2a 6220 . . . . . . . . . . . . . . 15  |-  ( ( g  e.  K  /\  s  e.  ( P pSyl  G ) )  ->  (
g  .(+)  s )  =  ran  ( z  e.  s  |->  ( ( g 
.+  z )  .-  g ) ) )
5341, 42, 52syl2anc 656 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  s  e.  ( P pSyl  G ) )  /\  g  e.  K )  ->  (
g  .(+)  s )  =  ran  ( z  e.  s  |->  ( ( g 
.+  z )  .-  g ) ) )
5453eqeq1d 2449 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  s  e.  ( P pSyl  G ) )  /\  g  e.  K )  ->  (
( g  .(+)  s )  =  s  <->  ran  ( z  e.  s  |->  ( ( g  .+  z ) 
.-  g ) )  =  s ) )
55 slwsubg 16102 . . . . . . . . . . . . . . 15  |-  ( s  e.  ( P pSyl  G
)  ->  s  e.  (SubGrp `  G ) )
5655ad2antlr 721 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  s  e.  ( P pSyl  G ) )  /\  g  e.  K )  ->  s  e.  (SubGrp `  G )
)
57 eqid 2441 . . . . . . . . . . . . . . 15  |-  ( z  e.  s  |->  ( ( g  .+  z ) 
.-  g ) )  =  ( z  e.  s  |->  ( ( g 
.+  z )  .-  g ) )
58 sylow3lem6.n . . . . . . . . . . . . . . 15  |-  N  =  { x  e.  X  |  A. y  e.  X  ( ( x  .+  y )  e.  s  <-> 
( y  .+  x
)  e.  s ) }
592, 6, 7, 57, 58conjnmzb 15774 . . . . . . . . . . . . . 14  |-  ( s  e.  (SubGrp `  G
)  ->  ( g  e.  N  <->  ( g  e.  X  /\  s  =  ran  ( z  e.  s  |->  ( ( g 
.+  z )  .-  g ) ) ) ) )
6056, 59syl 16 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  s  e.  ( P pSyl  G ) )  /\  g  e.  K )  ->  (
g  e.  N  <->  ( g  e.  X  /\  s  =  ran  ( z  e.  s  |->  ( ( g 
.+  z )  .-  g ) ) ) ) )
6140, 54, 603bitr4d 285 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  s  e.  ( P pSyl  G ) )  /\  g  e.  K )  ->  (
( g  .(+)  s )  =  s  <->  g  e.  N ) )
6261ralbidva 2729 . . . . . . . . . . 11  |-  ( (
ph  /\  s  e.  ( P pSyl  G )
)  ->  ( A. g  e.  K  (
g  .(+)  s )  =  s  <->  A. g  e.  K  g  e.  N )
)
63 dfss3 3343 . . . . . . . . . . 11  |-  ( K 
C_  N  <->  A. g  e.  K  g  e.  N )
6462, 63syl6bbr 263 . . . . . . . . . 10  |-  ( (
ph  /\  s  e.  ( P pSyl  G )
)  ->  ( A. g  e.  K  (
g  .(+)  s )  =  s  <->  K  C_  N ) )
6517adantr 462 . . . . . . . . . . 11  |-  ( (
ph  /\  s  e.  ( P pSyl  G )
)  ->  K  =  ( Base `  ( Gs  K
) ) )
6665raleqdv 2921 . . . . . . . . . 10  |-  ( (
ph  /\  s  e.  ( P pSyl  G )
)  ->  ( A. g  e.  K  (
g  .(+)  s )  =  s  <->  A. g  e.  (
Base `  ( Gs  K
) ) ( g 
.(+)  s )  =  s ) )
67 eqid 2441 . . . . . . . . . . . . 13  |-  ( Base `  ( Gs  N ) )  =  ( Base `  ( Gs  N ) )
683ad2antrr 720 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  s  e.  ( P pSyl  G ) )  /\  K  C_  N )  ->  G  e.  Grp )
6958, 2, 6nmzsubg 15715 . . . . . . . . . . . . . . . 16  |-  ( G  e.  Grp  ->  N  e.  (SubGrp `  G )
)
7068, 69syl 16 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  s  e.  ( P pSyl  G ) )  /\  K  C_  N )  ->  N  e.  (SubGrp `  G )
)
71 eqid 2441 . . . . . . . . . . . . . . . 16  |-  ( Gs  N )  =  ( Gs  N )
7271subgbas 15678 . . . . . . . . . . . . . . 15  |-  ( N  e.  (SubGrp `  G
)  ->  N  =  ( Base `  ( Gs  N
) ) )
7370, 72syl 16 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  s  e.  ( P pSyl  G ) )  /\  K  C_  N )  ->  N  =  ( Base `  ( Gs  N ) ) )
744ad2antrr 720 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  s  e.  ( P pSyl  G ) )  /\  K  C_  N )  ->  X  e.  Fin )
752subgss 15675 . . . . . . . . . . . . . . . 16  |-  ( N  e.  (SubGrp `  G
)  ->  N  C_  X
)
7670, 75syl 16 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  s  e.  ( P pSyl  G ) )  /\  K  C_  N )  ->  N  C_  X )
77 ssfi 7529 . . . . . . . . . . . . . . 15  |-  ( ( X  e.  Fin  /\  N  C_  X )  ->  N  e.  Fin )
7874, 76, 77syl2anc 656 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  s  e.  ( P pSyl  G ) )  /\  K  C_  N )  ->  N  e.  Fin )
7973, 78eqeltrrd 2516 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  s  e.  ( P pSyl  G ) )  /\  K  C_  N )  ->  ( Base `  ( Gs  N ) )  e.  Fin )
808ad2antrr 720 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  s  e.  ( P pSyl  G ) )  /\  K  C_  N )  ->  K  e.  ( P pSyl  G ) )
81 simpr 458 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  s  e.  ( P pSyl  G ) )  /\  K  C_  N )  ->  K  C_  N )
8271subgslw 16108 . . . . . . . . . . . . . 14  |-  ( ( N  e.  (SubGrp `  G )  /\  K  e.  ( P pSyl  G )  /\  K  C_  N
)  ->  K  e.  ( P pSyl  ( Gs  N
) ) )
8370, 80, 81, 82syl3anc 1213 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  s  e.  ( P pSyl  G ) )  /\  K  C_  N )  ->  K  e.  ( P pSyl  ( Gs  N ) ) )
84 simplr 749 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  s  e.  ( P pSyl  G ) )  /\  K  C_  N )  ->  s  e.  ( P pSyl  G ) )
8555ad2antlr 721 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  s  e.  ( P pSyl  G ) )  /\  K  C_  N )  ->  s  e.  (SubGrp `  G )
)
8658, 2, 6ssnmz 15716 . . . . . . . . . . . . . . 15  |-  ( s  e.  (SubGrp `  G
)  ->  s  C_  N )
8785, 86syl 16 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  s  e.  ( P pSyl  G ) )  /\  K  C_  N )  ->  s  C_  N )
8871subgslw 16108 . . . . . . . . . . . . . 14  |-  ( ( N  e.  (SubGrp `  G )  /\  s  e.  ( P pSyl  G )  /\  s  C_  N
)  ->  s  e.  ( P pSyl  ( Gs  N
) ) )
8970, 84, 87, 88syl3anc 1213 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  s  e.  ( P pSyl  G ) )  /\  K  C_  N )  ->  s  e.  ( P pSyl  ( Gs  N ) ) )
90 fvex 5698 . . . . . . . . . . . . . . . . 17  |-  ( Base `  G )  e.  _V
912, 90eqeltri 2511 . . . . . . . . . . . . . . . 16  |-  X  e. 
_V
9291rabex 4440 . . . . . . . . . . . . . . 15  |-  { x  e.  X  |  A. y  e.  X  (
( x  .+  y
)  e.  s  <->  ( y  .+  x )  e.  s ) }  e.  _V
9358, 92eqeltri 2511 . . . . . . . . . . . . . 14  |-  N  e. 
_V
9471, 6ressplusg 14276 . . . . . . . . . . . . . 14  |-  ( N  e.  _V  ->  .+  =  ( +g  `  ( Gs  N ) ) )
9593, 94ax-mp 5 . . . . . . . . . . . . 13  |-  .+  =  ( +g  `  ( Gs  N ) )
96 eqid 2441 . . . . . . . . . . . . 13  |-  ( -g `  ( Gs  N ) )  =  ( -g `  ( Gs  N ) )
9767, 79, 83, 89, 95, 96sylow2 16118 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  s  e.  ( P pSyl  G ) )  /\  K  C_  N )  ->  E. g  e.  ( Base `  ( Gs  N ) ) K  =  ran  ( z  e.  s  |->  ( ( g  .+  z ) ( -g `  ( Gs  N ) ) g ) ) )
9858, 2, 6, 71nmznsg 15718 . . . . . . . . . . . . . . . 16  |-  ( s  e.  (SubGrp `  G
)  ->  s  e.  (NrmSGrp `  ( Gs  N ) ) )
9985, 98syl 16 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  s  e.  ( P pSyl  G ) )  /\  K  C_  N )  ->  s  e.  (NrmSGrp `  ( Gs  N
) ) )
100 eqid 2441 . . . . . . . . . . . . . . . 16  |-  ( z  e.  s  |->  ( ( g  .+  z ) ( -g `  ( Gs  N ) ) g ) )  =  ( z  e.  s  |->  ( ( g  .+  z
) ( -g `  ( Gs  N ) ) g ) )
10167, 95, 96, 100conjnsg 15775 . . . . . . . . . . . . . . 15  |-  ( ( s  e.  (NrmSGrp `  ( Gs  N ) )  /\  g  e.  ( Base `  ( Gs  N ) ) )  ->  s  =  ran  ( z  e.  s 
|->  ( ( g  .+  z ) ( -g `  ( Gs  N ) ) g ) ) )
10299, 101sylan 468 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  s  e.  ( P pSyl  G ) )  /\  K  C_  N )  /\  g  e.  ( Base `  ( Gs  N ) ) )  ->  s  =  ran  ( z  e.  s 
|->  ( ( g  .+  z ) ( -g `  ( Gs  N ) ) g ) ) )
103 eqeq2 2450 . . . . . . . . . . . . . 14  |-  ( K  =  ran  ( z  e.  s  |->  ( ( g  .+  z ) ( -g `  ( Gs  N ) ) g ) )  ->  (
s  =  K  <->  s  =  ran  ( z  e.  s 
|->  ( ( g  .+  z ) ( -g `  ( Gs  N ) ) g ) ) ) )
104102, 103syl5ibrcom 222 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  s  e.  ( P pSyl  G ) )  /\  K  C_  N )  /\  g  e.  ( Base `  ( Gs  N ) ) )  ->  ( K  =  ran  ( z  e.  s  |->  ( ( g 
.+  z ) (
-g `  ( Gs  N
) ) g ) )  ->  s  =  K ) )
105104rexlimdva 2839 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  s  e.  ( P pSyl  G ) )  /\  K  C_  N )  ->  ( E. g  e.  ( Base `  ( Gs  N ) ) K  =  ran  ( z  e.  s 
|->  ( ( g  .+  z ) ( -g `  ( Gs  N ) ) g ) )  ->  s  =  K ) )
10697, 105mpd 15 . . . . . . . . . . 11  |-  ( ( ( ph  /\  s  e.  ( P pSyl  G ) )  /\  K  C_  N )  ->  s  =  K )
107 simpr 458 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  s  e.  ( P pSyl  G ) )  /\  s  =  K )  ->  s  =  K )
10815ad2antrr 720 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  s  e.  ( P pSyl  G ) )  /\  s  =  K )  ->  K  e.  (SubGrp `  G )
)
109107, 108eqeltrd 2515 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  s  e.  ( P pSyl  G ) )  /\  s  =  K )  ->  s  e.  (SubGrp `  G )
)
110109, 86syl 16 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  s  e.  ( P pSyl  G ) )  /\  s  =  K )  ->  s  C_  N )
111107, 110eqsstr3d 3388 . . . . . . . . . . 11  |-  ( ( ( ph  /\  s  e.  ( P pSyl  G ) )  /\  s  =  K )  ->  K  C_  N )
112106, 111impbida 823 . . . . . . . . . 10  |-  ( (
ph  /\  s  e.  ( P pSyl  G )
)  ->  ( K  C_  N  <->  s  =  K ) )
11364, 66, 1123bitr3d 283 . . . . . . . . 9  |-  ( (
ph  /\  s  e.  ( P pSyl  G )
)  ->  ( A. g  e.  ( Base `  ( Gs  K ) ) ( g  .(+)  s )  =  s  <->  s  =  K ) )
114113rabbidva 2961 . . . . . . . 8  |-  ( ph  ->  { s  e.  ( P pSyl  G )  | 
A. g  e.  (
Base `  ( Gs  K
) ) ( g 
.(+)  s )  =  s }  =  {
s  e.  ( P pSyl 
G )  |  s  =  K } )
115 rabsn 3939 . . . . . . . . 9  |-  ( K  e.  ( P pSyl  G
)  ->  { s  e.  ( P pSyl  G )  |  s  =  K }  =  { K } )
1168, 115syl 16 . . . . . . . 8  |-  ( ph  ->  { s  e.  ( P pSyl  G )  |  s  =  K }  =  { K } )
117114, 116eqtrd 2473 . . . . . . 7  |-  ( ph  ->  { s  e.  ( P pSyl  G )  | 
A. g  e.  (
Base `  ( Gs  K
) ) ( g 
.(+)  s )  =  s }  =  { K } )
118117fveq2d 5692 . . . . . 6  |-  ( ph  ->  ( # `  {
s  e.  ( P pSyl 
G )  |  A. g  e.  ( Base `  ( Gs  K ) ) ( g  .(+)  s )  =  s } )  =  ( # `  { K } ) )
119 hashsng 12132 . . . . . . 7  |-  ( K  e.  ( P pSyl  G
)  ->  ( # `  { K } )  =  1 )
1208, 119syl 16 . . . . . 6  |-  ( ph  ->  ( # `  { K } )  =  1 )
121118, 120eqtrd 2473 . . . . 5  |-  ( ph  ->  ( # `  {
s  e.  ( P pSyl 
G )  |  A. g  e.  ( Base `  ( Gs  K ) ) ( g  .(+)  s )  =  s } )  =  1 )
122121oveq2d 6106 . . . 4  |-  ( ph  ->  ( ( # `  ( P pSyl  G ) )  -  ( # `  { s  e.  ( P pSyl  G
)  |  A. g  e.  ( Base `  ( Gs  K ) ) ( g  .(+)  s )  =  s } ) )  =  ( (
# `  ( P pSyl  G ) )  -  1 ) )
12335, 122breqtrd 4313 . . 3  |-  ( ph  ->  P  ||  ( (
# `  ( P pSyl  G ) )  -  1 ) )
124 prmnn 13762 . . . . 5  |-  ( P  e.  Prime  ->  P  e.  NN )
1255, 124syl 16 . . . 4  |-  ( ph  ->  P  e.  NN )
126 hashcl 12122 . . . . . 6  |-  ( ( P pSyl  G )  e. 
Fin  ->  ( # `  ( P pSyl  G ) )  e. 
NN0 )
12732, 126syl 16 . . . . 5  |-  ( ph  ->  ( # `  ( P pSyl  G ) )  e. 
NN0 )
128127nn0zd 10741 . . . 4  |-  ( ph  ->  ( # `  ( P pSyl  G ) )  e.  ZZ )
129 1zzd 10673 . . . 4  |-  ( ph  ->  1  e.  ZZ )
130 moddvds 13538 . . . 4  |-  ( ( P  e.  NN  /\  ( # `  ( P pSyl 
G ) )  e.  ZZ  /\  1  e.  ZZ )  ->  (
( ( # `  ( P pSyl  G ) )  mod 
P )  =  ( 1  mod  P )  <-> 
P  ||  ( ( # `
 ( P pSyl  G
) )  -  1 ) ) )
131125, 128, 129, 130syl3anc 1213 . . 3  |-  ( ph  ->  ( ( ( # `  ( P pSyl  G ) )  mod  P )  =  ( 1  mod 
P )  <->  P  ||  (
( # `  ( P pSyl 
G ) )  - 
1 ) ) )
132123, 131mpbird 232 . 2  |-  ( ph  ->  ( ( # `  ( P pSyl  G ) )  mod 
P )  =  ( 1  mod  P ) )
133 prmuz2 13777 . . 3  |-  ( P  e.  Prime  ->  P  e.  ( ZZ>= `  2 )
)
134 eluz2b2 10923 . . . 4  |-  ( P  e.  ( ZZ>= `  2
)  <->  ( P  e.  NN  /\  1  < 
P ) )
135 nnre 10325 . . . . 5  |-  ( P  e.  NN  ->  P  e.  RR )
136 1mod 11736 . . . . 5  |-  ( ( P  e.  RR  /\  1  <  P )  -> 
( 1  mod  P
)  =  1 )
137135, 136sylan 468 . . . 4  |-  ( ( P  e.  NN  /\  1  <  P )  -> 
( 1  mod  P
)  =  1 )
138134, 137sylbi 195 . . 3  |-  ( P  e.  ( ZZ>= `  2
)  ->  ( 1  mod  P )  =  1 )
1395, 133, 1383syl 20 . 2  |-  ( ph  ->  ( 1  mod  P
)  =  1 )
140132, 139eqtrd 2473 1  |-  ( ph  ->  ( ( # `  ( P pSyl  G ) )  mod 
P )  =  1 )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1364    e. wcel 1761   A.wral 2713   E.wrex 2714   {crab 2717   _Vcvv 2970    C_ wss 3325   ~Pcpw 3857   {csn 3874   {cpr 3876   class class class wbr 4289   {copab 4346    e. cmpt 4347   ran crn 4837   ` cfv 5415  (class class class)co 6090    e. cmpt2 6092   Fincfn 7306   RRcr 9277   1c1 9279    < clt 9414    - cmin 9591   NNcn 10318   2c2 10367   NN0cn0 10575   ZZcz 10642   ZZ>=cuz 10857    mod cmo 11704   #chash 12099    || cdivides 13531   Primecprime 13759   Basecbs 14170   ↾s cress 14171   +g cplusg 14234   Grpcgrp 15406   -gcsg 15409  SubGrpcsubg 15668  NrmSGrpcnsg 15669   pGrp cpgp 16023   pSyl cslw 16024
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1713  ax-7 1733  ax-8 1763  ax-9 1765  ax-10 1780  ax-11 1785  ax-12 1797  ax-13 1948  ax-ext 2422  ax-rep 4400  ax-sep 4410  ax-nul 4418  ax-pow 4467  ax-pr 4528  ax-un 6371  ax-inf2 7843  ax-cnex 9334  ax-resscn 9335  ax-1cn 9336  ax-icn 9337  ax-addcl 9338  ax-addrcl 9339  ax-mulcl 9340  ax-mulrcl 9341  ax-mulcom 9342  ax-addass 9343  ax-mulass 9344  ax-distr 9345  ax-i2m1 9346  ax-1ne0 9347  ax-1rid 9348  ax-rnegex 9349  ax-rrecex 9350  ax-cnre 9351  ax-pre-lttri 9352  ax-pre-lttrn 9353  ax-pre-ltadd 9354  ax-pre-mulgt0 9355  ax-pre-sup 9356
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 961  df-3an 962  df-tru 1367  df-fal 1370  df-ex 1592  df-nf 1595  df-sb 1706  df-eu 2261  df-mo 2262  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-nel 2607  df-ral 2718  df-rex 2719  df-reu 2720  df-rmo 2721  df-rab 2722  df-v 2972  df-sbc 3184  df-csb 3286  df-dif 3328  df-un 3330  df-in 3332  df-ss 3339  df-pss 3341  df-nul 3635  df-if 3789  df-pw 3859  df-sn 3875  df-pr 3877  df-tp 3879  df-op 3881  df-uni 4089  df-int 4126  df-iun 4170  df-disj 4260  df-br 4290  df-opab 4348  df-mpt 4349  df-tr 4383  df-eprel 4628  df-id 4632  df-po 4637  df-so 4638  df-fr 4675  df-se 4676  df-we 4677  df-ord 4718  df-on 4719  df-lim 4720  df-suc 4721  df-xp 4842  df-rel 4843  df-cnv 4844  df-co 4845  df-dm 4846  df-rn 4847  df-res 4848  df-ima 4849  df-iota 5378  df-fun 5417  df-fn 5418  df-f 5419  df-f1 5420  df-fo 5421  df-f1o 5422  df-fv 5423  df-isom 5424  df-riota 6049  df-ov 6093  df-oprab 6094  df-mpt2 6095  df-om 6476  df-1st 6576  df-2nd 6577  df-recs 6828  df-rdg 6862  df-1o 6916  df-2o 6917  df-oadd 6920  df-omul 6921  df-er 7097  df-ec 7099  df-qs 7103  df-map 7212  df-en 7307  df-dom 7308  df-sdom 7309  df-fin 7310  df-sup 7687  df-oi 7720  df-card 8105  df-acn 8108  df-cda 8333  df-pnf 9416  df-mnf 9417  df-xr 9418  df-ltxr 9419  df-le 9420  df-sub 9593  df-neg 9594  df-div 9990  df-nn 10319  df-2 10376  df-3 10377  df-n0 10576  df-z 10643  df-uz 10858  df-q 10950  df-rp 10988  df-fz 11434  df-fzo 11545  df-fl 11638  df-mod 11705  df-seq 11803  df-exp 11862  df-fac 12048  df-bc 12075  df-hash 12100  df-cj 12584  df-re 12585  df-im 12586  df-sqr 12720  df-abs 12721  df-clim 12962  df-sum 13160  df-dvds 13532  df-gcd 13687  df-prm 13760  df-pc 13900  df-ndx 14173  df-slot 14174  df-base 14175  df-sets 14176  df-ress 14177  df-plusg 14247  df-0g 14376  df-mnd 15411  df-submnd 15461  df-grp 15538  df-minusg 15539  df-sbg 15540  df-mulg 15541  df-subg 15671  df-nsg 15672  df-eqg 15673  df-ghm 15738  df-ga 15801  df-od 16025  df-pgp 16027  df-slw 16028
This theorem is referenced by:  sylow3  16125
  Copyright terms: Public domain W3C validator