MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sylow3lem6 Structured version   Unicode version

Theorem sylow3lem6 16523
Description: Lemma for sylow3 16524, second part. Using the lemma sylow2a 16510, show that the number of sylow subgroups is equivalent  mod  P to the number of fixed points under the group action. But  K is the unique element of the set of Sylow subgroups that is fixed under the group action, so there is exactly one fixed point and so  ( ( # `  ( P pSyl  G ) )  mod  P )  =  1. (Contributed by Mario Carneiro, 19-Jan-2015.)
Hypotheses
Ref Expression
sylow3.x  |-  X  =  ( Base `  G
)
sylow3.g  |-  ( ph  ->  G  e.  Grp )
sylow3.xf  |-  ( ph  ->  X  e.  Fin )
sylow3.p  |-  ( ph  ->  P  e.  Prime )
sylow3lem5.a  |-  .+  =  ( +g  `  G )
sylow3lem5.d  |-  .-  =  ( -g `  G )
sylow3lem5.k  |-  ( ph  ->  K  e.  ( P pSyl 
G ) )
sylow3lem5.m  |-  .(+)  =  ( x  e.  K , 
y  e.  ( P pSyl 
G )  |->  ran  (
z  e.  y  |->  ( ( x  .+  z
)  .-  x )
) )
sylow3lem6.n  |-  N  =  { x  e.  X  |  A. y  e.  X  ( ( x  .+  y )  e.  s  <-> 
( y  .+  x
)  e.  s ) }
Assertion
Ref Expression
sylow3lem6  |-  ( ph  ->  ( ( # `  ( P pSyl  G ) )  mod 
P )  =  1 )
Distinct variable groups:    x, y,
z,  .-    x, s, y, z,  .(+)    K, s, x, y, z    z, N   
x, X, y, z    G, s, x, y, z    ph, s, x, y, z   
x,  .+ , y, z    P, s, x, y, z
Allowed substitution hints:    .+ ( s)    .- ( s)    N( x, y, s)    X( s)

Proof of Theorem sylow3lem6
Dummy variables  w  g  h are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2441 . . . . 5  |-  ( Base `  ( Gs  K ) )  =  ( Base `  ( Gs  K ) )
2 sylow3.x . . . . . 6  |-  X  =  ( Base `  G
)
3 sylow3.g . . . . . 6  |-  ( ph  ->  G  e.  Grp )
4 sylow3.xf . . . . . 6  |-  ( ph  ->  X  e.  Fin )
5 sylow3.p . . . . . 6  |-  ( ph  ->  P  e.  Prime )
6 sylow3lem5.a . . . . . 6  |-  .+  =  ( +g  `  G )
7 sylow3lem5.d . . . . . 6  |-  .-  =  ( -g `  G )
8 sylow3lem5.k . . . . . 6  |-  ( ph  ->  K  e.  ( P pSyl 
G ) )
9 sylow3lem5.m . . . . . 6  |-  .(+)  =  ( x  e.  K , 
y  e.  ( P pSyl 
G )  |->  ran  (
z  e.  y  |->  ( ( x  .+  z
)  .-  x )
) )
102, 3, 4, 5, 6, 7, 8, 9sylow3lem5 16522 . . . . 5  |-  ( ph  -> 
.(+)  e.  ( ( Gs  K )  GrpAct  ( P pSyl 
G ) ) )
11 eqid 2441 . . . . . . 7  |-  ( Gs  K )  =  ( Gs  K )
1211slwpgp 16504 . . . . . 6  |-  ( K  e.  ( P pSyl  G
)  ->  P pGrp  ( Gs  K ) )
138, 12syl 16 . . . . 5  |-  ( ph  ->  P pGrp  ( Gs  K ) )
14 slwsubg 16501 . . . . . . . 8  |-  ( K  e.  ( P pSyl  G
)  ->  K  e.  (SubGrp `  G ) )
158, 14syl 16 . . . . . . 7  |-  ( ph  ->  K  e.  (SubGrp `  G ) )
1611subgbas 16076 . . . . . . 7  |-  ( K  e.  (SubGrp `  G
)  ->  K  =  ( Base `  ( Gs  K
) ) )
1715, 16syl 16 . . . . . 6  |-  ( ph  ->  K  =  ( Base `  ( Gs  K ) ) )
182subgss 16073 . . . . . . . 8  |-  ( K  e.  (SubGrp `  G
)  ->  K  C_  X
)
1915, 18syl 16 . . . . . . 7  |-  ( ph  ->  K  C_  X )
20 ssfi 7739 . . . . . . 7  |-  ( ( X  e.  Fin  /\  K  C_  X )  ->  K  e.  Fin )
214, 19, 20syl2anc 661 . . . . . 6  |-  ( ph  ->  K  e.  Fin )
2217, 21eqeltrrd 2530 . . . . 5  |-  ( ph  ->  ( Base `  ( Gs  K ) )  e. 
Fin )
23 pwfi 7814 . . . . . . 7  |-  ( X  e.  Fin  <->  ~P X  e.  Fin )
244, 23sylib 196 . . . . . 6  |-  ( ph  ->  ~P X  e.  Fin )
25 slwsubg 16501 . . . . . . . . 9  |-  ( x  e.  ( P pSyl  G
)  ->  x  e.  (SubGrp `  G ) )
262subgss 16073 . . . . . . . . 9  |-  ( x  e.  (SubGrp `  G
)  ->  x  C_  X
)
2725, 26syl 16 . . . . . . . 8  |-  ( x  e.  ( P pSyl  G
)  ->  x  C_  X
)
28 selpw 4001 . . . . . . . 8  |-  ( x  e.  ~P X  <->  x  C_  X
)
2927, 28sylibr 212 . . . . . . 7  |-  ( x  e.  ( P pSyl  G
)  ->  x  e.  ~P X )
3029ssriv 3491 . . . . . 6  |-  ( P pSyl 
G )  C_  ~P X
31 ssfi 7739 . . . . . 6  |-  ( ( ~P X  e.  Fin  /\  ( P pSyl  G ) 
C_  ~P X )  -> 
( P pSyl  G )  e.  Fin )
3224, 30, 31sylancl 662 . . . . 5  |-  ( ph  ->  ( P pSyl  G )  e.  Fin )
33 eqid 2441 . . . . 5  |-  { s  e.  ( P pSyl  G
)  |  A. g  e.  ( Base `  ( Gs  K ) ) ( g  .(+)  s )  =  s }  =  { s  e.  ( P pSyl  G )  | 
A. g  e.  (
Base `  ( Gs  K
) ) ( g 
.(+)  s )  =  s }
34 eqid 2441 . . . . 5  |-  { <. z ,  w >.  |  ( { z ,  w }  C_  ( P pSyl  G
)  /\  E. h  e.  ( Base `  ( Gs  K ) ) ( h  .(+)  z )  =  w ) }  =  { <. z ,  w >.  |  ( { z ,  w }  C_  ( P pSyl  G )  /\  E. h  e.  (
Base `  ( Gs  K
) ) ( h 
.(+)  z )  =  w ) }
351, 10, 13, 22, 32, 33, 34sylow2a 16510 . . . 4  |-  ( ph  ->  P  ||  ( (
# `  ( P pSyl  G ) )  -  ( # `
 { s  e.  ( P pSyl  G )  |  A. g  e.  ( Base `  ( Gs  K ) ) ( g  .(+)  s )  =  s } ) ) )
36 eqcom 2450 . . . . . . . . . . . . . 14  |-  ( ran  ( z  e.  s 
|->  ( ( g  .+  z )  .-  g
) )  =  s  <-> 
s  =  ran  (
z  e.  s  |->  ( ( g  .+  z
)  .-  g )
) )
3719adantr 465 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  s  e.  ( P pSyl  G )
)  ->  K  C_  X
)
3837sselda 3487 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  s  e.  ( P pSyl  G ) )  /\  g  e.  K )  ->  g  e.  X )
3938biantrurd 508 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  s  e.  ( P pSyl  G ) )  /\  g  e.  K )  ->  (
s  =  ran  (
z  e.  s  |->  ( ( g  .+  z
)  .-  g )
)  <->  ( g  e.  X  /\  s  =  ran  ( z  e.  s  |->  ( ( g 
.+  z )  .-  g ) ) ) ) )
4036, 39syl5bb 257 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  s  e.  ( P pSyl  G ) )  /\  g  e.  K )  ->  ( ran  ( z  e.  s 
|->  ( ( g  .+  z )  .-  g
) )  =  s  <-> 
( g  e.  X  /\  s  =  ran  ( z  e.  s 
|->  ( ( g  .+  z )  .-  g
) ) ) ) )
41 simpr 461 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  s  e.  ( P pSyl  G ) )  /\  g  e.  K )  ->  g  e.  K )
42 simplr 754 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  s  e.  ( P pSyl  G ) )  /\  g  e.  K )  ->  s  e.  ( P pSyl  G ) )
43 simpr 461 . . . . . . . . . . . . . . . . . 18  |-  ( ( x  =  g  /\  y  =  s )  ->  y  =  s )
44 simpl 457 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( x  =  g  /\  y  =  s )  ->  x  =  g )
4544oveq1d 6293 . . . . . . . . . . . . . . . . . . 19  |-  ( ( x  =  g  /\  y  =  s )  ->  ( x  .+  z
)  =  ( g 
.+  z ) )
4645, 44oveq12d 6296 . . . . . . . . . . . . . . . . . 18  |-  ( ( x  =  g  /\  y  =  s )  ->  ( ( x  .+  z )  .-  x
)  =  ( ( g  .+  z ) 
.-  g ) )
4743, 46mpteq12dv 4512 . . . . . . . . . . . . . . . . 17  |-  ( ( x  =  g  /\  y  =  s )  ->  ( z  e.  y 
|->  ( ( x  .+  z )  .-  x
) )  =  ( z  e.  s  |->  ( ( g  .+  z
)  .-  g )
) )
4847rneqd 5217 . . . . . . . . . . . . . . . 16  |-  ( ( x  =  g  /\  y  =  s )  ->  ran  ( z  e.  y  |->  ( ( x 
.+  z )  .-  x ) )  =  ran  ( z  e.  s  |->  ( ( g 
.+  z )  .-  g ) ) )
49 vex 3096 . . . . . . . . . . . . . . . . . 18  |-  s  e. 
_V
5049mptex 6125 . . . . . . . . . . . . . . . . 17  |-  ( z  e.  s  |->  ( ( g  .+  z ) 
.-  g ) )  e.  _V
5150rnex 6716 . . . . . . . . . . . . . . . 16  |-  ran  (
z  e.  s  |->  ( ( g  .+  z
)  .-  g )
)  e.  _V
5248, 9, 51ovmpt2a 6415 . . . . . . . . . . . . . . 15  |-  ( ( g  e.  K  /\  s  e.  ( P pSyl  G ) )  ->  (
g  .(+)  s )  =  ran  ( z  e.  s  |->  ( ( g 
.+  z )  .-  g ) ) )
5341, 42, 52syl2anc 661 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  s  e.  ( P pSyl  G ) )  /\  g  e.  K )  ->  (
g  .(+)  s )  =  ran  ( z  e.  s  |->  ( ( g 
.+  z )  .-  g ) ) )
5453eqeq1d 2443 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  s  e.  ( P pSyl  G ) )  /\  g  e.  K )  ->  (
( g  .(+)  s )  =  s  <->  ran  ( z  e.  s  |->  ( ( g  .+  z ) 
.-  g ) )  =  s ) )
55 slwsubg 16501 . . . . . . . . . . . . . . 15  |-  ( s  e.  ( P pSyl  G
)  ->  s  e.  (SubGrp `  G ) )
5655ad2antlr 726 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  s  e.  ( P pSyl  G ) )  /\  g  e.  K )  ->  s  e.  (SubGrp `  G )
)
57 eqid 2441 . . . . . . . . . . . . . . 15  |-  ( z  e.  s  |->  ( ( g  .+  z ) 
.-  g ) )  =  ( z  e.  s  |->  ( ( g 
.+  z )  .-  g ) )
58 sylow3lem6.n . . . . . . . . . . . . . . 15  |-  N  =  { x  e.  X  |  A. y  e.  X  ( ( x  .+  y )  e.  s  <-> 
( y  .+  x
)  e.  s ) }
592, 6, 7, 57, 58conjnmzb 16172 . . . . . . . . . . . . . 14  |-  ( s  e.  (SubGrp `  G
)  ->  ( g  e.  N  <->  ( g  e.  X  /\  s  =  ran  ( z  e.  s  |->  ( ( g 
.+  z )  .-  g ) ) ) ) )
6056, 59syl 16 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  s  e.  ( P pSyl  G ) )  /\  g  e.  K )  ->  (
g  e.  N  <->  ( g  e.  X  /\  s  =  ran  ( z  e.  s  |->  ( ( g 
.+  z )  .-  g ) ) ) ) )
6140, 54, 603bitr4d 285 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  s  e.  ( P pSyl  G ) )  /\  g  e.  K )  ->  (
( g  .(+)  s )  =  s  <->  g  e.  N ) )
6261ralbidva 2877 . . . . . . . . . . 11  |-  ( (
ph  /\  s  e.  ( P pSyl  G )
)  ->  ( A. g  e.  K  (
g  .(+)  s )  =  s  <->  A. g  e.  K  g  e.  N )
)
63 dfss3 3477 . . . . . . . . . . 11  |-  ( K 
C_  N  <->  A. g  e.  K  g  e.  N )
6462, 63syl6bbr 263 . . . . . . . . . 10  |-  ( (
ph  /\  s  e.  ( P pSyl  G )
)  ->  ( A. g  e.  K  (
g  .(+)  s )  =  s  <->  K  C_  N ) )
6517adantr 465 . . . . . . . . . . 11  |-  ( (
ph  /\  s  e.  ( P pSyl  G )
)  ->  K  =  ( Base `  ( Gs  K
) ) )
6665raleqdv 3044 . . . . . . . . . 10  |-  ( (
ph  /\  s  e.  ( P pSyl  G )
)  ->  ( A. g  e.  K  (
g  .(+)  s )  =  s  <->  A. g  e.  (
Base `  ( Gs  K
) ) ( g 
.(+)  s )  =  s ) )
67 eqid 2441 . . . . . . . . . . . . 13  |-  ( Base `  ( Gs  N ) )  =  ( Base `  ( Gs  N ) )
683ad2antrr 725 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  s  e.  ( P pSyl  G ) )  /\  K  C_  N )  ->  G  e.  Grp )
6958, 2, 6nmzsubg 16113 . . . . . . . . . . . . . . . 16  |-  ( G  e.  Grp  ->  N  e.  (SubGrp `  G )
)
7068, 69syl 16 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  s  e.  ( P pSyl  G ) )  /\  K  C_  N )  ->  N  e.  (SubGrp `  G )
)
71 eqid 2441 . . . . . . . . . . . . . . . 16  |-  ( Gs  N )  =  ( Gs  N )
7271subgbas 16076 . . . . . . . . . . . . . . 15  |-  ( N  e.  (SubGrp `  G
)  ->  N  =  ( Base `  ( Gs  N
) ) )
7370, 72syl 16 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  s  e.  ( P pSyl  G ) )  /\  K  C_  N )  ->  N  =  ( Base `  ( Gs  N ) ) )
744ad2antrr 725 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  s  e.  ( P pSyl  G ) )  /\  K  C_  N )  ->  X  e.  Fin )
752subgss 16073 . . . . . . . . . . . . . . . 16  |-  ( N  e.  (SubGrp `  G
)  ->  N  C_  X
)
7670, 75syl 16 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  s  e.  ( P pSyl  G ) )  /\  K  C_  N )  ->  N  C_  X )
77 ssfi 7739 . . . . . . . . . . . . . . 15  |-  ( ( X  e.  Fin  /\  N  C_  X )  ->  N  e.  Fin )
7874, 76, 77syl2anc 661 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  s  e.  ( P pSyl  G ) )  /\  K  C_  N )  ->  N  e.  Fin )
7973, 78eqeltrrd 2530 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  s  e.  ( P pSyl  G ) )  /\  K  C_  N )  ->  ( Base `  ( Gs  N ) )  e.  Fin )
808ad2antrr 725 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  s  e.  ( P pSyl  G ) )  /\  K  C_  N )  ->  K  e.  ( P pSyl  G ) )
81 simpr 461 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  s  e.  ( P pSyl  G ) )  /\  K  C_  N )  ->  K  C_  N )
8271subgslw 16507 . . . . . . . . . . . . . 14  |-  ( ( N  e.  (SubGrp `  G )  /\  K  e.  ( P pSyl  G )  /\  K  C_  N
)  ->  K  e.  ( P pSyl  ( Gs  N
) ) )
8370, 80, 81, 82syl3anc 1227 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  s  e.  ( P pSyl  G ) )  /\  K  C_  N )  ->  K  e.  ( P pSyl  ( Gs  N ) ) )
84 simplr 754 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  s  e.  ( P pSyl  G ) )  /\  K  C_  N )  ->  s  e.  ( P pSyl  G ) )
8555ad2antlr 726 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  s  e.  ( P pSyl  G ) )  /\  K  C_  N )  ->  s  e.  (SubGrp `  G )
)
8658, 2, 6ssnmz 16114 . . . . . . . . . . . . . . 15  |-  ( s  e.  (SubGrp `  G
)  ->  s  C_  N )
8785, 86syl 16 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  s  e.  ( P pSyl  G ) )  /\  K  C_  N )  ->  s  C_  N )
8871subgslw 16507 . . . . . . . . . . . . . 14  |-  ( ( N  e.  (SubGrp `  G )  /\  s  e.  ( P pSyl  G )  /\  s  C_  N
)  ->  s  e.  ( P pSyl  ( Gs  N
) ) )
8970, 84, 87, 88syl3anc 1227 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  s  e.  ( P pSyl  G ) )  /\  K  C_  N )  ->  s  e.  ( P pSyl  ( Gs  N ) ) )
90 fvex 5863 . . . . . . . . . . . . . . . 16  |-  ( Base `  G )  e.  _V
912, 90eqeltri 2525 . . . . . . . . . . . . . . 15  |-  X  e. 
_V
9258, 91rabex2 4587 . . . . . . . . . . . . . 14  |-  N  e. 
_V
9371, 6ressplusg 14613 . . . . . . . . . . . . . 14  |-  ( N  e.  _V  ->  .+  =  ( +g  `  ( Gs  N ) ) )
9492, 93ax-mp 5 . . . . . . . . . . . . 13  |-  .+  =  ( +g  `  ( Gs  N ) )
95 eqid 2441 . . . . . . . . . . . . 13  |-  ( -g `  ( Gs  N ) )  =  ( -g `  ( Gs  N ) )
9667, 79, 83, 89, 94, 95sylow2 16517 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  s  e.  ( P pSyl  G ) )  /\  K  C_  N )  ->  E. g  e.  ( Base `  ( Gs  N ) ) K  =  ran  ( z  e.  s  |->  ( ( g  .+  z ) ( -g `  ( Gs  N ) ) g ) ) )
9758, 2, 6, 71nmznsg 16116 . . . . . . . . . . . . . . . 16  |-  ( s  e.  (SubGrp `  G
)  ->  s  e.  (NrmSGrp `  ( Gs  N ) ) )
9885, 97syl 16 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  s  e.  ( P pSyl  G ) )  /\  K  C_  N )  ->  s  e.  (NrmSGrp `  ( Gs  N
) ) )
99 eqid 2441 . . . . . . . . . . . . . . . 16  |-  ( z  e.  s  |->  ( ( g  .+  z ) ( -g `  ( Gs  N ) ) g ) )  =  ( z  e.  s  |->  ( ( g  .+  z
) ( -g `  ( Gs  N ) ) g ) )
10067, 94, 95, 99conjnsg 16173 . . . . . . . . . . . . . . 15  |-  ( ( s  e.  (NrmSGrp `  ( Gs  N ) )  /\  g  e.  ( Base `  ( Gs  N ) ) )  ->  s  =  ran  ( z  e.  s 
|->  ( ( g  .+  z ) ( -g `  ( Gs  N ) ) g ) ) )
10198, 100sylan 471 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  s  e.  ( P pSyl  G ) )  /\  K  C_  N )  /\  g  e.  ( Base `  ( Gs  N ) ) )  ->  s  =  ran  ( z  e.  s 
|->  ( ( g  .+  z ) ( -g `  ( Gs  N ) ) g ) ) )
102 eqeq2 2456 . . . . . . . . . . . . . 14  |-  ( K  =  ran  ( z  e.  s  |->  ( ( g  .+  z ) ( -g `  ( Gs  N ) ) g ) )  ->  (
s  =  K  <->  s  =  ran  ( z  e.  s 
|->  ( ( g  .+  z ) ( -g `  ( Gs  N ) ) g ) ) ) )
103101, 102syl5ibrcom 222 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  s  e.  ( P pSyl  G ) )  /\  K  C_  N )  /\  g  e.  ( Base `  ( Gs  N ) ) )  ->  ( K  =  ran  ( z  e.  s  |->  ( ( g 
.+  z ) (
-g `  ( Gs  N
) ) g ) )  ->  s  =  K ) )
104103rexlimdva 2933 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  s  e.  ( P pSyl  G ) )  /\  K  C_  N )  ->  ( E. g  e.  ( Base `  ( Gs  N ) ) K  =  ran  ( z  e.  s 
|->  ( ( g  .+  z ) ( -g `  ( Gs  N ) ) g ) )  ->  s  =  K ) )
10596, 104mpd 15 . . . . . . . . . . 11  |-  ( ( ( ph  /\  s  e.  ( P pSyl  G ) )  /\  K  C_  N )  ->  s  =  K )
106 simpr 461 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  s  e.  ( P pSyl  G ) )  /\  s  =  K )  ->  s  =  K )
10715ad2antrr 725 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  s  e.  ( P pSyl  G ) )  /\  s  =  K )  ->  K  e.  (SubGrp `  G )
)
108106, 107eqeltrd 2529 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  s  e.  ( P pSyl  G ) )  /\  s  =  K )  ->  s  e.  (SubGrp `  G )
)
109108, 86syl 16 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  s  e.  ( P pSyl  G ) )  /\  s  =  K )  ->  s  C_  N )
110106, 109eqsstr3d 3522 . . . . . . . . . . 11  |-  ( ( ( ph  /\  s  e.  ( P pSyl  G ) )  /\  s  =  K )  ->  K  C_  N )
111105, 110impbida 830 . . . . . . . . . 10  |-  ( (
ph  /\  s  e.  ( P pSyl  G )
)  ->  ( K  C_  N  <->  s  =  K ) )
11264, 66, 1113bitr3d 283 . . . . . . . . 9  |-  ( (
ph  /\  s  e.  ( P pSyl  G )
)  ->  ( A. g  e.  ( Base `  ( Gs  K ) ) ( g  .(+)  s )  =  s  <->  s  =  K ) )
113112rabbidva 3084 . . . . . . . 8  |-  ( ph  ->  { s  e.  ( P pSyl  G )  | 
A. g  e.  (
Base `  ( Gs  K
) ) ( g 
.(+)  s )  =  s }  =  {
s  e.  ( P pSyl 
G )  |  s  =  K } )
114 rabsn 4079 . . . . . . . . 9  |-  ( K  e.  ( P pSyl  G
)  ->  { s  e.  ( P pSyl  G )  |  s  =  K }  =  { K } )
1158, 114syl 16 . . . . . . . 8  |-  ( ph  ->  { s  e.  ( P pSyl  G )  |  s  =  K }  =  { K } )
116113, 115eqtrd 2482 . . . . . . 7  |-  ( ph  ->  { s  e.  ( P pSyl  G )  | 
A. g  e.  (
Base `  ( Gs  K
) ) ( g 
.(+)  s )  =  s }  =  { K } )
117116fveq2d 5857 . . . . . 6  |-  ( ph  ->  ( # `  {
s  e.  ( P pSyl 
G )  |  A. g  e.  ( Base `  ( Gs  K ) ) ( g  .(+)  s )  =  s } )  =  ( # `  { K } ) )
118 hashsng 12414 . . . . . . 7  |-  ( K  e.  ( P pSyl  G
)  ->  ( # `  { K } )  =  1 )
1198, 118syl 16 . . . . . 6  |-  ( ph  ->  ( # `  { K } )  =  1 )
120117, 119eqtrd 2482 . . . . 5  |-  ( ph  ->  ( # `  {
s  e.  ( P pSyl 
G )  |  A. g  e.  ( Base `  ( Gs  K ) ) ( g  .(+)  s )  =  s } )  =  1 )
121120oveq2d 6294 . . . 4  |-  ( ph  ->  ( ( # `  ( P pSyl  G ) )  -  ( # `  { s  e.  ( P pSyl  G
)  |  A. g  e.  ( Base `  ( Gs  K ) ) ( g  .(+)  s )  =  s } ) )  =  ( (
# `  ( P pSyl  G ) )  -  1 ) )
12235, 121breqtrd 4458 . . 3  |-  ( ph  ->  P  ||  ( (
# `  ( P pSyl  G ) )  -  1 ) )
123 prmnn 14094 . . . . 5  |-  ( P  e.  Prime  ->  P  e.  NN )
1245, 123syl 16 . . . 4  |-  ( ph  ->  P  e.  NN )
125 hashcl 12404 . . . . . 6  |-  ( ( P pSyl  G )  e. 
Fin  ->  ( # `  ( P pSyl  G ) )  e. 
NN0 )
12632, 125syl 16 . . . . 5  |-  ( ph  ->  ( # `  ( P pSyl  G ) )  e. 
NN0 )
127126nn0zd 10969 . . . 4  |-  ( ph  ->  ( # `  ( P pSyl  G ) )  e.  ZZ )
128 1zzd 10898 . . . 4  |-  ( ph  ->  1  e.  ZZ )
129 moddvds 13867 . . . 4  |-  ( ( P  e.  NN  /\  ( # `  ( P pSyl 
G ) )  e.  ZZ  /\  1  e.  ZZ )  ->  (
( ( # `  ( P pSyl  G ) )  mod 
P )  =  ( 1  mod  P )  <-> 
P  ||  ( ( # `
 ( P pSyl  G
) )  -  1 ) ) )
130124, 127, 128, 129syl3anc 1227 . . 3  |-  ( ph  ->  ( ( ( # `  ( P pSyl  G ) )  mod  P )  =  ( 1  mod 
P )  <->  P  ||  (
( # `  ( P pSyl 
G ) )  - 
1 ) ) )
131122, 130mpbird 232 . 2  |-  ( ph  ->  ( ( # `  ( P pSyl  G ) )  mod 
P )  =  ( 1  mod  P ) )
132 prmuz2 14109 . . 3  |-  ( P  e.  Prime  ->  P  e.  ( ZZ>= `  2 )
)
133 eluz2b2 11160 . . . 4  |-  ( P  e.  ( ZZ>= `  2
)  <->  ( P  e.  NN  /\  1  < 
P ) )
134 nnre 10546 . . . . 5  |-  ( P  e.  NN  ->  P  e.  RR )
135 1mod 12004 . . . . 5  |-  ( ( P  e.  RR  /\  1  <  P )  -> 
( 1  mod  P
)  =  1 )
136134, 135sylan 471 . . . 4  |-  ( ( P  e.  NN  /\  1  <  P )  -> 
( 1  mod  P
)  =  1 )
137133, 136sylbi 195 . . 3  |-  ( P  e.  ( ZZ>= `  2
)  ->  ( 1  mod  P )  =  1 )
1385, 132, 1373syl 20 . 2  |-  ( ph  ->  ( 1  mod  P
)  =  1 )
139131, 138eqtrd 2482 1  |-  ( ph  ->  ( ( # `  ( P pSyl  G ) )  mod 
P )  =  1 )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1381    e. wcel 1802   A.wral 2791   E.wrex 2792   {crab 2795   _Vcvv 3093    C_ wss 3459   ~Pcpw 3994   {csn 4011   {cpr 4013   class class class wbr 4434   {copab 4491    |-> cmpt 4492   ran crn 4987   ` cfv 5575  (class class class)co 6278    |-> cmpt2 6280   Fincfn 7515   RRcr 9491   1c1 9493    < clt 9628    - cmin 9807   NNcn 10539   2c2 10588   NN0cn0 10798   ZZcz 10867   ZZ>=cuz 11087    mod cmo 11972   #chash 12381    || cdvds 13860   Primecprime 14091   Basecbs 14506   ↾s cress 14507   +g cplusg 14571   Grpcgrp 15924   -gcsg 15926  SubGrpcsubg 16066  NrmSGrpcnsg 16067   pGrp cpgp 16422   pSyl cslw 16423
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1603  ax-4 1616  ax-5 1689  ax-6 1732  ax-7 1774  ax-8 1804  ax-9 1806  ax-10 1821  ax-11 1826  ax-12 1838  ax-13 1983  ax-ext 2419  ax-rep 4545  ax-sep 4555  ax-nul 4563  ax-pow 4612  ax-pr 4673  ax-un 6574  ax-inf2 8058  ax-cnex 9548  ax-resscn 9549  ax-1cn 9550  ax-icn 9551  ax-addcl 9552  ax-addrcl 9553  ax-mulcl 9554  ax-mulrcl 9555  ax-mulcom 9556  ax-addass 9557  ax-mulass 9558  ax-distr 9559  ax-i2m1 9560  ax-1ne0 9561  ax-1rid 9562  ax-rnegex 9563  ax-rrecex 9564  ax-cnre 9565  ax-pre-lttri 9566  ax-pre-lttrn 9567  ax-pre-ltadd 9568  ax-pre-mulgt0 9569  ax-pre-sup 9570
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 973  df-3an 974  df-tru 1384  df-fal 1387  df-ex 1598  df-nf 1602  df-sb 1725  df-eu 2270  df-mo 2271  df-clab 2427  df-cleq 2433  df-clel 2436  df-nfc 2591  df-ne 2638  df-nel 2639  df-ral 2796  df-rex 2797  df-reu 2798  df-rmo 2799  df-rab 2800  df-v 3095  df-sbc 3312  df-csb 3419  df-dif 3462  df-un 3464  df-in 3466  df-ss 3473  df-pss 3475  df-nul 3769  df-if 3924  df-pw 3996  df-sn 4012  df-pr 4014  df-tp 4016  df-op 4018  df-uni 4232  df-int 4269  df-iun 4314  df-disj 4405  df-br 4435  df-opab 4493  df-mpt 4494  df-tr 4528  df-eprel 4778  df-id 4782  df-po 4787  df-so 4788  df-fr 4825  df-se 4826  df-we 4827  df-ord 4868  df-on 4869  df-lim 4870  df-suc 4871  df-xp 4992  df-rel 4993  df-cnv 4994  df-co 4995  df-dm 4996  df-rn 4997  df-res 4998  df-ima 4999  df-iota 5538  df-fun 5577  df-fn 5578  df-f 5579  df-f1 5580  df-fo 5581  df-f1o 5582  df-fv 5583  df-isom 5584  df-riota 6239  df-ov 6281  df-oprab 6282  df-mpt2 6283  df-om 6683  df-1st 6782  df-2nd 6783  df-recs 7041  df-rdg 7075  df-1o 7129  df-2o 7130  df-oadd 7133  df-omul 7134  df-er 7310  df-ec 7312  df-qs 7316  df-map 7421  df-en 7516  df-dom 7517  df-sdom 7518  df-fin 7519  df-sup 7900  df-oi 7935  df-card 8320  df-acn 8323  df-cda 8548  df-pnf 9630  df-mnf 9631  df-xr 9632  df-ltxr 9633  df-le 9634  df-sub 9809  df-neg 9810  df-div 10210  df-nn 10540  df-2 10597  df-3 10598  df-n0 10799  df-z 10868  df-uz 11088  df-q 11189  df-rp 11227  df-fz 11679  df-fzo 11801  df-fl 11905  df-mod 11973  df-seq 12084  df-exp 12143  df-fac 12330  df-bc 12357  df-hash 12382  df-cj 12908  df-re 12909  df-im 12910  df-sqrt 13044  df-abs 13045  df-clim 13287  df-sum 13485  df-dvds 13861  df-gcd 14019  df-prm 14092  df-pc 14235  df-ndx 14509  df-slot 14510  df-base 14511  df-sets 14512  df-ress 14513  df-plusg 14584  df-0g 14713  df-mgm 15743  df-sgrp 15782  df-mnd 15792  df-submnd 15838  df-grp 15928  df-minusg 15929  df-sbg 15930  df-mulg 15931  df-subg 16069  df-nsg 16070  df-eqg 16071  df-ghm 16136  df-ga 16199  df-od 16424  df-pgp 16426  df-slw 16427
This theorem is referenced by:  sylow3  16524
  Copyright terms: Public domain W3C validator