MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sylow3lem5 Structured version   Unicode version

Theorem sylow3lem5 16109
Description: Lemma for sylow3 16111, second part. Reduce the group action of sylow3lem1 16105 to a given Sylow subgroup. (Contributed by Mario Carneiro, 19-Jan-2015.)
Hypotheses
Ref Expression
sylow3.x  |-  X  =  ( Base `  G
)
sylow3.g  |-  ( ph  ->  G  e.  Grp )
sylow3.xf  |-  ( ph  ->  X  e.  Fin )
sylow3.p  |-  ( ph  ->  P  e.  Prime )
sylow3lem5.a  |-  .+  =  ( +g  `  G )
sylow3lem5.d  |-  .-  =  ( -g `  G )
sylow3lem5.k  |-  ( ph  ->  K  e.  ( P pSyl 
G ) )
sylow3lem5.m  |-  .(+)  =  ( x  e.  K , 
y  e.  ( P pSyl 
G )  |->  ran  (
z  e.  y  |->  ( ( x  .+  z
)  .-  x )
) )
Assertion
Ref Expression
sylow3lem5  |-  ( ph  -> 
.(+)  e.  ( ( Gs  K )  GrpAct  ( P pSyl 
G ) ) )
Distinct variable groups:    x, y,
z,  .-    x,  .(+) , y, z   
x, K, y, z   
x, X, y, z   
x, G, y, z    ph, x, y, z    x,  .+ , y, z    x, P, y, z

Proof of Theorem sylow3lem5
Dummy variables  a 
b  c are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sylow3lem5.k . . . . . 6  |-  ( ph  ->  K  e.  ( P pSyl 
G ) )
2 slwsubg 16088 . . . . . 6  |-  ( K  e.  ( P pSyl  G
)  ->  K  e.  (SubGrp `  G ) )
31, 2syl 16 . . . . 5  |-  ( ph  ->  K  e.  (SubGrp `  G ) )
4 sylow3.x . . . . . 6  |-  X  =  ( Base `  G
)
54subgss 15661 . . . . 5  |-  ( K  e.  (SubGrp `  G
)  ->  K  C_  X
)
63, 5syl 16 . . . 4  |-  ( ph  ->  K  C_  X )
7 ssid 3363 . . . 4  |-  ( P pSyl 
G )  C_  ( P pSyl  G )
8 resmpt2 6177 . . . 4  |-  ( ( K  C_  X  /\  ( P pSyl  G )  C_  ( P pSyl  G ) )  ->  ( (
x  e.  X , 
y  e.  ( P pSyl 
G )  |->  ran  (
z  e.  y  |->  ( ( x  .+  z
)  .-  x )
) )  |`  ( K  X.  ( P pSyl  G
) ) )  =  ( x  e.  K ,  y  e.  ( P pSyl  G )  |->  ran  (
z  e.  y  |->  ( ( x  .+  z
)  .-  x )
) ) )
96, 7, 8sylancl 655 . . 3  |-  ( ph  ->  ( ( x  e.  X ,  y  e.  ( P pSyl  G ) 
|->  ran  ( z  e.  y  |->  ( ( x 
.+  z )  .-  x ) ) )  |`  ( K  X.  ( P pSyl  G ) ) )  =  ( x  e.  K ,  y  e.  ( P pSyl  G ) 
|->  ran  ( z  e.  y  |->  ( ( x 
.+  z )  .-  x ) ) ) )
10 sylow3lem5.m . . 3  |-  .(+)  =  ( x  e.  K , 
y  e.  ( P pSyl 
G )  |->  ran  (
z  e.  y  |->  ( ( x  .+  z
)  .-  x )
) )
119, 10syl6eqr 2483 . 2  |-  ( ph  ->  ( ( x  e.  X ,  y  e.  ( P pSyl  G ) 
|->  ran  ( z  e.  y  |->  ( ( x 
.+  z )  .-  x ) ) )  |`  ( K  X.  ( P pSyl  G ) ) )  =  .(+)  )
12 sylow3.g . . . 4  |-  ( ph  ->  G  e.  Grp )
13 sylow3.xf . . . 4  |-  ( ph  ->  X  e.  Fin )
14 sylow3.p . . . 4  |-  ( ph  ->  P  e.  Prime )
15 sylow3lem5.a . . . 4  |-  .+  =  ( +g  `  G )
16 sylow3lem5.d . . . 4  |-  .-  =  ( -g `  G )
17 oveq2 6088 . . . . . . . . 9  |-  ( z  =  c  ->  (
x  .+  z )  =  ( x  .+  c ) )
1817oveq1d 6095 . . . . . . . 8  |-  ( z  =  c  ->  (
( x  .+  z
)  .-  x )  =  ( ( x 
.+  c )  .-  x ) )
1918cbvmptv 4371 . . . . . . 7  |-  ( z  e.  y  |->  ( ( x  .+  z ) 
.-  x ) )  =  ( c  e.  y  |->  ( ( x 
.+  c )  .-  x ) )
20 oveq1 6087 . . . . . . . . 9  |-  ( x  =  a  ->  (
x  .+  c )  =  ( a  .+  c ) )
21 id 22 . . . . . . . . 9  |-  ( x  =  a  ->  x  =  a )
2220, 21oveq12d 6098 . . . . . . . 8  |-  ( x  =  a  ->  (
( x  .+  c
)  .-  x )  =  ( ( a 
.+  c )  .-  a ) )
2322mpteq2dv 4367 . . . . . . 7  |-  ( x  =  a  ->  (
c  e.  y  |->  ( ( x  .+  c
)  .-  x )
)  =  ( c  e.  y  |->  ( ( a  .+  c ) 
.-  a ) ) )
2419, 23syl5eq 2477 . . . . . 6  |-  ( x  =  a  ->  (
z  e.  y  |->  ( ( x  .+  z
)  .-  x )
)  =  ( c  e.  y  |->  ( ( a  .+  c ) 
.-  a ) ) )
2524rneqd 5054 . . . . 5  |-  ( x  =  a  ->  ran  ( z  e.  y 
|->  ( ( x  .+  z )  .-  x
) )  =  ran  ( c  e.  y 
|->  ( ( a  .+  c )  .-  a
) ) )
26 mpteq1 4360 . . . . . 6  |-  ( y  =  b  ->  (
c  e.  y  |->  ( ( a  .+  c
)  .-  a )
)  =  ( c  e.  b  |->  ( ( a  .+  c ) 
.-  a ) ) )
2726rneqd 5054 . . . . 5  |-  ( y  =  b  ->  ran  ( c  e.  y 
|->  ( ( a  .+  c )  .-  a
) )  =  ran  ( c  e.  b 
|->  ( ( a  .+  c )  .-  a
) ) )
2825, 27cbvmpt2v 6155 . . . 4  |-  ( x  e.  X ,  y  e.  ( P pSyl  G
)  |->  ran  ( z  e.  y  |->  ( ( x  .+  z ) 
.-  x ) ) )  =  ( a  e.  X ,  b  e.  ( P pSyl  G
)  |->  ran  ( c  e.  b  |->  ( ( a  .+  c ) 
.-  a ) ) )
294, 12, 13, 14, 15, 16, 28sylow3lem1 16105 . . 3  |-  ( ph  ->  ( x  e.  X ,  y  e.  ( P pSyl  G )  |->  ran  (
z  e.  y  |->  ( ( x  .+  z
)  .-  x )
) )  e.  ( G  GrpAct  ( P pSyl  G
) ) )
30 eqid 2433 . . . 4  |-  ( Gs  K )  =  ( Gs  K )
3130gasubg 15799 . . 3  |-  ( ( ( x  e.  X ,  y  e.  ( P pSyl  G )  |->  ran  (
z  e.  y  |->  ( ( x  .+  z
)  .-  x )
) )  e.  ( G  GrpAct  ( P pSyl  G
) )  /\  K  e.  (SubGrp `  G )
)  ->  ( (
x  e.  X , 
y  e.  ( P pSyl 
G )  |->  ran  (
z  e.  y  |->  ( ( x  .+  z
)  .-  x )
) )  |`  ( K  X.  ( P pSyl  G
) ) )  e.  ( ( Gs  K ) 
GrpAct  ( P pSyl  G ) ) )
3229, 3, 31syl2anc 654 . 2  |-  ( ph  ->  ( ( x  e.  X ,  y  e.  ( P pSyl  G ) 
|->  ran  ( z  e.  y  |->  ( ( x 
.+  z )  .-  x ) ) )  |`  ( K  X.  ( P pSyl  G ) ) )  e.  ( ( Gs  K )  GrpAct  ( P pSyl  G
) ) )
3311, 32eqeltrrd 2508 1  |-  ( ph  -> 
.(+)  e.  ( ( Gs  K )  GrpAct  ( P pSyl 
G ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1362    e. wcel 1755    C_ wss 3316    e. cmpt 4338    X. cxp 4825   ran crn 4828    |` cres 4829   ` cfv 5406  (class class class)co 6080    e. cmpt2 6082   Fincfn 7298   Primecprime 13745   Basecbs 14156   ↾s cress 14157   +g cplusg 14220   Grpcgrp 15392   -gcsg 15395  SubGrpcsubg 15654    GrpAct cga 15786   pSyl cslw 16010
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1594  ax-4 1605  ax-5 1669  ax-6 1707  ax-7 1727  ax-8 1757  ax-9 1759  ax-10 1774  ax-11 1779  ax-12 1791  ax-13 1942  ax-ext 2414  ax-rep 4391  ax-sep 4401  ax-nul 4409  ax-pow 4458  ax-pr 4519  ax-un 6361  ax-inf2 7835  ax-cnex 9325  ax-resscn 9326  ax-1cn 9327  ax-icn 9328  ax-addcl 9329  ax-addrcl 9330  ax-mulcl 9331  ax-mulrcl 9332  ax-mulcom 9333  ax-addass 9334  ax-mulass 9335  ax-distr 9336  ax-i2m1 9337  ax-1ne0 9338  ax-1rid 9339  ax-rnegex 9340  ax-rrecex 9341  ax-cnre 9342  ax-pre-lttri 9343  ax-pre-lttrn 9344  ax-pre-ltadd 9345  ax-pre-mulgt0 9346  ax-pre-sup 9347
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 959  df-3an 960  df-tru 1365  df-fal 1368  df-ex 1590  df-nf 1593  df-sb 1700  df-eu 2258  df-mo 2259  df-clab 2420  df-cleq 2426  df-clel 2429  df-nfc 2558  df-ne 2598  df-nel 2599  df-ral 2710  df-rex 2711  df-reu 2712  df-rmo 2713  df-rab 2714  df-v 2964  df-sbc 3176  df-csb 3277  df-dif 3319  df-un 3321  df-in 3323  df-ss 3330  df-pss 3332  df-nul 3626  df-if 3780  df-pw 3850  df-sn 3866  df-pr 3868  df-tp 3870  df-op 3872  df-uni 4080  df-int 4117  df-iun 4161  df-disj 4251  df-br 4281  df-opab 4339  df-mpt 4340  df-tr 4374  df-eprel 4619  df-id 4623  df-po 4628  df-so 4629  df-fr 4666  df-se 4667  df-we 4668  df-ord 4709  df-on 4710  df-lim 4711  df-suc 4712  df-xp 4833  df-rel 4834  df-cnv 4835  df-co 4836  df-dm 4837  df-rn 4838  df-res 4839  df-ima 4840  df-iota 5369  df-fun 5408  df-fn 5409  df-f 5410  df-f1 5411  df-fo 5412  df-f1o 5413  df-fv 5414  df-isom 5415  df-riota 6039  df-ov 6083  df-oprab 6084  df-mpt2 6085  df-om 6466  df-1st 6566  df-2nd 6567  df-recs 6818  df-rdg 6852  df-1o 6908  df-2o 6909  df-oadd 6912  df-omul 6913  df-er 7089  df-ec 7091  df-qs 7095  df-map 7204  df-en 7299  df-dom 7300  df-sdom 7301  df-fin 7302  df-sup 7679  df-oi 7712  df-card 8097  df-acn 8100  df-cda 8325  df-pnf 9407  df-mnf 9408  df-xr 9409  df-ltxr 9410  df-le 9411  df-sub 9584  df-neg 9585  df-div 9981  df-nn 10310  df-2 10367  df-3 10368  df-n0 10567  df-z 10634  df-uz 10849  df-q 10941  df-rp 10979  df-fz 11424  df-fzo 11532  df-fl 11625  df-mod 11692  df-seq 11790  df-exp 11849  df-fac 12035  df-bc 12062  df-hash 12087  df-cj 12571  df-re 12572  df-im 12573  df-sqr 12707  df-abs 12708  df-clim 12949  df-sum 13147  df-dvds 13518  df-gcd 13673  df-prm 13746  df-pc 13886  df-ndx 14159  df-slot 14160  df-base 14161  df-sets 14162  df-ress 14163  df-plusg 14233  df-0g 14362  df-mnd 15397  df-submnd 15447  df-grp 15524  df-minusg 15525  df-sbg 15526  df-mulg 15527  df-subg 15657  df-eqg 15659  df-ghm 15724  df-ga 15787  df-od 16011  df-pgp 16013  df-slw 16014
This theorem is referenced by:  sylow3lem6  16110
  Copyright terms: Public domain W3C validator