MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sylow3lem5 Structured version   Unicode version

Theorem sylow3lem5 16524
Description: Lemma for sylow3 16526, second part. Reduce the group action of sylow3lem1 16520 to a given Sylow subgroup. (Contributed by Mario Carneiro, 19-Jan-2015.)
Hypotheses
Ref Expression
sylow3.x  |-  X  =  ( Base `  G
)
sylow3.g  |-  ( ph  ->  G  e.  Grp )
sylow3.xf  |-  ( ph  ->  X  e.  Fin )
sylow3.p  |-  ( ph  ->  P  e.  Prime )
sylow3lem5.a  |-  .+  =  ( +g  `  G )
sylow3lem5.d  |-  .-  =  ( -g `  G )
sylow3lem5.k  |-  ( ph  ->  K  e.  ( P pSyl 
G ) )
sylow3lem5.m  |-  .(+)  =  ( x  e.  K , 
y  e.  ( P pSyl 
G )  |->  ran  (
z  e.  y  |->  ( ( x  .+  z
)  .-  x )
) )
Assertion
Ref Expression
sylow3lem5  |-  ( ph  -> 
.(+)  e.  ( ( Gs  K )  GrpAct  ( P pSyl 
G ) ) )
Distinct variable groups:    x, y,
z,  .-    x,  .(+) , y, z   
x, K, y, z   
x, X, y, z   
x, G, y, z    ph, x, y, z    x,  .+ , y, z    x, P, y, z

Proof of Theorem sylow3lem5
Dummy variables  a 
b  c are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sylow3lem5.k . . . . . 6  |-  ( ph  ->  K  e.  ( P pSyl 
G ) )
2 slwsubg 16503 . . . . . 6  |-  ( K  e.  ( P pSyl  G
)  ->  K  e.  (SubGrp `  G ) )
31, 2syl 16 . . . . 5  |-  ( ph  ->  K  e.  (SubGrp `  G ) )
4 sylow3.x . . . . . 6  |-  X  =  ( Base `  G
)
54subgss 16074 . . . . 5  |-  ( K  e.  (SubGrp `  G
)  ->  K  C_  X
)
63, 5syl 16 . . . 4  |-  ( ph  ->  K  C_  X )
7 ssid 3528 . . . 4  |-  ( P pSyl 
G )  C_  ( P pSyl  G )
8 resmpt2 6395 . . . 4  |-  ( ( K  C_  X  /\  ( P pSyl  G )  C_  ( P pSyl  G ) )  ->  ( (
x  e.  X , 
y  e.  ( P pSyl 
G )  |->  ran  (
z  e.  y  |->  ( ( x  .+  z
)  .-  x )
) )  |`  ( K  X.  ( P pSyl  G
) ) )  =  ( x  e.  K ,  y  e.  ( P pSyl  G )  |->  ran  (
z  e.  y  |->  ( ( x  .+  z
)  .-  x )
) ) )
96, 7, 8sylancl 662 . . 3  |-  ( ph  ->  ( ( x  e.  X ,  y  e.  ( P pSyl  G ) 
|->  ran  ( z  e.  y  |->  ( ( x 
.+  z )  .-  x ) ) )  |`  ( K  X.  ( P pSyl  G ) ) )  =  ( x  e.  K ,  y  e.  ( P pSyl  G ) 
|->  ran  ( z  e.  y  |->  ( ( x 
.+  z )  .-  x ) ) ) )
10 sylow3lem5.m . . 3  |-  .(+)  =  ( x  e.  K , 
y  e.  ( P pSyl 
G )  |->  ran  (
z  e.  y  |->  ( ( x  .+  z
)  .-  x )
) )
119, 10syl6eqr 2526 . 2  |-  ( ph  ->  ( ( x  e.  X ,  y  e.  ( P pSyl  G ) 
|->  ran  ( z  e.  y  |->  ( ( x 
.+  z )  .-  x ) ) )  |`  ( K  X.  ( P pSyl  G ) ) )  =  .(+)  )
12 sylow3.g . . . 4  |-  ( ph  ->  G  e.  Grp )
13 sylow3.xf . . . 4  |-  ( ph  ->  X  e.  Fin )
14 sylow3.p . . . 4  |-  ( ph  ->  P  e.  Prime )
15 sylow3lem5.a . . . 4  |-  .+  =  ( +g  `  G )
16 sylow3lem5.d . . . 4  |-  .-  =  ( -g `  G )
17 oveq2 6303 . . . . . . . . 9  |-  ( z  =  c  ->  (
x  .+  z )  =  ( x  .+  c ) )
1817oveq1d 6310 . . . . . . . 8  |-  ( z  =  c  ->  (
( x  .+  z
)  .-  x )  =  ( ( x 
.+  c )  .-  x ) )
1918cbvmptv 4544 . . . . . . 7  |-  ( z  e.  y  |->  ( ( x  .+  z ) 
.-  x ) )  =  ( c  e.  y  |->  ( ( x 
.+  c )  .-  x ) )
20 oveq1 6302 . . . . . . . . 9  |-  ( x  =  a  ->  (
x  .+  c )  =  ( a  .+  c ) )
21 id 22 . . . . . . . . 9  |-  ( x  =  a  ->  x  =  a )
2220, 21oveq12d 6313 . . . . . . . 8  |-  ( x  =  a  ->  (
( x  .+  c
)  .-  x )  =  ( ( a 
.+  c )  .-  a ) )
2322mpteq2dv 4540 . . . . . . 7  |-  ( x  =  a  ->  (
c  e.  y  |->  ( ( x  .+  c
)  .-  x )
)  =  ( c  e.  y  |->  ( ( a  .+  c ) 
.-  a ) ) )
2419, 23syl5eq 2520 . . . . . 6  |-  ( x  =  a  ->  (
z  e.  y  |->  ( ( x  .+  z
)  .-  x )
)  =  ( c  e.  y  |->  ( ( a  .+  c ) 
.-  a ) ) )
2524rneqd 5236 . . . . 5  |-  ( x  =  a  ->  ran  ( z  e.  y 
|->  ( ( x  .+  z )  .-  x
) )  =  ran  ( c  e.  y 
|->  ( ( a  .+  c )  .-  a
) ) )
26 mpteq1 4533 . . . . . 6  |-  ( y  =  b  ->  (
c  e.  y  |->  ( ( a  .+  c
)  .-  a )
)  =  ( c  e.  b  |->  ( ( a  .+  c ) 
.-  a ) ) )
2726rneqd 5236 . . . . 5  |-  ( y  =  b  ->  ran  ( c  e.  y 
|->  ( ( a  .+  c )  .-  a
) )  =  ran  ( c  e.  b 
|->  ( ( a  .+  c )  .-  a
) ) )
2825, 27cbvmpt2v 6372 . . . 4  |-  ( x  e.  X ,  y  e.  ( P pSyl  G
)  |->  ran  ( z  e.  y  |->  ( ( x  .+  z ) 
.-  x ) ) )  =  ( a  e.  X ,  b  e.  ( P pSyl  G
)  |->  ran  ( c  e.  b  |->  ( ( a  .+  c ) 
.-  a ) ) )
294, 12, 13, 14, 15, 16, 28sylow3lem1 16520 . . 3  |-  ( ph  ->  ( x  e.  X ,  y  e.  ( P pSyl  G )  |->  ran  (
z  e.  y  |->  ( ( x  .+  z
)  .-  x )
) )  e.  ( G  GrpAct  ( P pSyl  G
) ) )
30 eqid 2467 . . . 4  |-  ( Gs  K )  =  ( Gs  K )
3130gasubg 16212 . . 3  |-  ( ( ( x  e.  X ,  y  e.  ( P pSyl  G )  |->  ran  (
z  e.  y  |->  ( ( x  .+  z
)  .-  x )
) )  e.  ( G  GrpAct  ( P pSyl  G
) )  /\  K  e.  (SubGrp `  G )
)  ->  ( (
x  e.  X , 
y  e.  ( P pSyl 
G )  |->  ran  (
z  e.  y  |->  ( ( x  .+  z
)  .-  x )
) )  |`  ( K  X.  ( P pSyl  G
) ) )  e.  ( ( Gs  K ) 
GrpAct  ( P pSyl  G ) ) )
3229, 3, 31syl2anc 661 . 2  |-  ( ph  ->  ( ( x  e.  X ,  y  e.  ( P pSyl  G ) 
|->  ran  ( z  e.  y  |->  ( ( x 
.+  z )  .-  x ) ) )  |`  ( K  X.  ( P pSyl  G ) ) )  e.  ( ( Gs  K )  GrpAct  ( P pSyl  G
) ) )
3311, 32eqeltrrd 2556 1  |-  ( ph  -> 
.(+)  e.  ( ( Gs  K )  GrpAct  ( P pSyl 
G ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1379    e. wcel 1767    C_ wss 3481    |-> cmpt 4511    X. cxp 5003   ran crn 5006    |` cres 5007   ` cfv 5594  (class class class)co 6295    |-> cmpt2 6297   Fincfn 7528   Primecprime 14093   Basecbs 14507   ↾s cress 14508   +g cplusg 14572   Grpcgrp 15925   -gcsg 15927  SubGrpcsubg 16067    GrpAct cga 16199   pSyl cslw 16425
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4564  ax-sep 4574  ax-nul 4582  ax-pow 4631  ax-pr 4692  ax-un 6587  ax-inf2 8070  ax-cnex 9560  ax-resscn 9561  ax-1cn 9562  ax-icn 9563  ax-addcl 9564  ax-addrcl 9565  ax-mulcl 9566  ax-mulrcl 9567  ax-mulcom 9568  ax-addass 9569  ax-mulass 9570  ax-distr 9571  ax-i2m1 9572  ax-1ne0 9573  ax-1rid 9574  ax-rnegex 9575  ax-rrecex 9576  ax-cnre 9577  ax-pre-lttri 9578  ax-pre-lttrn 9579  ax-pre-ltadd 9580  ax-pre-mulgt0 9581  ax-pre-sup 9582
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-fal 1385  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2822  df-rex 2823  df-reu 2824  df-rmo 2825  df-rab 2826  df-v 3120  df-sbc 3337  df-csb 3441  df-dif 3484  df-un 3486  df-in 3488  df-ss 3495  df-pss 3497  df-nul 3791  df-if 3946  df-pw 4018  df-sn 4034  df-pr 4036  df-tp 4038  df-op 4040  df-uni 4252  df-int 4289  df-iun 4333  df-disj 4424  df-br 4454  df-opab 4512  df-mpt 4513  df-tr 4547  df-eprel 4797  df-id 4801  df-po 4806  df-so 4807  df-fr 4844  df-se 4845  df-we 4846  df-ord 4887  df-on 4888  df-lim 4889  df-suc 4890  df-xp 5011  df-rel 5012  df-cnv 5013  df-co 5014  df-dm 5015  df-rn 5016  df-res 5017  df-ima 5018  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-isom 5603  df-riota 6256  df-ov 6298  df-oprab 6299  df-mpt2 6300  df-om 6696  df-1st 6795  df-2nd 6796  df-recs 7054  df-rdg 7088  df-1o 7142  df-2o 7143  df-oadd 7146  df-omul 7147  df-er 7323  df-ec 7325  df-qs 7329  df-map 7434  df-en 7529  df-dom 7530  df-sdom 7531  df-fin 7532  df-sup 7913  df-oi 7947  df-card 8332  df-acn 8335  df-cda 8560  df-pnf 9642  df-mnf 9643  df-xr 9644  df-ltxr 9645  df-le 9646  df-sub 9819  df-neg 9820  df-div 10219  df-nn 10549  df-2 10606  df-3 10607  df-n0 10808  df-z 10877  df-uz 11095  df-q 11195  df-rp 11233  df-fz 11685  df-fzo 11805  df-fl 11909  df-mod 11977  df-seq 12088  df-exp 12147  df-fac 12334  df-bc 12361  df-hash 12386  df-cj 12912  df-re 12913  df-im 12914  df-sqrt 13048  df-abs 13049  df-clim 13291  df-sum 13489  df-dvds 13865  df-gcd 14021  df-prm 14094  df-pc 14237  df-ndx 14510  df-slot 14511  df-base 14512  df-sets 14513  df-ress 14514  df-plusg 14585  df-0g 14714  df-mgm 15746  df-sgrp 15785  df-mnd 15795  df-submnd 15840  df-grp 15929  df-minusg 15930  df-sbg 15931  df-mulg 15932  df-subg 16070  df-eqg 16072  df-ghm 16137  df-ga 16200  df-od 16426  df-pgp 16428  df-slw 16429
This theorem is referenced by:  sylow3lem6  16525
  Copyright terms: Public domain W3C validator