MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sylow3 Structured version   Unicode version

Theorem sylow3 16112
Description: Sylow's third theorem. The number of Sylow subgroups is a divisor of  |  G  |  /  d, where  d is the common order of a Sylow subgroup, and is equivalent to  1  mod  P. (Contributed by Mario Carneiro, 19-Jan-2015.)
Hypotheses
Ref Expression
sylow3.x  |-  X  =  ( Base `  G
)
sylow3.g  |-  ( ph  ->  G  e.  Grp )
sylow3.xf  |-  ( ph  ->  X  e.  Fin )
sylow3.p  |-  ( ph  ->  P  e.  Prime )
sylow3.n  |-  N  =  ( # `  ( P pSyl  G ) )
Assertion
Ref Expression
sylow3  |-  ( ph  ->  ( N  ||  (
( # `  X )  /  ( P ^
( P  pCnt  ( # `
 X ) ) ) )  /\  ( N  mod  P )  =  1 ) )

Proof of Theorem sylow3
Dummy variables  a 
b  c  u  x  y  z  s  k are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sylow3.g . . . 4  |-  ( ph  ->  G  e.  Grp )
2 sylow3.xf . . . 4  |-  ( ph  ->  X  e.  Fin )
3 sylow3.p . . . 4  |-  ( ph  ->  P  e.  Prime )
4 sylow3.x . . . . 5  |-  X  =  ( Base `  G
)
54slwn0 16094 . . . 4  |-  ( ( G  e.  Grp  /\  X  e.  Fin  /\  P  e.  Prime )  ->  ( P pSyl  G )  =/=  (/) )
61, 2, 3, 5syl3anc 1211 . . 3  |-  ( ph  ->  ( P pSyl  G )  =/=  (/) )
7 n0 3634 . . 3  |-  ( ( P pSyl  G )  =/=  (/) 
<->  E. k  k  e.  ( P pSyl  G ) )
86, 7sylib 196 . 2  |-  ( ph  ->  E. k  k  e.  ( P pSyl  G ) )
9 sylow3.n . . . 4  |-  N  =  ( # `  ( P pSyl  G ) )
101adantr 462 . . . . 5  |-  ( (
ph  /\  k  e.  ( P pSyl  G )
)  ->  G  e.  Grp )
112adantr 462 . . . . 5  |-  ( (
ph  /\  k  e.  ( P pSyl  G )
)  ->  X  e.  Fin )
123adantr 462 . . . . 5  |-  ( (
ph  /\  k  e.  ( P pSyl  G )
)  ->  P  e.  Prime )
13 eqid 2433 . . . . 5  |-  ( +g  `  G )  =  ( +g  `  G )
14 eqid 2433 . . . . 5  |-  ( -g `  G )  =  (
-g `  G )
15 oveq2 6088 . . . . . . . . . 10  |-  ( c  =  z  ->  (
a ( +g  `  G
) c )  =  ( a ( +g  `  G ) z ) )
1615oveq1d 6095 . . . . . . . . 9  |-  ( c  =  z  ->  (
( a ( +g  `  G ) c ) ( -g `  G
) a )  =  ( ( a ( +g  `  G ) z ) ( -g `  G ) a ) )
1716cbvmptv 4371 . . . . . . . 8  |-  ( c  e.  b  |->  ( ( a ( +g  `  G
) c ) (
-g `  G )
a ) )  =  ( z  e.  b 
|->  ( ( a ( +g  `  G ) z ) ( -g `  G ) a ) )
18 oveq1 6087 . . . . . . . . . 10  |-  ( a  =  x  ->  (
a ( +g  `  G
) z )  =  ( x ( +g  `  G ) z ) )
19 id 22 . . . . . . . . . 10  |-  ( a  =  x  ->  a  =  x )
2018, 19oveq12d 6098 . . . . . . . . 9  |-  ( a  =  x  ->  (
( a ( +g  `  G ) z ) ( -g `  G
) a )  =  ( ( x ( +g  `  G ) z ) ( -g `  G ) x ) )
2120mpteq2dv 4367 . . . . . . . 8  |-  ( a  =  x  ->  (
z  e.  b  |->  ( ( a ( +g  `  G ) z ) ( -g `  G
) a ) )  =  ( z  e.  b  |->  ( ( x ( +g  `  G
) z ) (
-g `  G )
x ) ) )
2217, 21syl5eq 2477 . . . . . . 7  |-  ( a  =  x  ->  (
c  e.  b  |->  ( ( a ( +g  `  G ) c ) ( -g `  G
) a ) )  =  ( z  e.  b  |->  ( ( x ( +g  `  G
) z ) (
-g `  G )
x ) ) )
2322rneqd 5054 . . . . . 6  |-  ( a  =  x  ->  ran  ( c  e.  b 
|->  ( ( a ( +g  `  G ) c ) ( -g `  G ) a ) )  =  ran  (
z  e.  b  |->  ( ( x ( +g  `  G ) z ) ( -g `  G
) x ) ) )
24 mpteq1 4360 . . . . . . 7  |-  ( b  =  y  ->  (
z  e.  b  |->  ( ( x ( +g  `  G ) z ) ( -g `  G
) x ) )  =  ( z  e.  y  |->  ( ( x ( +g  `  G
) z ) (
-g `  G )
x ) ) )
2524rneqd 5054 . . . . . 6  |-  ( b  =  y  ->  ran  ( z  e.  b 
|->  ( ( x ( +g  `  G ) z ) ( -g `  G ) x ) )  =  ran  (
z  e.  y  |->  ( ( x ( +g  `  G ) z ) ( -g `  G
) x ) ) )
2623, 25cbvmpt2v 6155 . . . . 5  |-  ( a  e.  X ,  b  e.  ( P pSyl  G
)  |->  ran  ( c  e.  b  |->  ( ( a ( +g  `  G
) c ) (
-g `  G )
a ) ) )  =  ( x  e.  X ,  y  e.  ( P pSyl  G ) 
|->  ran  ( z  e.  y  |->  ( ( x ( +g  `  G
) z ) (
-g `  G )
x ) ) )
27 simpr 458 . . . . 5  |-  ( (
ph  /\  k  e.  ( P pSyl  G )
)  ->  k  e.  ( P pSyl  G )
)
28 eqid 2433 . . . . 5  |-  { u  e.  X  |  (
u ( a  e.  X ,  b  e.  ( P pSyl  G ) 
|->  ran  ( c  e.  b  |->  ( ( a ( +g  `  G
) c ) (
-g `  G )
a ) ) ) k )  =  k }  =  { u  e.  X  |  (
u ( a  e.  X ,  b  e.  ( P pSyl  G ) 
|->  ran  ( c  e.  b  |->  ( ( a ( +g  `  G
) c ) (
-g `  G )
a ) ) ) k )  =  k }
29 eqid 2433 . . . . 5  |-  { x  e.  X  |  A. y  e.  X  (
( x ( +g  `  G ) y )  e.  k  <->  ( y
( +g  `  G ) x )  e.  k ) }  =  {
x  e.  X  |  A. y  e.  X  ( ( x ( +g  `  G ) y )  e.  k  <-> 
( y ( +g  `  G ) x )  e.  k ) }
304, 10, 11, 12, 13, 14, 26, 27, 28, 29sylow3lem4 16109 . . . 4  |-  ( (
ph  /\  k  e.  ( P pSyl  G )
)  ->  ( # `  ( P pSyl  G ) )  ||  ( ( # `  X
)  /  ( P ^ ( P  pCnt  (
# `  X )
) ) ) )
319, 30syl5eqbr 4313 . . 3  |-  ( (
ph  /\  k  e.  ( P pSyl  G )
)  ->  N  ||  (
( # `  X )  /  ( P ^
( P  pCnt  ( # `
 X ) ) ) ) )
329oveq1i 6090 . . . 4  |-  ( N  mod  P )  =  ( ( # `  ( P pSyl  G ) )  mod 
P )
3323, 25cbvmpt2v 6155 . . . . 5  |-  ( a  e.  k ,  b  e.  ( P pSyl  G
)  |->  ran  ( c  e.  b  |->  ( ( a ( +g  `  G
) c ) (
-g `  G )
a ) ) )  =  ( x  e.  k ,  y  e.  ( P pSyl  G ) 
|->  ran  ( z  e.  y  |->  ( ( x ( +g  `  G
) z ) (
-g `  G )
x ) ) )
34 eqid 2433 . . . . 5  |-  { x  e.  X  |  A. y  e.  X  (
( x ( +g  `  G ) y )  e.  s  <->  ( y
( +g  `  G ) x )  e.  s ) }  =  {
x  e.  X  |  A. y  e.  X  ( ( x ( +g  `  G ) y )  e.  s  <-> 
( y ( +g  `  G ) x )  e.  s ) }
354, 10, 11, 12, 13, 14, 27, 33, 34sylow3lem6 16111 . . . 4  |-  ( (
ph  /\  k  e.  ( P pSyl  G )
)  ->  ( ( # `
 ( P pSyl  G
) )  mod  P
)  =  1 )
3632, 35syl5eq 2477 . . 3  |-  ( (
ph  /\  k  e.  ( P pSyl  G )
)  ->  ( N  mod  P )  =  1 )
3731, 36jca 529 . 2  |-  ( (
ph  /\  k  e.  ( P pSyl  G )
)  ->  ( N  ||  ( ( # `  X
)  /  ( P ^ ( P  pCnt  (
# `  X )
) ) )  /\  ( N  mod  P )  =  1 ) )
388, 37exlimddv 1691 1  |-  ( ph  ->  ( N  ||  (
( # `  X )  /  ( P ^
( P  pCnt  ( # `
 X ) ) ) )  /\  ( N  mod  P )  =  1 ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1362   E.wex 1589    e. wcel 1755    =/= wne 2596   A.wral 2705   {crab 2709   (/)c0 3625   class class class wbr 4280    e. cmpt 4338   ran crn 4828   ` cfv 5406  (class class class)co 6080    e. cmpt2 6082   Fincfn 7298   1c1 9271    / cdiv 9981    mod cmo 11692   ^cexp 11849   #chash 12087    || cdivides 13518   Primecprime 13746    pCnt cpc 13886   Basecbs 14157   +g cplusg 14221   Grpcgrp 15393   -gcsg 15396   pSyl cslw 16011
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1594  ax-4 1605  ax-5 1669  ax-6 1707  ax-7 1727  ax-8 1757  ax-9 1759  ax-10 1774  ax-11 1779  ax-12 1791  ax-13 1942  ax-ext 2414  ax-rep 4391  ax-sep 4401  ax-nul 4409  ax-pow 4458  ax-pr 4519  ax-un 6361  ax-inf2 7835  ax-cnex 9326  ax-resscn 9327  ax-1cn 9328  ax-icn 9329  ax-addcl 9330  ax-addrcl 9331  ax-mulcl 9332  ax-mulrcl 9333  ax-mulcom 9334  ax-addass 9335  ax-mulass 9336  ax-distr 9337  ax-i2m1 9338  ax-1ne0 9339  ax-1rid 9340  ax-rnegex 9341  ax-rrecex 9342  ax-cnre 9343  ax-pre-lttri 9344  ax-pre-lttrn 9345  ax-pre-ltadd 9346  ax-pre-mulgt0 9347  ax-pre-sup 9348
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 959  df-3an 960  df-tru 1365  df-fal 1368  df-ex 1590  df-nf 1593  df-sb 1700  df-eu 2258  df-mo 2259  df-clab 2420  df-cleq 2426  df-clel 2429  df-nfc 2558  df-ne 2598  df-nel 2599  df-ral 2710  df-rex 2711  df-reu 2712  df-rmo 2713  df-rab 2714  df-v 2964  df-sbc 3176  df-csb 3277  df-dif 3319  df-un 3321  df-in 3323  df-ss 3330  df-pss 3332  df-nul 3626  df-if 3780  df-pw 3850  df-sn 3866  df-pr 3868  df-tp 3870  df-op 3872  df-uni 4080  df-int 4117  df-iun 4161  df-disj 4251  df-br 4281  df-opab 4339  df-mpt 4340  df-tr 4374  df-eprel 4619  df-id 4623  df-po 4628  df-so 4629  df-fr 4666  df-se 4667  df-we 4668  df-ord 4709  df-on 4710  df-lim 4711  df-suc 4712  df-xp 4833  df-rel 4834  df-cnv 4835  df-co 4836  df-dm 4837  df-rn 4838  df-res 4839  df-ima 4840  df-iota 5369  df-fun 5408  df-fn 5409  df-f 5410  df-f1 5411  df-fo 5412  df-f1o 5413  df-fv 5414  df-isom 5415  df-riota 6039  df-ov 6083  df-oprab 6084  df-mpt2 6085  df-om 6466  df-1st 6566  df-2nd 6567  df-recs 6818  df-rdg 6852  df-1o 6908  df-2o 6909  df-oadd 6912  df-omul 6913  df-er 7089  df-ec 7091  df-qs 7095  df-map 7204  df-en 7299  df-dom 7300  df-sdom 7301  df-fin 7302  df-sup 7679  df-oi 7712  df-card 8097  df-acn 8100  df-cda 8325  df-pnf 9408  df-mnf 9409  df-xr 9410  df-ltxr 9411  df-le 9412  df-sub 9585  df-neg 9586  df-div 9982  df-nn 10311  df-2 10368  df-3 10369  df-n0 10568  df-z 10635  df-uz 10850  df-q 10942  df-rp 10980  df-fz 11425  df-fzo 11533  df-fl 11626  df-mod 11693  df-seq 11791  df-exp 11850  df-fac 12036  df-bc 12063  df-hash 12088  df-cj 12572  df-re 12573  df-im 12574  df-sqr 12708  df-abs 12709  df-clim 12950  df-sum 13148  df-dvds 13519  df-gcd 13674  df-prm 13747  df-pc 13887  df-ndx 14160  df-slot 14161  df-base 14162  df-sets 14163  df-ress 14164  df-plusg 14234  df-0g 14363  df-mnd 15398  df-submnd 15448  df-grp 15525  df-minusg 15526  df-sbg 15527  df-mulg 15528  df-subg 15658  df-nsg 15659  df-eqg 15660  df-ghm 15725  df-ga 15788  df-od 16012  df-pgp 16014  df-slw 16015
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator