MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sylow3 Structured version   Unicode version

Theorem sylow3 16123
Description: Sylow's third theorem. The number of Sylow subgroups is a divisor of  |  G  |  /  d, where  d is the common order of a Sylow subgroup, and is equivalent to  1  mod  P. This is part of Metamath 100 proof #72. (Contributed by Mario Carneiro, 19-Jan-2015.)
Hypotheses
Ref Expression
sylow3.x  |-  X  =  ( Base `  G
)
sylow3.g  |-  ( ph  ->  G  e.  Grp )
sylow3.xf  |-  ( ph  ->  X  e.  Fin )
sylow3.p  |-  ( ph  ->  P  e.  Prime )
sylow3.n  |-  N  =  ( # `  ( P pSyl  G ) )
Assertion
Ref Expression
sylow3  |-  ( ph  ->  ( N  ||  (
( # `  X )  /  ( P ^
( P  pCnt  ( # `
 X ) ) ) )  /\  ( N  mod  P )  =  1 ) )

Proof of Theorem sylow3
Dummy variables  a 
b  c  u  x  y  z  s  k are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sylow3.g . . . 4  |-  ( ph  ->  G  e.  Grp )
2 sylow3.xf . . . 4  |-  ( ph  ->  X  e.  Fin )
3 sylow3.p . . . 4  |-  ( ph  ->  P  e.  Prime )
4 sylow3.x . . . . 5  |-  X  =  ( Base `  G
)
54slwn0 16105 . . . 4  |-  ( ( G  e.  Grp  /\  X  e.  Fin  /\  P  e.  Prime )  ->  ( P pSyl  G )  =/=  (/) )
61, 2, 3, 5syl3anc 1218 . . 3  |-  ( ph  ->  ( P pSyl  G )  =/=  (/) )
7 n0 3641 . . 3  |-  ( ( P pSyl  G )  =/=  (/) 
<->  E. k  k  e.  ( P pSyl  G ) )
86, 7sylib 196 . 2  |-  ( ph  ->  E. k  k  e.  ( P pSyl  G ) )
9 sylow3.n . . . 4  |-  N  =  ( # `  ( P pSyl  G ) )
101adantr 465 . . . . 5  |-  ( (
ph  /\  k  e.  ( P pSyl  G )
)  ->  G  e.  Grp )
112adantr 465 . . . . 5  |-  ( (
ph  /\  k  e.  ( P pSyl  G )
)  ->  X  e.  Fin )
123adantr 465 . . . . 5  |-  ( (
ph  /\  k  e.  ( P pSyl  G )
)  ->  P  e.  Prime )
13 eqid 2438 . . . . 5  |-  ( +g  `  G )  =  ( +g  `  G )
14 eqid 2438 . . . . 5  |-  ( -g `  G )  =  (
-g `  G )
15 oveq2 6094 . . . . . . . . . 10  |-  ( c  =  z  ->  (
a ( +g  `  G
) c )  =  ( a ( +g  `  G ) z ) )
1615oveq1d 6101 . . . . . . . . 9  |-  ( c  =  z  ->  (
( a ( +g  `  G ) c ) ( -g `  G
) a )  =  ( ( a ( +g  `  G ) z ) ( -g `  G ) a ) )
1716cbvmptv 4378 . . . . . . . 8  |-  ( c  e.  b  |->  ( ( a ( +g  `  G
) c ) (
-g `  G )
a ) )  =  ( z  e.  b 
|->  ( ( a ( +g  `  G ) z ) ( -g `  G ) a ) )
18 oveq1 6093 . . . . . . . . . 10  |-  ( a  =  x  ->  (
a ( +g  `  G
) z )  =  ( x ( +g  `  G ) z ) )
19 id 22 . . . . . . . . . 10  |-  ( a  =  x  ->  a  =  x )
2018, 19oveq12d 6104 . . . . . . . . 9  |-  ( a  =  x  ->  (
( a ( +g  `  G ) z ) ( -g `  G
) a )  =  ( ( x ( +g  `  G ) z ) ( -g `  G ) x ) )
2120mpteq2dv 4374 . . . . . . . 8  |-  ( a  =  x  ->  (
z  e.  b  |->  ( ( a ( +g  `  G ) z ) ( -g `  G
) a ) )  =  ( z  e.  b  |->  ( ( x ( +g  `  G
) z ) (
-g `  G )
x ) ) )
2217, 21syl5eq 2482 . . . . . . 7  |-  ( a  =  x  ->  (
c  e.  b  |->  ( ( a ( +g  `  G ) c ) ( -g `  G
) a ) )  =  ( z  e.  b  |->  ( ( x ( +g  `  G
) z ) (
-g `  G )
x ) ) )
2322rneqd 5062 . . . . . 6  |-  ( a  =  x  ->  ran  ( c  e.  b 
|->  ( ( a ( +g  `  G ) c ) ( -g `  G ) a ) )  =  ran  (
z  e.  b  |->  ( ( x ( +g  `  G ) z ) ( -g `  G
) x ) ) )
24 mpteq1 4367 . . . . . . 7  |-  ( b  =  y  ->  (
z  e.  b  |->  ( ( x ( +g  `  G ) z ) ( -g `  G
) x ) )  =  ( z  e.  y  |->  ( ( x ( +g  `  G
) z ) (
-g `  G )
x ) ) )
2524rneqd 5062 . . . . . 6  |-  ( b  =  y  ->  ran  ( z  e.  b 
|->  ( ( x ( +g  `  G ) z ) ( -g `  G ) x ) )  =  ran  (
z  e.  y  |->  ( ( x ( +g  `  G ) z ) ( -g `  G
) x ) ) )
2623, 25cbvmpt2v 6161 . . . . 5  |-  ( a  e.  X ,  b  e.  ( P pSyl  G
)  |->  ran  ( c  e.  b  |->  ( ( a ( +g  `  G
) c ) (
-g `  G )
a ) ) )  =  ( x  e.  X ,  y  e.  ( P pSyl  G ) 
|->  ran  ( z  e.  y  |->  ( ( x ( +g  `  G
) z ) (
-g `  G )
x ) ) )
27 simpr 461 . . . . 5  |-  ( (
ph  /\  k  e.  ( P pSyl  G )
)  ->  k  e.  ( P pSyl  G )
)
28 eqid 2438 . . . . 5  |-  { u  e.  X  |  (
u ( a  e.  X ,  b  e.  ( P pSyl  G ) 
|->  ran  ( c  e.  b  |->  ( ( a ( +g  `  G
) c ) (
-g `  G )
a ) ) ) k )  =  k }  =  { u  e.  X  |  (
u ( a  e.  X ,  b  e.  ( P pSyl  G ) 
|->  ran  ( c  e.  b  |->  ( ( a ( +g  `  G
) c ) (
-g `  G )
a ) ) ) k )  =  k }
29 eqid 2438 . . . . 5  |-  { x  e.  X  |  A. y  e.  X  (
( x ( +g  `  G ) y )  e.  k  <->  ( y
( +g  `  G ) x )  e.  k ) }  =  {
x  e.  X  |  A. y  e.  X  ( ( x ( +g  `  G ) y )  e.  k  <-> 
( y ( +g  `  G ) x )  e.  k ) }
304, 10, 11, 12, 13, 14, 26, 27, 28, 29sylow3lem4 16120 . . . 4  |-  ( (
ph  /\  k  e.  ( P pSyl  G )
)  ->  ( # `  ( P pSyl  G ) )  ||  ( ( # `  X
)  /  ( P ^ ( P  pCnt  (
# `  X )
) ) ) )
319, 30syl5eqbr 4320 . . 3  |-  ( (
ph  /\  k  e.  ( P pSyl  G )
)  ->  N  ||  (
( # `  X )  /  ( P ^
( P  pCnt  ( # `
 X ) ) ) ) )
329oveq1i 6096 . . . 4  |-  ( N  mod  P )  =  ( ( # `  ( P pSyl  G ) )  mod 
P )
3323, 25cbvmpt2v 6161 . . . . 5  |-  ( a  e.  k ,  b  e.  ( P pSyl  G
)  |->  ran  ( c  e.  b  |->  ( ( a ( +g  `  G
) c ) (
-g `  G )
a ) ) )  =  ( x  e.  k ,  y  e.  ( P pSyl  G ) 
|->  ran  ( z  e.  y  |->  ( ( x ( +g  `  G
) z ) (
-g `  G )
x ) ) )
34 eqid 2438 . . . . 5  |-  { x  e.  X  |  A. y  e.  X  (
( x ( +g  `  G ) y )  e.  s  <->  ( y
( +g  `  G ) x )  e.  s ) }  =  {
x  e.  X  |  A. y  e.  X  ( ( x ( +g  `  G ) y )  e.  s  <-> 
( y ( +g  `  G ) x )  e.  s ) }
354, 10, 11, 12, 13, 14, 27, 33, 34sylow3lem6 16122 . . . 4  |-  ( (
ph  /\  k  e.  ( P pSyl  G )
)  ->  ( ( # `
 ( P pSyl  G
) )  mod  P
)  =  1 )
3632, 35syl5eq 2482 . . 3  |-  ( (
ph  /\  k  e.  ( P pSyl  G )
)  ->  ( N  mod  P )  =  1 )
3731, 36jca 532 . 2  |-  ( (
ph  /\  k  e.  ( P pSyl  G )
)  ->  ( N  ||  ( ( # `  X
)  /  ( P ^ ( P  pCnt  (
# `  X )
) ) )  /\  ( N  mod  P )  =  1 ) )
388, 37exlimddv 1692 1  |-  ( ph  ->  ( N  ||  (
( # `  X )  /  ( P ^
( P  pCnt  ( # `
 X ) ) ) )  /\  ( N  mod  P )  =  1 ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1369   E.wex 1586    e. wcel 1756    =/= wne 2601   A.wral 2710   {crab 2714   (/)c0 3632   class class class wbr 4287    e. cmpt 4345   ran crn 4836   ` cfv 5413  (class class class)co 6086    e. cmpt2 6088   Fincfn 7302   1c1 9275    / cdiv 9985    mod cmo 11700   ^cexp 11857   #chash 12095    || cdivides 13527   Primecprime 13755    pCnt cpc 13895   Basecbs 14166   +g cplusg 14230   Grpcgrp 15402   -gcsg 15405   pSyl cslw 16022
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2419  ax-rep 4398  ax-sep 4408  ax-nul 4416  ax-pow 4465  ax-pr 4526  ax-un 6367  ax-inf2 7839  ax-cnex 9330  ax-resscn 9331  ax-1cn 9332  ax-icn 9333  ax-addcl 9334  ax-addrcl 9335  ax-mulcl 9336  ax-mulrcl 9337  ax-mulcom 9338  ax-addass 9339  ax-mulass 9340  ax-distr 9341  ax-i2m1 9342  ax-1ne0 9343  ax-1rid 9344  ax-rnegex 9345  ax-rrecex 9346  ax-cnre 9347  ax-pre-lttri 9348  ax-pre-lttrn 9349  ax-pre-ltadd 9350  ax-pre-mulgt0 9351  ax-pre-sup 9352
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-fal 1375  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2256  df-mo 2257  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2715  df-rex 2716  df-reu 2717  df-rmo 2718  df-rab 2719  df-v 2969  df-sbc 3182  df-csb 3284  df-dif 3326  df-un 3328  df-in 3330  df-ss 3337  df-pss 3339  df-nul 3633  df-if 3787  df-pw 3857  df-sn 3873  df-pr 3875  df-tp 3877  df-op 3879  df-uni 4087  df-int 4124  df-iun 4168  df-disj 4258  df-br 4288  df-opab 4346  df-mpt 4347  df-tr 4381  df-eprel 4627  df-id 4631  df-po 4636  df-so 4637  df-fr 4674  df-se 4675  df-we 4676  df-ord 4717  df-on 4718  df-lim 4719  df-suc 4720  df-xp 4841  df-rel 4842  df-cnv 4843  df-co 4844  df-dm 4845  df-rn 4846  df-res 4847  df-ima 4848  df-iota 5376  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-isom 5422  df-riota 6047  df-ov 6089  df-oprab 6090  df-mpt2 6091  df-om 6472  df-1st 6572  df-2nd 6573  df-recs 6824  df-rdg 6858  df-1o 6912  df-2o 6913  df-oadd 6916  df-omul 6917  df-er 7093  df-ec 7095  df-qs 7099  df-map 7208  df-en 7303  df-dom 7304  df-sdom 7305  df-fin 7306  df-sup 7683  df-oi 7716  df-card 8101  df-acn 8104  df-cda 8329  df-pnf 9412  df-mnf 9413  df-xr 9414  df-ltxr 9415  df-le 9416  df-sub 9589  df-neg 9590  df-div 9986  df-nn 10315  df-2 10372  df-3 10373  df-n0 10572  df-z 10639  df-uz 10854  df-q 10946  df-rp 10984  df-fz 11430  df-fzo 11541  df-fl 11634  df-mod 11701  df-seq 11799  df-exp 11858  df-fac 12044  df-bc 12071  df-hash 12096  df-cj 12580  df-re 12581  df-im 12582  df-sqr 12716  df-abs 12717  df-clim 12958  df-sum 13156  df-dvds 13528  df-gcd 13683  df-prm 13756  df-pc 13896  df-ndx 14169  df-slot 14170  df-base 14171  df-sets 14172  df-ress 14173  df-plusg 14243  df-0g 14372  df-mnd 15407  df-submnd 15457  df-grp 15536  df-minusg 15537  df-sbg 15538  df-mulg 15539  df-subg 15669  df-nsg 15670  df-eqg 15671  df-ghm 15736  df-ga 15799  df-od 16023  df-pgp 16025  df-slw 16026
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator