MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sylow2blem3 Structured version   Unicode version

Theorem sylow2blem3 16438
Description: Sylow's second theorem. Putting together the results of sylow2a 16435 and the orbit-stabilizer theorem to show that  P does not divide the set of all fixed points under the group action, we get that there is a fixed point of the group action, so that there is some  g  e.  X with  h g K  =  g K for all  h  e.  H. This implies that  invg ( g ) h g  e.  K, so  h is in the conjugated subgroup  g K invg ( g ). (Contributed by Mario Carneiro, 18-Jan-2015.)
Hypotheses
Ref Expression
sylow2b.x  |-  X  =  ( Base `  G
)
sylow2b.xf  |-  ( ph  ->  X  e.  Fin )
sylow2b.h  |-  ( ph  ->  H  e.  (SubGrp `  G ) )
sylow2b.k  |-  ( ph  ->  K  e.  (SubGrp `  G ) )
sylow2b.a  |-  .+  =  ( +g  `  G )
sylow2b.r  |-  .~  =  ( G ~QG  K )
sylow2b.m  |-  .x.  =  ( x  e.  H ,  y  e.  ( X /.  .~  )  |->  ran  ( z  e.  y 
|->  ( x  .+  z
) ) )
sylow2blem3.hp  |-  ( ph  ->  P pGrp  ( Gs  H ) )
sylow2blem3.kn  |-  ( ph  ->  ( # `  K
)  =  ( P ^ ( P  pCnt  (
# `  X )
) ) )
sylow2blem3.d  |-  .-  =  ( -g `  G )
Assertion
Ref Expression
sylow2blem3  |-  ( ph  ->  E. g  e.  X  H  C_  ran  ( x  e.  K  |->  ( ( g  .+  x ) 
.-  g ) ) )
Distinct variable groups:    x, g,
y, z, G    g, K, x, y, z    .x. , g, x, y, z    .+ , g, x, y, z    .~ , g, x, y, z    ph, g,
z    x,  .- , z    g, H, x, y, z    g, X, x, y, z
Allowed substitution hints:    ph( x, y)    P( x, y, z, g)    .- ( y, g)

Proof of Theorem sylow2blem3
Dummy variable  u is distinct from all other variables.
StepHypRef Expression
1 sylow2blem3.hp . . . . . . . . 9  |-  ( ph  ->  P pGrp  ( Gs  H ) )
2 pgpprm 16409 . . . . . . . . 9  |-  ( P pGrp  ( Gs  H )  ->  P  e.  Prime )
31, 2syl 16 . . . . . . . 8  |-  ( ph  ->  P  e.  Prime )
4 sylow2b.h . . . . . . . . . . 11  |-  ( ph  ->  H  e.  (SubGrp `  G ) )
5 subgrcl 16001 . . . . . . . . . . 11  |-  ( H  e.  (SubGrp `  G
)  ->  G  e.  Grp )
64, 5syl 16 . . . . . . . . . 10  |-  ( ph  ->  G  e.  Grp )
7 sylow2b.x . . . . . . . . . . 11  |-  X  =  ( Base `  G
)
87grpbn0 15880 . . . . . . . . . 10  |-  ( G  e.  Grp  ->  X  =/=  (/) )
96, 8syl 16 . . . . . . . . 9  |-  ( ph  ->  X  =/=  (/) )
10 sylow2b.xf . . . . . . . . . 10  |-  ( ph  ->  X  e.  Fin )
11 hashnncl 12400 . . . . . . . . . 10  |-  ( X  e.  Fin  ->  (
( # `  X )  e.  NN  <->  X  =/=  (/) ) )
1210, 11syl 16 . . . . . . . . 9  |-  ( ph  ->  ( ( # `  X
)  e.  NN  <->  X  =/=  (/) ) )
139, 12mpbird 232 . . . . . . . 8  |-  ( ph  ->  ( # `  X
)  e.  NN )
14 pcndvds2 14246 . . . . . . . 8  |-  ( ( P  e.  Prime  /\  ( # `
 X )  e.  NN )  ->  -.  P  ||  ( ( # `  X )  /  ( P ^ ( P  pCnt  (
# `  X )
) ) ) )
153, 13, 14syl2anc 661 . . . . . . 7  |-  ( ph  ->  -.  P  ||  (
( # `  X )  /  ( P ^
( P  pCnt  ( # `
 X ) ) ) ) )
16 sylow2b.r . . . . . . . . . . 11  |-  .~  =  ( G ~QG  K )
17 sylow2b.k . . . . . . . . . . 11  |-  ( ph  ->  K  e.  (SubGrp `  G ) )
187, 16, 17, 10lagsubg2 16057 . . . . . . . . . 10  |-  ( ph  ->  ( # `  X
)  =  ( (
# `  ( X /.  .~  ) )  x.  ( # `  K
) ) )
1918oveq1d 6297 . . . . . . . . 9  |-  ( ph  ->  ( ( # `  X
)  /  ( # `  K ) )  =  ( ( ( # `  ( X /.  .~  ) )  x.  ( # `
 K ) )  /  ( # `  K
) ) )
20 sylow2blem3.kn . . . . . . . . . 10  |-  ( ph  ->  ( # `  K
)  =  ( P ^ ( P  pCnt  (
# `  X )
) ) )
2120oveq2d 6298 . . . . . . . . 9  |-  ( ph  ->  ( ( # `  X
)  /  ( # `  K ) )  =  ( ( # `  X
)  /  ( P ^ ( P  pCnt  (
# `  X )
) ) ) )
22 pwfi 7811 . . . . . . . . . . . . . 14  |-  ( X  e.  Fin  <->  ~P X  e.  Fin )
2310, 22sylib 196 . . . . . . . . . . . . 13  |-  ( ph  ->  ~P X  e.  Fin )
247, 16eqger 16046 . . . . . . . . . . . . . . 15  |-  ( K  e.  (SubGrp `  G
)  ->  .~  Er  X
)
2517, 24syl 16 . . . . . . . . . . . . . 14  |-  ( ph  ->  .~  Er  X )
2625qsss 7369 . . . . . . . . . . . . 13  |-  ( ph  ->  ( X /.  .~  )  C_  ~P X )
27 ssfi 7737 . . . . . . . . . . . . 13  |-  ( ( ~P X  e.  Fin  /\  ( X /.  .~  )  C_  ~P X )  ->  ( X /.  .~  )  e.  Fin )
2823, 26, 27syl2anc 661 . . . . . . . . . . . 12  |-  ( ph  ->  ( X /.  .~  )  e.  Fin )
29 hashcl 12392 . . . . . . . . . . . 12  |-  ( ( X /.  .~  )  e.  Fin  ->  ( # `  ( X /.  .~  ) )  e.  NN0 )
3028, 29syl 16 . . . . . . . . . . 11  |-  ( ph  ->  ( # `  ( X /.  .~  ) )  e.  NN0 )
3130nn0cnd 10850 . . . . . . . . . 10  |-  ( ph  ->  ( # `  ( X /.  .~  ) )  e.  CC )
32 eqid 2467 . . . . . . . . . . . . . . 15  |-  ( 0g
`  G )  =  ( 0g `  G
)
3332subg0cl 16004 . . . . . . . . . . . . . 14  |-  ( K  e.  (SubGrp `  G
)  ->  ( 0g `  G )  e.  K
)
3417, 33syl 16 . . . . . . . . . . . . 13  |-  ( ph  ->  ( 0g `  G
)  e.  K )
35 ne0i 3791 . . . . . . . . . . . . 13  |-  ( ( 0g `  G )  e.  K  ->  K  =/=  (/) )
3634, 35syl 16 . . . . . . . . . . . 12  |-  ( ph  ->  K  =/=  (/) )
377subgss 15997 . . . . . . . . . . . . . . 15  |-  ( K  e.  (SubGrp `  G
)  ->  K  C_  X
)
3817, 37syl 16 . . . . . . . . . . . . . 14  |-  ( ph  ->  K  C_  X )
39 ssfi 7737 . . . . . . . . . . . . . 14  |-  ( ( X  e.  Fin  /\  K  C_  X )  ->  K  e.  Fin )
4010, 38, 39syl2anc 661 . . . . . . . . . . . . 13  |-  ( ph  ->  K  e.  Fin )
41 hashnncl 12400 . . . . . . . . . . . . 13  |-  ( K  e.  Fin  ->  (
( # `  K )  e.  NN  <->  K  =/=  (/) ) )
4240, 41syl 16 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( # `  K
)  e.  NN  <->  K  =/=  (/) ) )
4336, 42mpbird 232 . . . . . . . . . . 11  |-  ( ph  ->  ( # `  K
)  e.  NN )
4443nncnd 10548 . . . . . . . . . 10  |-  ( ph  ->  ( # `  K
)  e.  CC )
4543nnne0d 10576 . . . . . . . . . 10  |-  ( ph  ->  ( # `  K
)  =/=  0 )
4631, 44, 45divcan4d 10322 . . . . . . . . 9  |-  ( ph  ->  ( ( ( # `  ( X /.  .~  ) )  x.  ( # `
 K ) )  /  ( # `  K
) )  =  (
# `  ( X /.  .~  ) ) )
4719, 21, 463eqtr3d 2516 . . . . . . . 8  |-  ( ph  ->  ( ( # `  X
)  /  ( P ^ ( P  pCnt  (
# `  X )
) ) )  =  ( # `  ( X /.  .~  ) ) )
4847breq2d 4459 . . . . . . 7  |-  ( ph  ->  ( P  ||  (
( # `  X )  /  ( P ^
( P  pCnt  ( # `
 X ) ) ) )  <->  P  ||  ( # `
 ( X /.  .~  ) ) ) )
4915, 48mtbid 300 . . . . . 6  |-  ( ph  ->  -.  P  ||  ( # `
 ( X /.  .~  ) ) )
50 prmz 14076 . . . . . . . 8  |-  ( P  e.  Prime  ->  P  e.  ZZ )
513, 50syl 16 . . . . . . 7  |-  ( ph  ->  P  e.  ZZ )
5230nn0zd 10960 . . . . . . 7  |-  ( ph  ->  ( # `  ( X /.  .~  ) )  e.  ZZ )
53 ssrab2 3585 . . . . . . . . . 10  |-  { z  e.  ( X /.  .~  )  |  A. u  e.  ( Base `  ( Gs  H ) ) ( u  .x.  z )  =  z }  C_  ( X /.  .~  )
54 ssfi 7737 . . . . . . . . . 10  |-  ( ( ( X /.  .~  )  e.  Fin  /\  {
z  e.  ( X /.  .~  )  | 
A. u  e.  (
Base `  ( Gs  H
) ) ( u 
.x.  z )  =  z }  C_  ( X /.  .~  ) )  ->  { z  e.  ( X /.  .~  )  |  A. u  e.  ( Base `  ( Gs  H ) ) ( u  .x.  z )  =  z }  e.  Fin )
5528, 53, 54sylancl 662 . . . . . . . . 9  |-  ( ph  ->  { z  e.  ( X /.  .~  )  |  A. u  e.  (
Base `  ( Gs  H
) ) ( u 
.x.  z )  =  z }  e.  Fin )
56 hashcl 12392 . . . . . . . . 9  |-  ( { z  e.  ( X /.  .~  )  | 
A. u  e.  (
Base `  ( Gs  H
) ) ( u 
.x.  z )  =  z }  e.  Fin  ->  ( # `  {
z  e.  ( X /.  .~  )  | 
A. u  e.  (
Base `  ( Gs  H
) ) ( u 
.x.  z )  =  z } )  e. 
NN0 )
5755, 56syl 16 . . . . . . . 8  |-  ( ph  ->  ( # `  {
z  e.  ( X /.  .~  )  | 
A. u  e.  (
Base `  ( Gs  H
) ) ( u 
.x.  z )  =  z } )  e. 
NN0 )
5857nn0zd 10960 . . . . . . 7  |-  ( ph  ->  ( # `  {
z  e.  ( X /.  .~  )  | 
A. u  e.  (
Base `  ( Gs  H
) ) ( u 
.x.  z )  =  z } )  e.  ZZ )
59 eqid 2467 . . . . . . . 8  |-  ( Base `  ( Gs  H ) )  =  ( Base `  ( Gs  H ) )
60 sylow2b.a . . . . . . . . 9  |-  .+  =  ( +g  `  G )
61 sylow2b.m . . . . . . . . 9  |-  .x.  =  ( x  e.  H ,  y  e.  ( X /.  .~  )  |->  ran  ( z  e.  y 
|->  ( x  .+  z
) ) )
627, 10, 4, 17, 60, 16, 61sylow2blem2 16437 . . . . . . . 8  |-  ( ph  ->  .x.  e.  ( ( Gs  H )  GrpAct  ( X /.  .~  ) ) )
63 eqid 2467 . . . . . . . . . . 11  |-  ( Gs  H )  =  ( Gs  H )
6463subgbas 16000 . . . . . . . . . 10  |-  ( H  e.  (SubGrp `  G
)  ->  H  =  ( Base `  ( Gs  H
) ) )
654, 64syl 16 . . . . . . . . 9  |-  ( ph  ->  H  =  ( Base `  ( Gs  H ) ) )
667subgss 15997 . . . . . . . . . . 11  |-  ( H  e.  (SubGrp `  G
)  ->  H  C_  X
)
674, 66syl 16 . . . . . . . . . 10  |-  ( ph  ->  H  C_  X )
68 ssfi 7737 . . . . . . . . . 10  |-  ( ( X  e.  Fin  /\  H  C_  X )  ->  H  e.  Fin )
6910, 67, 68syl2anc 661 . . . . . . . . 9  |-  ( ph  ->  H  e.  Fin )
7065, 69eqeltrrd 2556 . . . . . . . 8  |-  ( ph  ->  ( Base `  ( Gs  H ) )  e. 
Fin )
71 eqid 2467 . . . . . . . 8  |-  { z  e.  ( X /.  .~  )  |  A. u  e.  ( Base `  ( Gs  H ) ) ( u  .x.  z )  =  z }  =  { z  e.  ( X /.  .~  )  |  A. u  e.  (
Base `  ( Gs  H
) ) ( u 
.x.  z )  =  z }
72 eqid 2467 . . . . . . . 8  |-  { <. x ,  y >.  |  ( { x ,  y }  C_  ( X /.  .~  )  /\  E. g  e.  ( Base `  ( Gs  H ) ) ( g  .x.  x )  =  y ) }  =  { <. x ,  y >.  |  ( { x ,  y }  C_  ( X /.  .~  )  /\  E. g  e.  ( Base `  ( Gs  H ) ) ( g  .x.  x )  =  y ) }
7359, 62, 1, 70, 28, 71, 72sylow2a 16435 . . . . . . 7  |-  ( ph  ->  P  ||  ( (
# `  ( X /.  .~  ) )  -  ( # `  { z  e.  ( X /.  .~  )  |  A. u  e.  ( Base `  ( Gs  H ) ) ( u  .x.  z )  =  z } ) ) )
74 dvdssub2 13878 . . . . . . 7  |-  ( ( ( P  e.  ZZ  /\  ( # `  ( X /.  .~  ) )  e.  ZZ  /\  ( # `
 { z  e.  ( X /.  .~  )  |  A. u  e.  ( Base `  ( Gs  H ) ) ( u  .x.  z )  =  z } )  e.  ZZ )  /\  P  ||  ( ( # `  ( X /.  .~  ) )  -  ( # `
 { z  e.  ( X /.  .~  )  |  A. u  e.  ( Base `  ( Gs  H ) ) ( u  .x.  z )  =  z } ) ) )  ->  ( P  ||  ( # `  ( X /.  .~  ) )  <-> 
P  ||  ( # `  {
z  e.  ( X /.  .~  )  | 
A. u  e.  (
Base `  ( Gs  H
) ) ( u 
.x.  z )  =  z } ) ) )
7551, 52, 58, 73, 74syl31anc 1231 . . . . . 6  |-  ( ph  ->  ( P  ||  ( # `
 ( X /.  .~  ) )  <->  P  ||  ( # `
 { z  e.  ( X /.  .~  )  |  A. u  e.  ( Base `  ( Gs  H ) ) ( u  .x.  z )  =  z } ) ) )
7649, 75mtbid 300 . . . . 5  |-  ( ph  ->  -.  P  ||  ( # `
 { z  e.  ( X /.  .~  )  |  A. u  e.  ( Base `  ( Gs  H ) ) ( u  .x.  z )  =  z } ) )
77 hasheq0 12397 . . . . . . . 8  |-  ( { z  e.  ( X /.  .~  )  | 
A. u  e.  (
Base `  ( Gs  H
) ) ( u 
.x.  z )  =  z }  e.  Fin  ->  ( ( # `  {
z  e.  ( X /.  .~  )  | 
A. u  e.  (
Base `  ( Gs  H
) ) ( u 
.x.  z )  =  z } )  =  0  <->  { z  e.  ( X /.  .~  )  |  A. u  e.  (
Base `  ( Gs  H
) ) ( u 
.x.  z )  =  z }  =  (/) ) )
7855, 77syl 16 . . . . . . 7  |-  ( ph  ->  ( ( # `  {
z  e.  ( X /.  .~  )  | 
A. u  e.  (
Base `  ( Gs  H
) ) ( u 
.x.  z )  =  z } )  =  0  <->  { z  e.  ( X /.  .~  )  |  A. u  e.  (
Base `  ( Gs  H
) ) ( u 
.x.  z )  =  z }  =  (/) ) )
79 dvds0 13856 . . . . . . . . 9  |-  ( P  e.  ZZ  ->  P  ||  0 )
8051, 79syl 16 . . . . . . . 8  |-  ( ph  ->  P  ||  0 )
81 breq2 4451 . . . . . . . 8  |-  ( (
# `  { z  e.  ( X /.  .~  )  |  A. u  e.  ( Base `  ( Gs  H ) ) ( u  .x.  z )  =  z } )  =  0  ->  ( P  ||  ( # `  {
z  e.  ( X /.  .~  )  | 
A. u  e.  (
Base `  ( Gs  H
) ) ( u 
.x.  z )  =  z } )  <->  P  ||  0
) )
8280, 81syl5ibrcom 222 . . . . . . 7  |-  ( ph  ->  ( ( # `  {
z  e.  ( X /.  .~  )  | 
A. u  e.  (
Base `  ( Gs  H
) ) ( u 
.x.  z )  =  z } )  =  0  ->  P  ||  ( # `
 { z  e.  ( X /.  .~  )  |  A. u  e.  ( Base `  ( Gs  H ) ) ( u  .x.  z )  =  z } ) ) )
8378, 82sylbird 235 . . . . . 6  |-  ( ph  ->  ( { z  e.  ( X /.  .~  )  |  A. u  e.  ( Base `  ( Gs  H ) ) ( u  .x.  z )  =  z }  =  (/) 
->  P  ||  ( # `  { z  e.  ( X /.  .~  )  |  A. u  e.  (
Base `  ( Gs  H
) ) ( u 
.x.  z )  =  z } ) ) )
8483necon3bd 2679 . . . . 5  |-  ( ph  ->  ( -.  P  ||  ( # `  { z  e.  ( X /.  .~  )  |  A. u  e.  ( Base `  ( Gs  H ) ) ( u  .x.  z )  =  z } )  ->  { z  e.  ( X /.  .~  )  |  A. u  e.  ( Base `  ( Gs  H ) ) ( u  .x.  z )  =  z }  =/=  (/) ) )
8576, 84mpd 15 . . . 4  |-  ( ph  ->  { z  e.  ( X /.  .~  )  |  A. u  e.  (
Base `  ( Gs  H
) ) ( u 
.x.  z )  =  z }  =/=  (/) )
86 rabn0 3805 . . . 4  |-  ( { z  e.  ( X /.  .~  )  | 
A. u  e.  (
Base `  ( Gs  H
) ) ( u 
.x.  z )  =  z }  =/=  (/)  <->  E. z  e.  ( X /.  .~  ) A. u  e.  (
Base `  ( Gs  H
) ) ( u 
.x.  z )  =  z )
8785, 86sylib 196 . . 3  |-  ( ph  ->  E. z  e.  ( X /.  .~  ) A. u  e.  ( Base `  ( Gs  H ) ) ( u  .x.  z )  =  z )
8865raleqdv 3064 . . . 4  |-  ( ph  ->  ( A. u  e.  H  ( u  .x.  z )  =  z  <->  A. u  e.  ( Base `  ( Gs  H ) ) ( u  .x.  z )  =  z ) )
8988rexbidv 2973 . . 3  |-  ( ph  ->  ( E. z  e.  ( X /.  .~  ) A. u  e.  H  ( u  .x.  z )  =  z  <->  E. z  e.  ( X /.  .~  ) A. u  e.  (
Base `  ( Gs  H
) ) ( u 
.x.  z )  =  z ) )
9087, 89mpbird 232 . 2  |-  ( ph  ->  E. z  e.  ( X /.  .~  ) A. u  e.  H  ( u  .x.  z )  =  z )
91 vex 3116 . . . . 5  |-  z  e. 
_V
9291elqs 7361 . . . 4  |-  ( z  e.  ( X /.  .~  )  <->  E. g  e.  X  z  =  [ g ]  .~  )
93 simplrr 760 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  (
g  e.  X  /\  z  =  [ g ]  .~  ) )  /\  ( u  e.  H  /\  ( u  .x.  z
)  =  z ) )  ->  z  =  [ g ]  .~  )
9493oveq2d 6298 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  (
g  e.  X  /\  z  =  [ g ]  .~  ) )  /\  ( u  e.  H  /\  ( u  .x.  z
)  =  z ) )  ->  ( u  .x.  z )  =  ( u  .x.  [ g ]  .~  ) )
95 simprr 756 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  (
g  e.  X  /\  z  =  [ g ]  .~  ) )  /\  ( u  e.  H  /\  ( u  .x.  z
)  =  z ) )  ->  ( u  .x.  z )  =  z )
96 simpll 753 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ph  /\  (
g  e.  X  /\  z  =  [ g ]  .~  ) )  /\  ( u  e.  H  /\  ( u  .x.  z
)  =  z ) )  ->  ph )
97 simprl 755 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ph  /\  (
g  e.  X  /\  z  =  [ g ]  .~  ) )  /\  ( u  e.  H  /\  ( u  .x.  z
)  =  z ) )  ->  u  e.  H )
98 simplrl 759 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ph  /\  (
g  e.  X  /\  z  =  [ g ]  .~  ) )  /\  ( u  e.  H  /\  ( u  .x.  z
)  =  z ) )  ->  g  e.  X )
997, 10, 4, 17, 60, 16, 61sylow2blem1 16436 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( (
ph  /\  u  e.  H  /\  g  e.  X
)  ->  ( u  .x.  [ g ]  .~  )  =  [ (
u  .+  g ) ]  .~  )
10096, 97, 98, 99syl3anc 1228 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  (
g  e.  X  /\  z  =  [ g ]  .~  ) )  /\  ( u  e.  H  /\  ( u  .x.  z
)  =  z ) )  ->  ( u  .x.  [ g ]  .~  )  =  [ (
u  .+  g ) ]  .~  )
10194, 95, 1003eqtr3d 2516 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  (
g  e.  X  /\  z  =  [ g ]  .~  ) )  /\  ( u  e.  H  /\  ( u  .x.  z
)  =  z ) )  ->  z  =  [ ( u  .+  g ) ]  .~  )
10293, 101eqtr3d 2510 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  (
g  e.  X  /\  z  =  [ g ]  .~  ) )  /\  ( u  e.  H  /\  ( u  .x.  z
)  =  z ) )  ->  [ g ]  .~  =  [ ( u  .+  g ) ]  .~  )
10325ad2antrr 725 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  (
g  e.  X  /\  z  =  [ g ]  .~  ) )  /\  ( u  e.  H  /\  ( u  .x.  z
)  =  z ) )  ->  .~  Er  X
)
104103, 98erth 7353 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  (
g  e.  X  /\  z  =  [ g ]  .~  ) )  /\  ( u  e.  H  /\  ( u  .x.  z
)  =  z ) )  ->  ( g  .~  ( u  .+  g
)  <->  [ g ]  .~  =  [ ( u  .+  g ) ]  .~  ) )
105102, 104mpbird 232 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  (
g  e.  X  /\  z  =  [ g ]  .~  ) )  /\  ( u  e.  H  /\  ( u  .x.  z
)  =  z ) )  ->  g  .~  ( u  .+  g ) )
1066ad2antrr 725 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  (
g  e.  X  /\  z  =  [ g ]  .~  ) )  /\  ( u  e.  H  /\  ( u  .x.  z
)  =  z ) )  ->  G  e.  Grp )
10738ad2antrr 725 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  (
g  e.  X  /\  z  =  [ g ]  .~  ) )  /\  ( u  e.  H  /\  ( u  .x.  z
)  =  z ) )  ->  K  C_  X
)
108 eqid 2467 . . . . . . . . . . . . . . . . . . . 20  |-  ( invg `  G )  =  ( invg `  G )
1097, 108, 60, 16eqgval 16045 . . . . . . . . . . . . . . . . . . 19  |-  ( ( G  e.  Grp  /\  K  C_  X )  -> 
( g  .~  (
u  .+  g )  <->  ( g  e.  X  /\  ( u  .+  g )  e.  X  /\  (
( ( invg `  G ) `  g
)  .+  ( u  .+  g ) )  e.  K ) ) )
110106, 107, 109syl2anc 661 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  (
g  e.  X  /\  z  =  [ g ]  .~  ) )  /\  ( u  e.  H  /\  ( u  .x.  z
)  =  z ) )  ->  ( g  .~  ( u  .+  g
)  <->  ( g  e.  X  /\  ( u 
.+  g )  e.  X  /\  ( ( ( invg `  G ) `  g
)  .+  ( u  .+  g ) )  e.  K ) ) )
111105, 110mpbid 210 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (
g  e.  X  /\  z  =  [ g ]  .~  ) )  /\  ( u  e.  H  /\  ( u  .x.  z
)  =  z ) )  ->  ( g  e.  X  /\  (
u  .+  g )  e.  X  /\  (
( ( invg `  G ) `  g
)  .+  ( u  .+  g ) )  e.  K ) )
112111simp3d 1010 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
g  e.  X  /\  z  =  [ g ]  .~  ) )  /\  ( u  e.  H  /\  ( u  .x.  z
)  =  z ) )  ->  ( (
( invg `  G ) `  g
)  .+  ( u  .+  g ) )  e.  K )
113 oveq2 6290 . . . . . . . . . . . . . . . . . 18  |-  ( x  =  ( ( ( invg `  G
) `  g )  .+  ( u  .+  g
) )  ->  (
g  .+  x )  =  ( g  .+  ( ( ( invg `  G ) `
 g )  .+  ( u  .+  g ) ) ) )
114113oveq1d 6297 . . . . . . . . . . . . . . . . 17  |-  ( x  =  ( ( ( invg `  G
) `  g )  .+  ( u  .+  g
) )  ->  (
( g  .+  x
)  .-  g )  =  ( ( g 
.+  ( ( ( invg `  G
) `  g )  .+  ( u  .+  g
) ) )  .-  g ) )
115 eqid 2467 . . . . . . . . . . . . . . . . 17  |-  ( x  e.  K  |->  ( ( g  .+  x ) 
.-  g ) )  =  ( x  e.  K  |->  ( ( g 
.+  x )  .-  g ) )
116 ovex 6307 . . . . . . . . . . . . . . . . 17  |-  ( ( g  .+  ( ( ( invg `  G ) `  g
)  .+  ( u  .+  g ) ) ) 
.-  g )  e. 
_V
117114, 115, 116fvmpt 5948 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( invg `  G ) `  g
)  .+  ( u  .+  g ) )  e.  K  ->  ( (
x  e.  K  |->  ( ( g  .+  x
)  .-  g )
) `  ( (
( invg `  G ) `  g
)  .+  ( u  .+  g ) ) )  =  ( ( g 
.+  ( ( ( invg `  G
) `  g )  .+  ( u  .+  g
) ) )  .-  g ) )
118112, 117syl 16 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
g  e.  X  /\  z  =  [ g ]  .~  ) )  /\  ( u  e.  H  /\  ( u  .x.  z
)  =  z ) )  ->  ( (
x  e.  K  |->  ( ( g  .+  x
)  .-  g )
) `  ( (
( invg `  G ) `  g
)  .+  ( u  .+  g ) ) )  =  ( ( g 
.+  ( ( ( invg `  G
) `  g )  .+  ( u  .+  g
) ) )  .-  g ) )
1197, 60, 32, 108grprinv 15898 . . . . . . . . . . . . . . . . . . 19  |-  ( ( G  e.  Grp  /\  g  e.  X )  ->  ( g  .+  (
( invg `  G ) `  g
) )  =  ( 0g `  G ) )
120106, 98, 119syl2anc 661 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  (
g  e.  X  /\  z  =  [ g ]  .~  ) )  /\  ( u  e.  H  /\  ( u  .x.  z
)  =  z ) )  ->  ( g  .+  ( ( invg `  G ) `  g
) )  =  ( 0g `  G ) )
121120oveq1d 6297 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (
g  e.  X  /\  z  =  [ g ]  .~  ) )  /\  ( u  e.  H  /\  ( u  .x.  z
)  =  z ) )  ->  ( (
g  .+  ( ( invg `  G ) `
 g ) ) 
.+  ( u  .+  g ) )  =  ( ( 0g `  G )  .+  (
u  .+  g )
) )
1227, 108grpinvcl 15896 . . . . . . . . . . . . . . . . . . 19  |-  ( ( G  e.  Grp  /\  g  e.  X )  ->  ( ( invg `  G ) `  g
)  e.  X )
123106, 98, 122syl2anc 661 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  (
g  e.  X  /\  z  =  [ g ]  .~  ) )  /\  ( u  e.  H  /\  ( u  .x.  z
)  =  z ) )  ->  ( ( invg `  G ) `
 g )  e.  X )
12467ad2antrr 725 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  (
g  e.  X  /\  z  =  [ g ]  .~  ) )  /\  ( u  e.  H  /\  ( u  .x.  z
)  =  z ) )  ->  H  C_  X
)
125124, 97sseldd 3505 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  (
g  e.  X  /\  z  =  [ g ]  .~  ) )  /\  ( u  e.  H  /\  ( u  .x.  z
)  =  z ) )  ->  u  e.  X )
1267, 60grpcl 15864 . . . . . . . . . . . . . . . . . . 19  |-  ( ( G  e.  Grp  /\  u  e.  X  /\  g  e.  X )  ->  ( u  .+  g
)  e.  X )
127106, 125, 98, 126syl3anc 1228 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  (
g  e.  X  /\  z  =  [ g ]  .~  ) )  /\  ( u  e.  H  /\  ( u  .x.  z
)  =  z ) )  ->  ( u  .+  g )  e.  X
)
1287, 60grpass 15865 . . . . . . . . . . . . . . . . . 18  |-  ( ( G  e.  Grp  /\  ( g  e.  X  /\  ( ( invg `  G ) `  g
)  e.  X  /\  ( u  .+  g )  e.  X ) )  ->  ( ( g 
.+  ( ( invg `  G ) `
 g ) ) 
.+  ( u  .+  g ) )  =  ( g  .+  (
( ( invg `  G ) `  g
)  .+  ( u  .+  g ) ) ) )
129106, 98, 123, 127, 128syl13anc 1230 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (
g  e.  X  /\  z  =  [ g ]  .~  ) )  /\  ( u  e.  H  /\  ( u  .x.  z
)  =  z ) )  ->  ( (
g  .+  ( ( invg `  G ) `
 g ) ) 
.+  ( u  .+  g ) )  =  ( g  .+  (
( ( invg `  G ) `  g
)  .+  ( u  .+  g ) ) ) )
1307, 60, 32grplid 15881 . . . . . . . . . . . . . . . . . 18  |-  ( ( G  e.  Grp  /\  ( u  .+  g )  e.  X )  -> 
( ( 0g `  G )  .+  (
u  .+  g )
)  =  ( u 
.+  g ) )
131106, 127, 130syl2anc 661 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (
g  e.  X  /\  z  =  [ g ]  .~  ) )  /\  ( u  e.  H  /\  ( u  .x.  z
)  =  z ) )  ->  ( ( 0g `  G )  .+  ( u  .+  g ) )  =  ( u 
.+  g ) )
132121, 129, 1313eqtr3d 2516 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
g  e.  X  /\  z  =  [ g ]  .~  ) )  /\  ( u  e.  H  /\  ( u  .x.  z
)  =  z ) )  ->  ( g  .+  ( ( ( invg `  G ) `
 g )  .+  ( u  .+  g ) ) )  =  ( u  .+  g ) )
133132oveq1d 6297 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
g  e.  X  /\  z  =  [ g ]  .~  ) )  /\  ( u  e.  H  /\  ( u  .x.  z
)  =  z ) )  ->  ( (
g  .+  ( (
( invg `  G ) `  g
)  .+  ( u  .+  g ) ) ) 
.-  g )  =  ( ( u  .+  g )  .-  g
) )
134 sylow2blem3.d . . . . . . . . . . . . . . . . 17  |-  .-  =  ( -g `  G )
1357, 60, 134grppncan 15930 . . . . . . . . . . . . . . . 16  |-  ( ( G  e.  Grp  /\  u  e.  X  /\  g  e.  X )  ->  ( ( u  .+  g )  .-  g
)  =  u )
136106, 125, 98, 135syl3anc 1228 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
g  e.  X  /\  z  =  [ g ]  .~  ) )  /\  ( u  e.  H  /\  ( u  .x.  z
)  =  z ) )  ->  ( (
u  .+  g )  .-  g )  =  u )
137118, 133, 1363eqtrd 2512 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
g  e.  X  /\  z  =  [ g ]  .~  ) )  /\  ( u  e.  H  /\  ( u  .x.  z
)  =  z ) )  ->  ( (
x  e.  K  |->  ( ( g  .+  x
)  .-  g )
) `  ( (
( invg `  G ) `  g
)  .+  ( u  .+  g ) ) )  =  u )
138 ovex 6307 . . . . . . . . . . . . . . . 16  |-  ( ( g  .+  x ) 
.-  g )  e. 
_V
139138, 115fnmpti 5707 . . . . . . . . . . . . . . 15  |-  ( x  e.  K  |->  ( ( g  .+  x ) 
.-  g ) )  Fn  K
140 fnfvelrn 6016 . . . . . . . . . . . . . . 15  |-  ( ( ( x  e.  K  |->  ( ( g  .+  x )  .-  g
) )  Fn  K  /\  ( ( ( invg `  G ) `
 g )  .+  ( u  .+  g ) )  e.  K )  ->  ( ( x  e.  K  |->  ( ( g  .+  x ) 
.-  g ) ) `
 ( ( ( invg `  G
) `  g )  .+  ( u  .+  g
) ) )  e. 
ran  ( x  e.  K  |->  ( ( g 
.+  x )  .-  g ) ) )
141139, 112, 140sylancr 663 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
g  e.  X  /\  z  =  [ g ]  .~  ) )  /\  ( u  e.  H  /\  ( u  .x.  z
)  =  z ) )  ->  ( (
x  e.  K  |->  ( ( g  .+  x
)  .-  g )
) `  ( (
( invg `  G ) `  g
)  .+  ( u  .+  g ) ) )  e.  ran  ( x  e.  K  |->  ( ( g  .+  x ) 
.-  g ) ) )
142137, 141eqeltrrd 2556 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
g  e.  X  /\  z  =  [ g ]  .~  ) )  /\  ( u  e.  H  /\  ( u  .x.  z
)  =  z ) )  ->  u  e.  ran  ( x  e.  K  |->  ( ( g  .+  x )  .-  g
) ) )
143142expr 615 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
g  e.  X  /\  z  =  [ g ]  .~  ) )  /\  u  e.  H )  ->  ( ( u  .x.  z )  =  z  ->  u  e.  ran  ( x  e.  K  |->  ( ( g  .+  x )  .-  g
) ) ) )
144143ralimdva 2872 . . . . . . . . . . 11  |-  ( (
ph  /\  ( g  e.  X  /\  z  =  [ g ]  .~  ) )  ->  ( A. u  e.  H  ( u  .x.  z )  =  z  ->  A. u  e.  H  u  e.  ran  ( x  e.  K  |->  ( ( g  .+  x )  .-  g
) ) ) )
145144imp 429 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
g  e.  X  /\  z  =  [ g ]  .~  ) )  /\  A. u  e.  H  ( u  .x.  z )  =  z )  ->  A. u  e.  H  u  e.  ran  ( x  e.  K  |->  ( ( g  .+  x ) 
.-  g ) ) )
146145an32s 802 . . . . . . . . 9  |-  ( ( ( ph  /\  A. u  e.  H  (
u  .x.  z )  =  z )  /\  ( g  e.  X  /\  z  =  [
g ]  .~  )
)  ->  A. u  e.  H  u  e.  ran  ( x  e.  K  |->  ( ( g  .+  x )  .-  g
) ) )
147 dfss3 3494 . . . . . . . . 9  |-  ( H 
C_  ran  ( x  e.  K  |->  ( ( g  .+  x ) 
.-  g ) )  <->  A. u  e.  H  u  e.  ran  ( x  e.  K  |->  ( ( g  .+  x ) 
.-  g ) ) )
148146, 147sylibr 212 . . . . . . . 8  |-  ( ( ( ph  /\  A. u  e.  H  (
u  .x.  z )  =  z )  /\  ( g  e.  X  /\  z  =  [
g ]  .~  )
)  ->  H  C_  ran  ( x  e.  K  |->  ( ( g  .+  x )  .-  g
) ) )
149148expr 615 . . . . . . 7  |-  ( ( ( ph  /\  A. u  e.  H  (
u  .x.  z )  =  z )  /\  g  e.  X )  ->  ( z  =  [
g ]  .~  ->  H 
C_  ran  ( x  e.  K  |->  ( ( g  .+  x ) 
.-  g ) ) ) )
150149reximdva 2938 . . . . . 6  |-  ( (
ph  /\  A. u  e.  H  ( u  .x.  z )  =  z )  ->  ( E. g  e.  X  z  =  [ g ]  .~  ->  E. g  e.  X  H  C_  ran  ( x  e.  K  |->  ( ( g  .+  x ) 
.-  g ) ) ) )
151150ex 434 . . . . 5  |-  ( ph  ->  ( A. u  e.  H  ( u  .x.  z )  =  z  ->  ( E. g  e.  X  z  =  [ g ]  .~  ->  E. g  e.  X  H  C_  ran  ( x  e.  K  |->  ( ( g  .+  x ) 
.-  g ) ) ) ) )
152151com23 78 . . . 4  |-  ( ph  ->  ( E. g  e.  X  z  =  [
g ]  .~  ->  ( A. u  e.  H  ( u  .x.  z )  =  z  ->  E. g  e.  X  H  C_  ran  ( x  e.  K  |->  ( ( g  .+  x )  .-  g
) ) ) ) )
15392, 152syl5bi 217 . . 3  |-  ( ph  ->  ( z  e.  ( X /.  .~  )  ->  ( A. u  e.  H  ( u  .x.  z )  =  z  ->  E. g  e.  X  H  C_  ran  ( x  e.  K  |->  ( ( g  .+  x ) 
.-  g ) ) ) ) )
154153rexlimdv 2953 . 2  |-  ( ph  ->  ( E. z  e.  ( X /.  .~  ) A. u  e.  H  ( u  .x.  z )  =  z  ->  E. g  e.  X  H  C_  ran  ( x  e.  K  |->  ( ( g  .+  x )  .-  g
) ) ) )
15590, 154mpd 15 1  |-  ( ph  ->  E. g  e.  X  H  C_  ran  ( x  e.  K  |->  ( ( g  .+  x ) 
.-  g ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 973    = wceq 1379    e. wcel 1767    =/= wne 2662   A.wral 2814   E.wrex 2815   {crab 2818    C_ wss 3476   (/)c0 3785   ~Pcpw 4010   {cpr 4029   class class class wbr 4447   {copab 4504    |-> cmpt 4505   ran crn 5000    Fn wfn 5581   ` cfv 5586  (class class class)co 6282    |-> cmpt2 6284    Er wer 7305   [cec 7306   /.cqs 7307   Fincfn 7513   0cc0 9488    x. cmul 9493    - cmin 9801    / cdiv 10202   NNcn 10532   NN0cn0 10791   ZZcz 10860   ^cexp 12130   #chash 12369    || cdivides 13843   Primecprime 14072    pCnt cpc 14215   Basecbs 14486   ↾s cress 14487   +g cplusg 14551   0gc0g 14691   Grpcgrp 15723   invgcminusg 15724   -gcsg 15726  SubGrpcsubg 15990   ~QG cqg 15992   pGrp cpgp 16347
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6574  ax-inf2 8054  ax-cnex 9544  ax-resscn 9545  ax-1cn 9546  ax-icn 9547  ax-addcl 9548  ax-addrcl 9549  ax-mulcl 9550  ax-mulrcl 9551  ax-mulcom 9552  ax-addass 9553  ax-mulass 9554  ax-distr 9555  ax-i2m1 9556  ax-1ne0 9557  ax-1rid 9558  ax-rnegex 9559  ax-rrecex 9560  ax-cnre 9561  ax-pre-lttri 9562  ax-pre-lttrn 9563  ax-pre-ltadd 9564  ax-pre-mulgt0 9565  ax-pre-sup 9566
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-fal 1385  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-int 4283  df-iun 4327  df-disj 4418  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-se 4839  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5549  df-fun 5588  df-fn 5589  df-f 5590  df-f1 5591  df-fo 5592  df-f1o 5593  df-fv 5594  df-isom 5595  df-riota 6243  df-ov 6285  df-oprab 6286  df-mpt2 6287  df-om 6679  df-1st 6781  df-2nd 6782  df-recs 7039  df-rdg 7073  df-1o 7127  df-2o 7128  df-oadd 7131  df-omul 7132  df-er 7308  df-ec 7310  df-qs 7314  df-map 7419  df-en 7514  df-dom 7515  df-sdom 7516  df-fin 7517  df-sup 7897  df-oi 7931  df-card 8316  df-acn 8319  df-cda 8544  df-pnf 9626  df-mnf 9627  df-xr 9628  df-ltxr 9629  df-le 9630  df-sub 9803  df-neg 9804  df-div 10203  df-nn 10533  df-2 10590  df-3 10591  df-n0 10792  df-z 10861  df-uz 11079  df-q 11179  df-rp 11217  df-fz 11669  df-fzo 11789  df-fl 11893  df-mod 11961  df-seq 12072  df-exp 12131  df-fac 12318  df-bc 12345  df-hash 12370  df-cj 12891  df-re 12892  df-im 12893  df-sqrt 13027  df-abs 13028  df-clim 13270  df-sum 13468  df-dvds 13844  df-gcd 14000  df-prm 14073  df-pc 14216  df-ndx 14489  df-slot 14490  df-base 14491  df-sets 14492  df-ress 14493  df-plusg 14564  df-0g 14693  df-mnd 15728  df-submnd 15778  df-grp 15858  df-minusg 15859  df-sbg 15860  df-mulg 15861  df-subg 15993  df-eqg 15995  df-ga 16123  df-od 16349  df-pgp 16351
This theorem is referenced by:  sylow2b  16439
  Copyright terms: Public domain W3C validator