MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sylow2blem3 Structured version   Unicode version

Theorem sylow2blem3 17200
Description: Sylow's second theorem. Putting together the results of sylow2a 17197 and the orbit-stabilizer theorem to show that  P does not divide the set of all fixed points under the group action, we get that there is a fixed point of the group action, so that there is some  g  e.  X with  h g K  =  g K for all  h  e.  H. This implies that  invg ( g ) h g  e.  K, so  h is in the conjugated subgroup  g K invg ( g ). (Contributed by Mario Carneiro, 18-Jan-2015.)
Hypotheses
Ref Expression
sylow2b.x  |-  X  =  ( Base `  G
)
sylow2b.xf  |-  ( ph  ->  X  e.  Fin )
sylow2b.h  |-  ( ph  ->  H  e.  (SubGrp `  G ) )
sylow2b.k  |-  ( ph  ->  K  e.  (SubGrp `  G ) )
sylow2b.a  |-  .+  =  ( +g  `  G )
sylow2b.r  |-  .~  =  ( G ~QG  K )
sylow2b.m  |-  .x.  =  ( x  e.  H ,  y  e.  ( X /.  .~  )  |->  ran  ( z  e.  y 
|->  ( x  .+  z
) ) )
sylow2blem3.hp  |-  ( ph  ->  P pGrp  ( Gs  H ) )
sylow2blem3.kn  |-  ( ph  ->  ( # `  K
)  =  ( P ^ ( P  pCnt  (
# `  X )
) ) )
sylow2blem3.d  |-  .-  =  ( -g `  G )
Assertion
Ref Expression
sylow2blem3  |-  ( ph  ->  E. g  e.  X  H  C_  ran  ( x  e.  K  |->  ( ( g  .+  x ) 
.-  g ) ) )
Distinct variable groups:    x, g,
y, z, G    g, K, x, y, z    .x. , g, x, y, z    .+ , g, x, y, z    .~ , g, x, y, z    ph, g,
z    x,  .- , z    g, H, x, y, z    g, X, x, y, z
Allowed substitution hints:    ph( x, y)    P( x, y, z, g)    .- ( y, g)

Proof of Theorem sylow2blem3
Dummy variable  u is distinct from all other variables.
StepHypRef Expression
1 sylow2blem3.hp . . . . . . . . 9  |-  ( ph  ->  P pGrp  ( Gs  H ) )
2 pgpprm 17171 . . . . . . . . 9  |-  ( P pGrp  ( Gs  H )  ->  P  e.  Prime )
31, 2syl 17 . . . . . . . 8  |-  ( ph  ->  P  e.  Prime )
4 sylow2b.h . . . . . . . . . . 11  |-  ( ph  ->  H  e.  (SubGrp `  G ) )
5 subgrcl 16764 . . . . . . . . . . 11  |-  ( H  e.  (SubGrp `  G
)  ->  G  e.  Grp )
64, 5syl 17 . . . . . . . . . 10  |-  ( ph  ->  G  e.  Grp )
7 sylow2b.x . . . . . . . . . . 11  |-  X  =  ( Base `  G
)
87grpbn0 16637 . . . . . . . . . 10  |-  ( G  e.  Grp  ->  X  =/=  (/) )
96, 8syl 17 . . . . . . . . 9  |-  ( ph  ->  X  =/=  (/) )
10 sylow2b.xf . . . . . . . . . 10  |-  ( ph  ->  X  e.  Fin )
11 hashnncl 12544 . . . . . . . . . 10  |-  ( X  e.  Fin  ->  (
( # `  X )  e.  NN  <->  X  =/=  (/) ) )
1210, 11syl 17 . . . . . . . . 9  |-  ( ph  ->  ( ( # `  X
)  e.  NN  <->  X  =/=  (/) ) )
139, 12mpbird 235 . . . . . . . 8  |-  ( ph  ->  ( # `  X
)  e.  NN )
14 pcndvds2 14771 . . . . . . . 8  |-  ( ( P  e.  Prime  /\  ( # `
 X )  e.  NN )  ->  -.  P  ||  ( ( # `  X )  /  ( P ^ ( P  pCnt  (
# `  X )
) ) ) )
153, 13, 14syl2anc 665 . . . . . . 7  |-  ( ph  ->  -.  P  ||  (
( # `  X )  /  ( P ^
( P  pCnt  ( # `
 X ) ) ) ) )
16 sylow2b.r . . . . . . . . . . 11  |-  .~  =  ( G ~QG  K )
17 sylow2b.k . . . . . . . . . . 11  |-  ( ph  ->  K  e.  (SubGrp `  G ) )
187, 16, 17, 10lagsubg2 16820 . . . . . . . . . 10  |-  ( ph  ->  ( # `  X
)  =  ( (
# `  ( X /.  .~  ) )  x.  ( # `  K
) ) )
1918oveq1d 6320 . . . . . . . . 9  |-  ( ph  ->  ( ( # `  X
)  /  ( # `  K ) )  =  ( ( ( # `  ( X /.  .~  ) )  x.  ( # `
 K ) )  /  ( # `  K
) ) )
20 sylow2blem3.kn . . . . . . . . . 10  |-  ( ph  ->  ( # `  K
)  =  ( P ^ ( P  pCnt  (
# `  X )
) ) )
2120oveq2d 6321 . . . . . . . . 9  |-  ( ph  ->  ( ( # `  X
)  /  ( # `  K ) )  =  ( ( # `  X
)  /  ( P ^ ( P  pCnt  (
# `  X )
) ) ) )
22 pwfi 7875 . . . . . . . . . . . . . 14  |-  ( X  e.  Fin  <->  ~P X  e.  Fin )
2310, 22sylib 199 . . . . . . . . . . . . 13  |-  ( ph  ->  ~P X  e.  Fin )
247, 16eqger 16809 . . . . . . . . . . . . . . 15  |-  ( K  e.  (SubGrp `  G
)  ->  .~  Er  X
)
2517, 24syl 17 . . . . . . . . . . . . . 14  |-  ( ph  ->  .~  Er  X )
2625qsss 7432 . . . . . . . . . . . . 13  |-  ( ph  ->  ( X /.  .~  )  C_  ~P X )
27 ssfi 7798 . . . . . . . . . . . . 13  |-  ( ( ~P X  e.  Fin  /\  ( X /.  .~  )  C_  ~P X )  ->  ( X /.  .~  )  e.  Fin )
2823, 26, 27syl2anc 665 . . . . . . . . . . . 12  |-  ( ph  ->  ( X /.  .~  )  e.  Fin )
29 hashcl 12535 . . . . . . . . . . . 12  |-  ( ( X /.  .~  )  e.  Fin  ->  ( # `  ( X /.  .~  ) )  e.  NN0 )
3028, 29syl 17 . . . . . . . . . . 11  |-  ( ph  ->  ( # `  ( X /.  .~  ) )  e.  NN0 )
3130nn0cnd 10927 . . . . . . . . . 10  |-  ( ph  ->  ( # `  ( X /.  .~  ) )  e.  CC )
32 eqid 2429 . . . . . . . . . . . . . . 15  |-  ( 0g
`  G )  =  ( 0g `  G
)
3332subg0cl 16767 . . . . . . . . . . . . . 14  |-  ( K  e.  (SubGrp `  G
)  ->  ( 0g `  G )  e.  K
)
3417, 33syl 17 . . . . . . . . . . . . 13  |-  ( ph  ->  ( 0g `  G
)  e.  K )
35 ne0i 3773 . . . . . . . . . . . . 13  |-  ( ( 0g `  G )  e.  K  ->  K  =/=  (/) )
3634, 35syl 17 . . . . . . . . . . . 12  |-  ( ph  ->  K  =/=  (/) )
377subgss 16760 . . . . . . . . . . . . . . 15  |-  ( K  e.  (SubGrp `  G
)  ->  K  C_  X
)
3817, 37syl 17 . . . . . . . . . . . . . 14  |-  ( ph  ->  K  C_  X )
39 ssfi 7798 . . . . . . . . . . . . . 14  |-  ( ( X  e.  Fin  /\  K  C_  X )  ->  K  e.  Fin )
4010, 38, 39syl2anc 665 . . . . . . . . . . . . 13  |-  ( ph  ->  K  e.  Fin )
41 hashnncl 12544 . . . . . . . . . . . . 13  |-  ( K  e.  Fin  ->  (
( # `  K )  e.  NN  <->  K  =/=  (/) ) )
4240, 41syl 17 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( # `  K
)  e.  NN  <->  K  =/=  (/) ) )
4336, 42mpbird 235 . . . . . . . . . . 11  |-  ( ph  ->  ( # `  K
)  e.  NN )
4443nncnd 10625 . . . . . . . . . 10  |-  ( ph  ->  ( # `  K
)  e.  CC )
4543nnne0d 10654 . . . . . . . . . 10  |-  ( ph  ->  ( # `  K
)  =/=  0 )
4631, 44, 45divcan4d 10388 . . . . . . . . 9  |-  ( ph  ->  ( ( ( # `  ( X /.  .~  ) )  x.  ( # `
 K ) )  /  ( # `  K
) )  =  (
# `  ( X /.  .~  ) ) )
4719, 21, 463eqtr3d 2478 . . . . . . . 8  |-  ( ph  ->  ( ( # `  X
)  /  ( P ^ ( P  pCnt  (
# `  X )
) ) )  =  ( # `  ( X /.  .~  ) ) )
4847breq2d 4438 . . . . . . 7  |-  ( ph  ->  ( P  ||  (
( # `  X )  /  ( P ^
( P  pCnt  ( # `
 X ) ) ) )  <->  P  ||  ( # `
 ( X /.  .~  ) ) ) )
4915, 48mtbid 301 . . . . . 6  |-  ( ph  ->  -.  P  ||  ( # `
 ( X /.  .~  ) ) )
50 prmz 14588 . . . . . . . 8  |-  ( P  e.  Prime  ->  P  e.  ZZ )
513, 50syl 17 . . . . . . 7  |-  ( ph  ->  P  e.  ZZ )
5230nn0zd 11038 . . . . . . 7  |-  ( ph  ->  ( # `  ( X /.  .~  ) )  e.  ZZ )
53 ssrab2 3552 . . . . . . . . . 10  |-  { z  e.  ( X /.  .~  )  |  A. u  e.  ( Base `  ( Gs  H ) ) ( u  .x.  z )  =  z }  C_  ( X /.  .~  )
54 ssfi 7798 . . . . . . . . . 10  |-  ( ( ( X /.  .~  )  e.  Fin  /\  {
z  e.  ( X /.  .~  )  | 
A. u  e.  (
Base `  ( Gs  H
) ) ( u 
.x.  z )  =  z }  C_  ( X /.  .~  ) )  ->  { z  e.  ( X /.  .~  )  |  A. u  e.  ( Base `  ( Gs  H ) ) ( u  .x.  z )  =  z }  e.  Fin )
5528, 53, 54sylancl 666 . . . . . . . . 9  |-  ( ph  ->  { z  e.  ( X /.  .~  )  |  A. u  e.  (
Base `  ( Gs  H
) ) ( u 
.x.  z )  =  z }  e.  Fin )
56 hashcl 12535 . . . . . . . . 9  |-  ( { z  e.  ( X /.  .~  )  | 
A. u  e.  (
Base `  ( Gs  H
) ) ( u 
.x.  z )  =  z }  e.  Fin  ->  ( # `  {
z  e.  ( X /.  .~  )  | 
A. u  e.  (
Base `  ( Gs  H
) ) ( u 
.x.  z )  =  z } )  e. 
NN0 )
5755, 56syl 17 . . . . . . . 8  |-  ( ph  ->  ( # `  {
z  e.  ( X /.  .~  )  | 
A. u  e.  (
Base `  ( Gs  H
) ) ( u 
.x.  z )  =  z } )  e. 
NN0 )
5857nn0zd 11038 . . . . . . 7  |-  ( ph  ->  ( # `  {
z  e.  ( X /.  .~  )  | 
A. u  e.  (
Base `  ( Gs  H
) ) ( u 
.x.  z )  =  z } )  e.  ZZ )
59 eqid 2429 . . . . . . . 8  |-  ( Base `  ( Gs  H ) )  =  ( Base `  ( Gs  H ) )
60 sylow2b.a . . . . . . . . 9  |-  .+  =  ( +g  `  G )
61 sylow2b.m . . . . . . . . 9  |-  .x.  =  ( x  e.  H ,  y  e.  ( X /.  .~  )  |->  ran  ( z  e.  y 
|->  ( x  .+  z
) ) )
627, 10, 4, 17, 60, 16, 61sylow2blem2 17199 . . . . . . . 8  |-  ( ph  ->  .x.  e.  ( ( Gs  H )  GrpAct  ( X /.  .~  ) ) )
63 eqid 2429 . . . . . . . . . . 11  |-  ( Gs  H )  =  ( Gs  H )
6463subgbas 16763 . . . . . . . . . 10  |-  ( H  e.  (SubGrp `  G
)  ->  H  =  ( Base `  ( Gs  H
) ) )
654, 64syl 17 . . . . . . . . 9  |-  ( ph  ->  H  =  ( Base `  ( Gs  H ) ) )
667subgss 16760 . . . . . . . . . . 11  |-  ( H  e.  (SubGrp `  G
)  ->  H  C_  X
)
674, 66syl 17 . . . . . . . . . 10  |-  ( ph  ->  H  C_  X )
68 ssfi 7798 . . . . . . . . . 10  |-  ( ( X  e.  Fin  /\  H  C_  X )  ->  H  e.  Fin )
6910, 67, 68syl2anc 665 . . . . . . . . 9  |-  ( ph  ->  H  e.  Fin )
7065, 69eqeltrrd 2518 . . . . . . . 8  |-  ( ph  ->  ( Base `  ( Gs  H ) )  e. 
Fin )
71 eqid 2429 . . . . . . . 8  |-  { z  e.  ( X /.  .~  )  |  A. u  e.  ( Base `  ( Gs  H ) ) ( u  .x.  z )  =  z }  =  { z  e.  ( X /.  .~  )  |  A. u  e.  (
Base `  ( Gs  H
) ) ( u 
.x.  z )  =  z }
72 eqid 2429 . . . . . . . 8  |-  { <. x ,  y >.  |  ( { x ,  y }  C_  ( X /.  .~  )  /\  E. g  e.  ( Base `  ( Gs  H ) ) ( g  .x.  x )  =  y ) }  =  { <. x ,  y >.  |  ( { x ,  y }  C_  ( X /.  .~  )  /\  E. g  e.  ( Base `  ( Gs  H ) ) ( g  .x.  x )  =  y ) }
7359, 62, 1, 70, 28, 71, 72sylow2a 17197 . . . . . . 7  |-  ( ph  ->  P  ||  ( (
# `  ( X /.  .~  ) )  -  ( # `  { z  e.  ( X /.  .~  )  |  A. u  e.  ( Base `  ( Gs  H ) ) ( u  .x.  z )  =  z } ) ) )
74 dvdssub2 14320 . . . . . . 7  |-  ( ( ( P  e.  ZZ  /\  ( # `  ( X /.  .~  ) )  e.  ZZ  /\  ( # `
 { z  e.  ( X /.  .~  )  |  A. u  e.  ( Base `  ( Gs  H ) ) ( u  .x.  z )  =  z } )  e.  ZZ )  /\  P  ||  ( ( # `  ( X /.  .~  ) )  -  ( # `
 { z  e.  ( X /.  .~  )  |  A. u  e.  ( Base `  ( Gs  H ) ) ( u  .x.  z )  =  z } ) ) )  ->  ( P  ||  ( # `  ( X /.  .~  ) )  <-> 
P  ||  ( # `  {
z  e.  ( X /.  .~  )  | 
A. u  e.  (
Base `  ( Gs  H
) ) ( u 
.x.  z )  =  z } ) ) )
7551, 52, 58, 73, 74syl31anc 1267 . . . . . 6  |-  ( ph  ->  ( P  ||  ( # `
 ( X /.  .~  ) )  <->  P  ||  ( # `
 { z  e.  ( X /.  .~  )  |  A. u  e.  ( Base `  ( Gs  H ) ) ( u  .x.  z )  =  z } ) ) )
7649, 75mtbid 301 . . . . 5  |-  ( ph  ->  -.  P  ||  ( # `
 { z  e.  ( X /.  .~  )  |  A. u  e.  ( Base `  ( Gs  H ) ) ( u  .x.  z )  =  z } ) )
77 hasheq0 12541 . . . . . . . 8  |-  ( { z  e.  ( X /.  .~  )  | 
A. u  e.  (
Base `  ( Gs  H
) ) ( u 
.x.  z )  =  z }  e.  Fin  ->  ( ( # `  {
z  e.  ( X /.  .~  )  | 
A. u  e.  (
Base `  ( Gs  H
) ) ( u 
.x.  z )  =  z } )  =  0  <->  { z  e.  ( X /.  .~  )  |  A. u  e.  (
Base `  ( Gs  H
) ) ( u 
.x.  z )  =  z }  =  (/) ) )
7855, 77syl 17 . . . . . . 7  |-  ( ph  ->  ( ( # `  {
z  e.  ( X /.  .~  )  | 
A. u  e.  (
Base `  ( Gs  H
) ) ( u 
.x.  z )  =  z } )  =  0  <->  { z  e.  ( X /.  .~  )  |  A. u  e.  (
Base `  ( Gs  H
) ) ( u 
.x.  z )  =  z }  =  (/) ) )
79 dvds0 14296 . . . . . . . . 9  |-  ( P  e.  ZZ  ->  P  ||  0 )
8051, 79syl 17 . . . . . . . 8  |-  ( ph  ->  P  ||  0 )
81 breq2 4430 . . . . . . . 8  |-  ( (
# `  { z  e.  ( X /.  .~  )  |  A. u  e.  ( Base `  ( Gs  H ) ) ( u  .x.  z )  =  z } )  =  0  ->  ( P  ||  ( # `  {
z  e.  ( X /.  .~  )  | 
A. u  e.  (
Base `  ( Gs  H
) ) ( u 
.x.  z )  =  z } )  <->  P  ||  0
) )
8280, 81syl5ibrcom 225 . . . . . . 7  |-  ( ph  ->  ( ( # `  {
z  e.  ( X /.  .~  )  | 
A. u  e.  (
Base `  ( Gs  H
) ) ( u 
.x.  z )  =  z } )  =  0  ->  P  ||  ( # `
 { z  e.  ( X /.  .~  )  |  A. u  e.  ( Base `  ( Gs  H ) ) ( u  .x.  z )  =  z } ) ) )
8378, 82sylbird 238 . . . . . 6  |-  ( ph  ->  ( { z  e.  ( X /.  .~  )  |  A. u  e.  ( Base `  ( Gs  H ) ) ( u  .x.  z )  =  z }  =  (/) 
->  P  ||  ( # `  { z  e.  ( X /.  .~  )  |  A. u  e.  (
Base `  ( Gs  H
) ) ( u 
.x.  z )  =  z } ) ) )
8483necon3bd 2643 . . . . 5  |-  ( ph  ->  ( -.  P  ||  ( # `  { z  e.  ( X /.  .~  )  |  A. u  e.  ( Base `  ( Gs  H ) ) ( u  .x.  z )  =  z } )  ->  { z  e.  ( X /.  .~  )  |  A. u  e.  ( Base `  ( Gs  H ) ) ( u  .x.  z )  =  z }  =/=  (/) ) )
8576, 84mpd 15 . . . 4  |-  ( ph  ->  { z  e.  ( X /.  .~  )  |  A. u  e.  (
Base `  ( Gs  H
) ) ( u 
.x.  z )  =  z }  =/=  (/) )
86 rabn0 3788 . . . 4  |-  ( { z  e.  ( X /.  .~  )  | 
A. u  e.  (
Base `  ( Gs  H
) ) ( u 
.x.  z )  =  z }  =/=  (/)  <->  E. z  e.  ( X /.  .~  ) A. u  e.  (
Base `  ( Gs  H
) ) ( u 
.x.  z )  =  z )
8785, 86sylib 199 . . 3  |-  ( ph  ->  E. z  e.  ( X /.  .~  ) A. u  e.  ( Base `  ( Gs  H ) ) ( u  .x.  z )  =  z )
8865raleqdv 3038 . . . 4  |-  ( ph  ->  ( A. u  e.  H  ( u  .x.  z )  =  z  <->  A. u  e.  ( Base `  ( Gs  H ) ) ( u  .x.  z )  =  z ) )
8988rexbidv 2946 . . 3  |-  ( ph  ->  ( E. z  e.  ( X /.  .~  ) A. u  e.  H  ( u  .x.  z )  =  z  <->  E. z  e.  ( X /.  .~  ) A. u  e.  (
Base `  ( Gs  H
) ) ( u 
.x.  z )  =  z ) )
9087, 89mpbird 235 . 2  |-  ( ph  ->  E. z  e.  ( X /.  .~  ) A. u  e.  H  ( u  .x.  z )  =  z )
91 vex 3090 . . . . 5  |-  z  e. 
_V
9291elqs 7424 . . . 4  |-  ( z  e.  ( X /.  .~  )  <->  E. g  e.  X  z  =  [ g ]  .~  )
93 simplrr 769 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  (
g  e.  X  /\  z  =  [ g ]  .~  ) )  /\  ( u  e.  H  /\  ( u  .x.  z
)  =  z ) )  ->  z  =  [ g ]  .~  )
9493oveq2d 6321 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  (
g  e.  X  /\  z  =  [ g ]  .~  ) )  /\  ( u  e.  H  /\  ( u  .x.  z
)  =  z ) )  ->  ( u  .x.  z )  =  ( u  .x.  [ g ]  .~  ) )
95 simprr 764 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  (
g  e.  X  /\  z  =  [ g ]  .~  ) )  /\  ( u  e.  H  /\  ( u  .x.  z
)  =  z ) )  ->  ( u  .x.  z )  =  z )
96 simpll 758 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ph  /\  (
g  e.  X  /\  z  =  [ g ]  .~  ) )  /\  ( u  e.  H  /\  ( u  .x.  z
)  =  z ) )  ->  ph )
97 simprl 762 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ph  /\  (
g  e.  X  /\  z  =  [ g ]  .~  ) )  /\  ( u  e.  H  /\  ( u  .x.  z
)  =  z ) )  ->  u  e.  H )
98 simplrl 768 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ph  /\  (
g  e.  X  /\  z  =  [ g ]  .~  ) )  /\  ( u  e.  H  /\  ( u  .x.  z
)  =  z ) )  ->  g  e.  X )
997, 10, 4, 17, 60, 16, 61sylow2blem1 17198 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( (
ph  /\  u  e.  H  /\  g  e.  X
)  ->  ( u  .x.  [ g ]  .~  )  =  [ (
u  .+  g ) ]  .~  )
10096, 97, 98, 99syl3anc 1264 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  (
g  e.  X  /\  z  =  [ g ]  .~  ) )  /\  ( u  e.  H  /\  ( u  .x.  z
)  =  z ) )  ->  ( u  .x.  [ g ]  .~  )  =  [ (
u  .+  g ) ]  .~  )
10194, 95, 1003eqtr3d 2478 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  (
g  e.  X  /\  z  =  [ g ]  .~  ) )  /\  ( u  e.  H  /\  ( u  .x.  z
)  =  z ) )  ->  z  =  [ ( u  .+  g ) ]  .~  )
10293, 101eqtr3d 2472 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  (
g  e.  X  /\  z  =  [ g ]  .~  ) )  /\  ( u  e.  H  /\  ( u  .x.  z
)  =  z ) )  ->  [ g ]  .~  =  [ ( u  .+  g ) ]  .~  )
10325ad2antrr 730 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  (
g  e.  X  /\  z  =  [ g ]  .~  ) )  /\  ( u  e.  H  /\  ( u  .x.  z
)  =  z ) )  ->  .~  Er  X
)
104103, 98erth 7416 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  (
g  e.  X  /\  z  =  [ g ]  .~  ) )  /\  ( u  e.  H  /\  ( u  .x.  z
)  =  z ) )  ->  ( g  .~  ( u  .+  g
)  <->  [ g ]  .~  =  [ ( u  .+  g ) ]  .~  ) )
105102, 104mpbird 235 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  (
g  e.  X  /\  z  =  [ g ]  .~  ) )  /\  ( u  e.  H  /\  ( u  .x.  z
)  =  z ) )  ->  g  .~  ( u  .+  g ) )
1066ad2antrr 730 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  (
g  e.  X  /\  z  =  [ g ]  .~  ) )  /\  ( u  e.  H  /\  ( u  .x.  z
)  =  z ) )  ->  G  e.  Grp )
10738ad2antrr 730 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  (
g  e.  X  /\  z  =  [ g ]  .~  ) )  /\  ( u  e.  H  /\  ( u  .x.  z
)  =  z ) )  ->  K  C_  X
)
108 eqid 2429 . . . . . . . . . . . . . . . . . . . 20  |-  ( invg `  G )  =  ( invg `  G )
1097, 108, 60, 16eqgval 16808 . . . . . . . . . . . . . . . . . . 19  |-  ( ( G  e.  Grp  /\  K  C_  X )  -> 
( g  .~  (
u  .+  g )  <->  ( g  e.  X  /\  ( u  .+  g )  e.  X  /\  (
( ( invg `  G ) `  g
)  .+  ( u  .+  g ) )  e.  K ) ) )
110106, 107, 109syl2anc 665 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  (
g  e.  X  /\  z  =  [ g ]  .~  ) )  /\  ( u  e.  H  /\  ( u  .x.  z
)  =  z ) )  ->  ( g  .~  ( u  .+  g
)  <->  ( g  e.  X  /\  ( u 
.+  g )  e.  X  /\  ( ( ( invg `  G ) `  g
)  .+  ( u  .+  g ) )  e.  K ) ) )
111105, 110mpbid 213 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (
g  e.  X  /\  z  =  [ g ]  .~  ) )  /\  ( u  e.  H  /\  ( u  .x.  z
)  =  z ) )  ->  ( g  e.  X  /\  (
u  .+  g )  e.  X  /\  (
( ( invg `  G ) `  g
)  .+  ( u  .+  g ) )  e.  K ) )
112111simp3d 1019 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
g  e.  X  /\  z  =  [ g ]  .~  ) )  /\  ( u  e.  H  /\  ( u  .x.  z
)  =  z ) )  ->  ( (
( invg `  G ) `  g
)  .+  ( u  .+  g ) )  e.  K )
113 oveq2 6313 . . . . . . . . . . . . . . . . . 18  |-  ( x  =  ( ( ( invg `  G
) `  g )  .+  ( u  .+  g
) )  ->  (
g  .+  x )  =  ( g  .+  ( ( ( invg `  G ) `
 g )  .+  ( u  .+  g ) ) ) )
114113oveq1d 6320 . . . . . . . . . . . . . . . . 17  |-  ( x  =  ( ( ( invg `  G
) `  g )  .+  ( u  .+  g
) )  ->  (
( g  .+  x
)  .-  g )  =  ( ( g 
.+  ( ( ( invg `  G
) `  g )  .+  ( u  .+  g
) ) )  .-  g ) )
115 eqid 2429 . . . . . . . . . . . . . . . . 17  |-  ( x  e.  K  |->  ( ( g  .+  x ) 
.-  g ) )  =  ( x  e.  K  |->  ( ( g 
.+  x )  .-  g ) )
116 ovex 6333 . . . . . . . . . . . . . . . . 17  |-  ( ( g  .+  ( ( ( invg `  G ) `  g
)  .+  ( u  .+  g ) ) ) 
.-  g )  e. 
_V
117114, 115, 116fvmpt 5964 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( invg `  G ) `  g
)  .+  ( u  .+  g ) )  e.  K  ->  ( (
x  e.  K  |->  ( ( g  .+  x
)  .-  g )
) `  ( (
( invg `  G ) `  g
)  .+  ( u  .+  g ) ) )  =  ( ( g 
.+  ( ( ( invg `  G
) `  g )  .+  ( u  .+  g
) ) )  .-  g ) )
118112, 117syl 17 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
g  e.  X  /\  z  =  [ g ]  .~  ) )  /\  ( u  e.  H  /\  ( u  .x.  z
)  =  z ) )  ->  ( (
x  e.  K  |->  ( ( g  .+  x
)  .-  g )
) `  ( (
( invg `  G ) `  g
)  .+  ( u  .+  g ) ) )  =  ( ( g 
.+  ( ( ( invg `  G
) `  g )  .+  ( u  .+  g
) ) )  .-  g ) )
1197, 60, 32, 108grprinv 16655 . . . . . . . . . . . . . . . . . . 19  |-  ( ( G  e.  Grp  /\  g  e.  X )  ->  ( g  .+  (
( invg `  G ) `  g
) )  =  ( 0g `  G ) )
120106, 98, 119syl2anc 665 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  (
g  e.  X  /\  z  =  [ g ]  .~  ) )  /\  ( u  e.  H  /\  ( u  .x.  z
)  =  z ) )  ->  ( g  .+  ( ( invg `  G ) `  g
) )  =  ( 0g `  G ) )
121120oveq1d 6320 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (
g  e.  X  /\  z  =  [ g ]  .~  ) )  /\  ( u  e.  H  /\  ( u  .x.  z
)  =  z ) )  ->  ( (
g  .+  ( ( invg `  G ) `
 g ) ) 
.+  ( u  .+  g ) )  =  ( ( 0g `  G )  .+  (
u  .+  g )
) )
1227, 108grpinvcl 16653 . . . . . . . . . . . . . . . . . . 19  |-  ( ( G  e.  Grp  /\  g  e.  X )  ->  ( ( invg `  G ) `  g
)  e.  X )
123106, 98, 122syl2anc 665 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  (
g  e.  X  /\  z  =  [ g ]  .~  ) )  /\  ( u  e.  H  /\  ( u  .x.  z
)  =  z ) )  ->  ( ( invg `  G ) `
 g )  e.  X )
12467ad2antrr 730 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  (
g  e.  X  /\  z  =  [ g ]  .~  ) )  /\  ( u  e.  H  /\  ( u  .x.  z
)  =  z ) )  ->  H  C_  X
)
125124, 97sseldd 3471 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  (
g  e.  X  /\  z  =  [ g ]  .~  ) )  /\  ( u  e.  H  /\  ( u  .x.  z
)  =  z ) )  ->  u  e.  X )
1267, 60grpcl 16621 . . . . . . . . . . . . . . . . . . 19  |-  ( ( G  e.  Grp  /\  u  e.  X  /\  g  e.  X )  ->  ( u  .+  g
)  e.  X )
127106, 125, 98, 126syl3anc 1264 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  (
g  e.  X  /\  z  =  [ g ]  .~  ) )  /\  ( u  e.  H  /\  ( u  .x.  z
)  =  z ) )  ->  ( u  .+  g )  e.  X
)
1287, 60grpass 16622 . . . . . . . . . . . . . . . . . 18  |-  ( ( G  e.  Grp  /\  ( g  e.  X  /\  ( ( invg `  G ) `  g
)  e.  X  /\  ( u  .+  g )  e.  X ) )  ->  ( ( g 
.+  ( ( invg `  G ) `
 g ) ) 
.+  ( u  .+  g ) )  =  ( g  .+  (
( ( invg `  G ) `  g
)  .+  ( u  .+  g ) ) ) )
129106, 98, 123, 127, 128syl13anc 1266 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (
g  e.  X  /\  z  =  [ g ]  .~  ) )  /\  ( u  e.  H  /\  ( u  .x.  z
)  =  z ) )  ->  ( (
g  .+  ( ( invg `  G ) `
 g ) ) 
.+  ( u  .+  g ) )  =  ( g  .+  (
( ( invg `  G ) `  g
)  .+  ( u  .+  g ) ) ) )
1307, 60, 32grplid 16638 . . . . . . . . . . . . . . . . . 18  |-  ( ( G  e.  Grp  /\  ( u  .+  g )  e.  X )  -> 
( ( 0g `  G )  .+  (
u  .+  g )
)  =  ( u 
.+  g ) )
131106, 127, 130syl2anc 665 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (
g  e.  X  /\  z  =  [ g ]  .~  ) )  /\  ( u  e.  H  /\  ( u  .x.  z
)  =  z ) )  ->  ( ( 0g `  G )  .+  ( u  .+  g ) )  =  ( u 
.+  g ) )
132121, 129, 1313eqtr3d 2478 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
g  e.  X  /\  z  =  [ g ]  .~  ) )  /\  ( u  e.  H  /\  ( u  .x.  z
)  =  z ) )  ->  ( g  .+  ( ( ( invg `  G ) `
 g )  .+  ( u  .+  g ) ) )  =  ( u  .+  g ) )
133132oveq1d 6320 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
g  e.  X  /\  z  =  [ g ]  .~  ) )  /\  ( u  e.  H  /\  ( u  .x.  z
)  =  z ) )  ->  ( (
g  .+  ( (
( invg `  G ) `  g
)  .+  ( u  .+  g ) ) ) 
.-  g )  =  ( ( u  .+  g )  .-  g
) )
134 sylow2blem3.d . . . . . . . . . . . . . . . . 17  |-  .-  =  ( -g `  G )
1357, 60, 134grppncan 16687 . . . . . . . . . . . . . . . 16  |-  ( ( G  e.  Grp  /\  u  e.  X  /\  g  e.  X )  ->  ( ( u  .+  g )  .-  g
)  =  u )
136106, 125, 98, 135syl3anc 1264 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
g  e.  X  /\  z  =  [ g ]  .~  ) )  /\  ( u  e.  H  /\  ( u  .x.  z
)  =  z ) )  ->  ( (
u  .+  g )  .-  g )  =  u )
137118, 133, 1363eqtrd 2474 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
g  e.  X  /\  z  =  [ g ]  .~  ) )  /\  ( u  e.  H  /\  ( u  .x.  z
)  =  z ) )  ->  ( (
x  e.  K  |->  ( ( g  .+  x
)  .-  g )
) `  ( (
( invg `  G ) `  g
)  .+  ( u  .+  g ) ) )  =  u )
138 ovex 6333 . . . . . . . . . . . . . . . 16  |-  ( ( g  .+  x ) 
.-  g )  e. 
_V
139138, 115fnmpti 5724 . . . . . . . . . . . . . . 15  |-  ( x  e.  K  |->  ( ( g  .+  x ) 
.-  g ) )  Fn  K
140 fnfvelrn 6034 . . . . . . . . . . . . . . 15  |-  ( ( ( x  e.  K  |->  ( ( g  .+  x )  .-  g
) )  Fn  K  /\  ( ( ( invg `  G ) `
 g )  .+  ( u  .+  g ) )  e.  K )  ->  ( ( x  e.  K  |->  ( ( g  .+  x ) 
.-  g ) ) `
 ( ( ( invg `  G
) `  g )  .+  ( u  .+  g
) ) )  e. 
ran  ( x  e.  K  |->  ( ( g 
.+  x )  .-  g ) ) )
141139, 112, 140sylancr 667 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
g  e.  X  /\  z  =  [ g ]  .~  ) )  /\  ( u  e.  H  /\  ( u  .x.  z
)  =  z ) )  ->  ( (
x  e.  K  |->  ( ( g  .+  x
)  .-  g )
) `  ( (
( invg `  G ) `  g
)  .+  ( u  .+  g ) ) )  e.  ran  ( x  e.  K  |->  ( ( g  .+  x ) 
.-  g ) ) )
142137, 141eqeltrrd 2518 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
g  e.  X  /\  z  =  [ g ]  .~  ) )  /\  ( u  e.  H  /\  ( u  .x.  z
)  =  z ) )  ->  u  e.  ran  ( x  e.  K  |->  ( ( g  .+  x )  .-  g
) ) )
143142expr 618 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
g  e.  X  /\  z  =  [ g ]  .~  ) )  /\  u  e.  H )  ->  ( ( u  .x.  z )  =  z  ->  u  e.  ran  ( x  e.  K  |->  ( ( g  .+  x )  .-  g
) ) ) )
144143ralimdva 2840 . . . . . . . . . . 11  |-  ( (
ph  /\  ( g  e.  X  /\  z  =  [ g ]  .~  ) )  ->  ( A. u  e.  H  ( u  .x.  z )  =  z  ->  A. u  e.  H  u  e.  ran  ( x  e.  K  |->  ( ( g  .+  x )  .-  g
) ) ) )
145144imp 430 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
g  e.  X  /\  z  =  [ g ]  .~  ) )  /\  A. u  e.  H  ( u  .x.  z )  =  z )  ->  A. u  e.  H  u  e.  ran  ( x  e.  K  |->  ( ( g  .+  x ) 
.-  g ) ) )
146145an32s 811 . . . . . . . . 9  |-  ( ( ( ph  /\  A. u  e.  H  (
u  .x.  z )  =  z )  /\  ( g  e.  X  /\  z  =  [
g ]  .~  )
)  ->  A. u  e.  H  u  e.  ran  ( x  e.  K  |->  ( ( g  .+  x )  .-  g
) ) )
147 dfss3 3460 . . . . . . . . 9  |-  ( H 
C_  ran  ( x  e.  K  |->  ( ( g  .+  x ) 
.-  g ) )  <->  A. u  e.  H  u  e.  ran  ( x  e.  K  |->  ( ( g  .+  x ) 
.-  g ) ) )
148146, 147sylibr 215 . . . . . . . 8  |-  ( ( ( ph  /\  A. u  e.  H  (
u  .x.  z )  =  z )  /\  ( g  e.  X  /\  z  =  [
g ]  .~  )
)  ->  H  C_  ran  ( x  e.  K  |->  ( ( g  .+  x )  .-  g
) ) )
149148expr 618 . . . . . . 7  |-  ( ( ( ph  /\  A. u  e.  H  (
u  .x.  z )  =  z )  /\  g  e.  X )  ->  ( z  =  [
g ]  .~  ->  H 
C_  ran  ( x  e.  K  |->  ( ( g  .+  x ) 
.-  g ) ) ) )
150149reximdva 2907 . . . . . 6  |-  ( (
ph  /\  A. u  e.  H  ( u  .x.  z )  =  z )  ->  ( E. g  e.  X  z  =  [ g ]  .~  ->  E. g  e.  X  H  C_  ran  ( x  e.  K  |->  ( ( g  .+  x ) 
.-  g ) ) ) )
151150ex 435 . . . . 5  |-  ( ph  ->  ( A. u  e.  H  ( u  .x.  z )  =  z  ->  ( E. g  e.  X  z  =  [ g ]  .~  ->  E. g  e.  X  H  C_  ran  ( x  e.  K  |->  ( ( g  .+  x ) 
.-  g ) ) ) ) )
152151com23 81 . . . 4  |-  ( ph  ->  ( E. g  e.  X  z  =  [
g ]  .~  ->  ( A. u  e.  H  ( u  .x.  z )  =  z  ->  E. g  e.  X  H  C_  ran  ( x  e.  K  |->  ( ( g  .+  x )  .-  g
) ) ) ) )
15392, 152syl5bi 220 . . 3  |-  ( ph  ->  ( z  e.  ( X /.  .~  )  ->  ( A. u  e.  H  ( u  .x.  z )  =  z  ->  E. g  e.  X  H  C_  ran  ( x  e.  K  |->  ( ( g  .+  x ) 
.-  g ) ) ) ) )
154153rexlimdv 2922 . 2  |-  ( ph  ->  ( E. z  e.  ( X /.  .~  ) A. u  e.  H  ( u  .x.  z )  =  z  ->  E. g  e.  X  H  C_  ran  ( x  e.  K  |->  ( ( g  .+  x )  .-  g
) ) ) )
15590, 154mpd 15 1  |-  ( ph  ->  E. g  e.  X  H  C_  ran  ( x  e.  K  |->  ( ( g  .+  x ) 
.-  g ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 187    /\ wa 370    /\ w3a 982    = wceq 1437    e. wcel 1870    =/= wne 2625   A.wral 2782   E.wrex 2783   {crab 2786    C_ wss 3442   (/)c0 3767   ~Pcpw 3985   {cpr 4004   class class class wbr 4426   {copab 4483    |-> cmpt 4484   ran crn 4855    Fn wfn 5596   ` cfv 5601  (class class class)co 6305    |-> cmpt2 6307    Er wer 7368   [cec 7369   /.cqs 7370   Fincfn 7577   0cc0 9538    x. cmul 9543    - cmin 9859    / cdiv 10268   NNcn 10609   NN0cn0 10869   ZZcz 10937   ^cexp 12269   #chash 12512    || cdvds 14283   Primecprime 14584    pCnt cpc 14740   Basecbs 15075   ↾s cress 15076   +g cplusg 15143   0gc0g 15288   Grpcgrp 16611   invgcminusg 16612   -gcsg 16613  SubGrpcsubg 16753   ~QG cqg 16755   pGrp cpgp 17109
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1751  ax-6 1797  ax-7 1841  ax-8 1872  ax-9 1874  ax-10 1889  ax-11 1894  ax-12 1907  ax-13 2055  ax-ext 2407  ax-rep 4538  ax-sep 4548  ax-nul 4556  ax-pow 4603  ax-pr 4661  ax-un 6597  ax-inf2 8146  ax-cnex 9594  ax-resscn 9595  ax-1cn 9596  ax-icn 9597  ax-addcl 9598  ax-addrcl 9599  ax-mulcl 9600  ax-mulrcl 9601  ax-mulcom 9602  ax-addass 9603  ax-mulass 9604  ax-distr 9605  ax-i2m1 9606  ax-1ne0 9607  ax-1rid 9608  ax-rnegex 9609  ax-rrecex 9610  ax-cnre 9611  ax-pre-lttri 9612  ax-pre-lttrn 9613  ax-pre-ltadd 9614  ax-pre-mulgt0 9615  ax-pre-sup 9616
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-fal 1443  df-ex 1660  df-nf 1664  df-sb 1790  df-eu 2270  df-mo 2271  df-clab 2415  df-cleq 2421  df-clel 2424  df-nfc 2579  df-ne 2627  df-nel 2628  df-ral 2787  df-rex 2788  df-reu 2789  df-rmo 2790  df-rab 2791  df-v 3089  df-sbc 3306  df-csb 3402  df-dif 3445  df-un 3447  df-in 3449  df-ss 3456  df-pss 3458  df-nul 3768  df-if 3916  df-pw 3987  df-sn 4003  df-pr 4005  df-tp 4007  df-op 4009  df-uni 4223  df-int 4259  df-iun 4304  df-disj 4398  df-br 4427  df-opab 4485  df-mpt 4486  df-tr 4521  df-eprel 4765  df-id 4769  df-po 4775  df-so 4776  df-fr 4813  df-se 4814  df-we 4815  df-xp 4860  df-rel 4861  df-cnv 4862  df-co 4863  df-dm 4864  df-rn 4865  df-res 4866  df-ima 4867  df-pred 5399  df-ord 5445  df-on 5446  df-lim 5447  df-suc 5448  df-iota 5565  df-fun 5603  df-fn 5604  df-f 5605  df-f1 5606  df-fo 5607  df-f1o 5608  df-fv 5609  df-isom 5610  df-riota 6267  df-ov 6308  df-oprab 6309  df-mpt2 6310  df-om 6707  df-1st 6807  df-2nd 6808  df-wrecs 7036  df-recs 7098  df-rdg 7136  df-1o 7190  df-2o 7191  df-oadd 7194  df-omul 7195  df-er 7371  df-ec 7373  df-qs 7377  df-map 7482  df-en 7578  df-dom 7579  df-sdom 7580  df-fin 7581  df-sup 7962  df-inf 7963  df-oi 8025  df-card 8372  df-acn 8375  df-cda 8596  df-pnf 9676  df-mnf 9677  df-xr 9678  df-ltxr 9679  df-le 9680  df-sub 9861  df-neg 9862  df-div 10269  df-nn 10610  df-2 10668  df-3 10669  df-n0 10870  df-z 10938  df-uz 11160  df-q 11265  df-rp 11303  df-fz 11783  df-fzo 11914  df-fl 12025  df-mod 12094  df-seq 12211  df-exp 12270  df-fac 12457  df-bc 12485  df-hash 12513  df-cj 13141  df-re 13142  df-im 13143  df-sqrt 13277  df-abs 13278  df-clim 13530  df-sum 13731  df-dvds 14284  df-gcd 14443  df-prm 14585  df-pc 14741  df-ndx 15078  df-slot 15079  df-base 15080  df-sets 15081  df-ress 15082  df-plusg 15156  df-0g 15290  df-mgm 16430  df-sgrp 16469  df-mnd 16479  df-submnd 16525  df-grp 16615  df-minusg 16616  df-sbg 16617  df-mulg 16618  df-subg 16756  df-eqg 16758  df-ga 16886  df-od 17111  df-pgp 17113
This theorem is referenced by:  sylow2b  17201
  Copyright terms: Public domain W3C validator