MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sylow2blem2 Structured version   Visualization version   Unicode version

Theorem sylow2blem2 17351
Description: Lemma for sylow2b 17353. Left multiplication in a subgroup  H is a group action on the set of all left cosets of  K. (Contributed by Mario Carneiro, 17-Jan-2015.)
Hypotheses
Ref Expression
sylow2b.x  |-  X  =  ( Base `  G
)
sylow2b.xf  |-  ( ph  ->  X  e.  Fin )
sylow2b.h  |-  ( ph  ->  H  e.  (SubGrp `  G ) )
sylow2b.k  |-  ( ph  ->  K  e.  (SubGrp `  G ) )
sylow2b.a  |-  .+  =  ( +g  `  G )
sylow2b.r  |-  .~  =  ( G ~QG  K )
sylow2b.m  |-  .x.  =  ( x  e.  H ,  y  e.  ( X /.  .~  )  |->  ran  ( z  e.  y 
|->  ( x  .+  z
) ) )
Assertion
Ref Expression
sylow2blem2  |-  ( ph  ->  .x.  e.  ( ( Gs  H )  GrpAct  ( X /.  .~  ) ) )
Distinct variable groups:    x, y,
z, G    x, K, y, z    x,  .x. , y,
z    x,  .+ , y, z   
x,  .~ , y, z    ph, z    x, H, y, z    x, X, y, z
Allowed substitution hints:    ph( x, y)

Proof of Theorem sylow2blem2
Dummy variables  a 
b  s  u  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sylow2b.h . . . 4  |-  ( ph  ->  H  e.  (SubGrp `  G ) )
2 eqid 2471 . . . . 5  |-  ( Gs  H )  =  ( Gs  H )
32subggrp 16898 . . . 4  |-  ( H  e.  (SubGrp `  G
)  ->  ( Gs  H
)  e.  Grp )
41, 3syl 17 . . 3  |-  ( ph  ->  ( Gs  H )  e.  Grp )
5 sylow2b.xf . . . . 5  |-  ( ph  ->  X  e.  Fin )
6 pwfi 7887 . . . . 5  |-  ( X  e.  Fin  <->  ~P X  e.  Fin )
75, 6sylib 201 . . . 4  |-  ( ph  ->  ~P X  e.  Fin )
8 sylow2b.k . . . . . 6  |-  ( ph  ->  K  e.  (SubGrp `  G ) )
9 sylow2b.x . . . . . . 7  |-  X  =  ( Base `  G
)
10 sylow2b.r . . . . . . 7  |-  .~  =  ( G ~QG  K )
119, 10eqger 16945 . . . . . 6  |-  ( K  e.  (SubGrp `  G
)  ->  .~  Er  X
)
128, 11syl 17 . . . . 5  |-  ( ph  ->  .~  Er  X )
1312qsss 7442 . . . 4  |-  ( ph  ->  ( X /.  .~  )  C_  ~P X )
147, 13ssexd 4543 . . 3  |-  ( ph  ->  ( X /.  .~  )  e.  _V )
154, 14jca 541 . 2  |-  ( ph  ->  ( ( Gs  H )  e.  Grp  /\  ( X /.  .~  )  e. 
_V ) )
16 sylow2b.m . . . . . . 7  |-  .x.  =  ( x  e.  H ,  y  e.  ( X /.  .~  )  |->  ran  ( z  e.  y 
|->  ( x  .+  z
) ) )
17 vex 3034 . . . . . . . . 9  |-  y  e. 
_V
1817mptex 6152 . . . . . . . 8  |-  ( z  e.  y  |->  ( x 
.+  z ) )  e.  _V
1918rnex 6746 . . . . . . 7  |-  ran  (
z  e.  y  |->  ( x  .+  z ) )  e.  _V
2016, 19fnmpt2i 6881 . . . . . 6  |-  .x.  Fn  ( H  X.  ( X /.  .~  ) )
2120a1i 11 . . . . 5  |-  ( ph  ->  .x.  Fn  ( H  X.  ( X /.  .~  ) ) )
22 eqid 2471 . . . . . . . 8  |-  ( X /.  .~  )  =  ( X /.  .~  )
23 oveq2 6316 . . . . . . . . 9  |-  ( [ s ]  .~  =  v  ->  ( u  .x.  [ s ]  .~  )  =  ( u  .x.  v ) )
2423eleq1d 2533 . . . . . . . 8  |-  ( [ s ]  .~  =  v  ->  ( ( u 
.x.  [ s ]  .~  )  e.  ( X /.  .~  )  <->  ( u  .x.  v )  e.  ( X /.  .~  )
) )
25 sylow2b.a . . . . . . . . . . 11  |-  .+  =  ( +g  `  G )
269, 5, 1, 8, 25, 10, 16sylow2blem1 17350 . . . . . . . . . 10  |-  ( (
ph  /\  u  e.  H  /\  s  e.  X
)  ->  ( u  .x.  [ s ]  .~  )  =  [ (
u  .+  s ) ]  .~  )
27 ovex 6336 . . . . . . . . . . . 12  |-  ( G ~QG  K )  e.  _V
2810, 27eqeltri 2545 . . . . . . . . . . 11  |-  .~  e.  _V
29 subgrcl 16900 . . . . . . . . . . . . . 14  |-  ( H  e.  (SubGrp `  G
)  ->  G  e.  Grp )
301, 29syl 17 . . . . . . . . . . . . 13  |-  ( ph  ->  G  e.  Grp )
31303ad2ant1 1051 . . . . . . . . . . . 12  |-  ( (
ph  /\  u  e.  H  /\  s  e.  X
)  ->  G  e.  Grp )
329subgss 16896 . . . . . . . . . . . . . . 15  |-  ( H  e.  (SubGrp `  G
)  ->  H  C_  X
)
331, 32syl 17 . . . . . . . . . . . . . 14  |-  ( ph  ->  H  C_  X )
3433sselda 3418 . . . . . . . . . . . . 13  |-  ( (
ph  /\  u  e.  H )  ->  u  e.  X )
35343adant3 1050 . . . . . . . . . . . 12  |-  ( (
ph  /\  u  e.  H  /\  s  e.  X
)  ->  u  e.  X )
36 simp3 1032 . . . . . . . . . . . 12  |-  ( (
ph  /\  u  e.  H  /\  s  e.  X
)  ->  s  e.  X )
379, 25grpcl 16757 . . . . . . . . . . . 12  |-  ( ( G  e.  Grp  /\  u  e.  X  /\  s  e.  X )  ->  ( u  .+  s
)  e.  X )
3831, 35, 36, 37syl3anc 1292 . . . . . . . . . . 11  |-  ( (
ph  /\  u  e.  H  /\  s  e.  X
)  ->  ( u  .+  s )  e.  X
)
39 ecelqsg 7436 . . . . . . . . . . 11  |-  ( (  .~  e.  _V  /\  ( u  .+  s )  e.  X )  ->  [ ( u  .+  s ) ]  .~  e.  ( X /.  .~  ) )
4028, 38, 39sylancr 676 . . . . . . . . . 10  |-  ( (
ph  /\  u  e.  H  /\  s  e.  X
)  ->  [ (
u  .+  s ) ]  .~  e.  ( X /.  .~  ) )
4126, 40eqeltrd 2549 . . . . . . . . 9  |-  ( (
ph  /\  u  e.  H  /\  s  e.  X
)  ->  ( u  .x.  [ s ]  .~  )  e.  ( X /.  .~  ) )
42413expa 1231 . . . . . . . 8  |-  ( ( ( ph  /\  u  e.  H )  /\  s  e.  X )  ->  (
u  .x.  [ s ]  .~  )  e.  ( X /.  .~  )
)
4322, 24, 42ectocld 7448 . . . . . . 7  |-  ( ( ( ph  /\  u  e.  H )  /\  v  e.  ( X /.  .~  ) )  ->  (
u  .x.  v )  e.  ( X /.  .~  ) )
4443ralrimiva 2809 . . . . . 6  |-  ( (
ph  /\  u  e.  H )  ->  A. v  e.  ( X /.  .~  ) ( u  .x.  v )  e.  ( X /.  .~  )
)
4544ralrimiva 2809 . . . . 5  |-  ( ph  ->  A. u  e.  H  A. v  e.  ( X /.  .~  ) ( u  .x.  v )  e.  ( X /.  .~  ) )
46 ffnov 6419 . . . . 5  |-  (  .x.  : ( H  X.  ( X /.  .~  ) ) --> ( X /.  .~  ) 
<->  (  .x.  Fn  ( H  X.  ( X /.  .~  ) )  /\  A. u  e.  H  A. v  e.  ( X /.  .~  ) ( u 
.x.  v )  e.  ( X /.  .~  ) ) )
4721, 45, 46sylanbrc 677 . . . 4  |-  ( ph  ->  .x.  : ( H  X.  ( X /.  .~  ) ) --> ( X /.  .~  ) )
482subgbas 16899 . . . . . . 7  |-  ( H  e.  (SubGrp `  G
)  ->  H  =  ( Base `  ( Gs  H
) ) )
491, 48syl 17 . . . . . 6  |-  ( ph  ->  H  =  ( Base `  ( Gs  H ) ) )
5049xpeq1d 4862 . . . . 5  |-  ( ph  ->  ( H  X.  ( X /.  .~  ) )  =  ( ( Base `  ( Gs  H ) )  X.  ( X /.  .~  ) ) )
5150feq2d 5725 . . . 4  |-  ( ph  ->  (  .x.  : ( H  X.  ( X /.  .~  ) ) --> ( X /.  .~  ) 
<-> 
.x.  : ( ( Base `  ( Gs  H ) )  X.  ( X /.  .~  ) ) --> ( X /.  .~  ) ) )
5247, 51mpbid 215 . . 3  |-  ( ph  ->  .x.  : ( (
Base `  ( Gs  H
) )  X.  ( X /.  .~  ) ) --> ( X /.  .~  ) )
53 oveq2 6316 . . . . . . 7  |-  ( [ s ]  .~  =  u  ->  ( ( 0g
`  ( Gs  H ) )  .x.  [ s ]  .~  )  =  ( ( 0g `  ( Gs  H ) )  .x.  u ) )
54 id 22 . . . . . . 7  |-  ( [ s ]  .~  =  u  ->  [ s ]  .~  =  u )
5553, 54eqeq12d 2486 . . . . . 6  |-  ( [ s ]  .~  =  u  ->  ( ( ( 0g `  ( Gs  H ) )  .x.  [ s ]  .~  )  =  [ s ]  .~  <->  ( ( 0g `  ( Gs  H ) )  .x.  u )  =  u ) )
56 oveq2 6316 . . . . . . . 8  |-  ( [ s ]  .~  =  u  ->  ( ( a ( +g  `  ( Gs  H ) ) b )  .x.  [ s ]  .~  )  =  ( ( a ( +g  `  ( Gs  H ) ) b ) 
.x.  u ) )
57 oveq2 6316 . . . . . . . . 9  |-  ( [ s ]  .~  =  u  ->  ( b  .x.  [ s ]  .~  )  =  ( b  .x.  u ) )
5857oveq2d 6324 . . . . . . . 8  |-  ( [ s ]  .~  =  u  ->  ( a  .x.  ( b  .x.  [ s ]  .~  ) )  =  ( a  .x.  ( b  .x.  u
) ) )
5956, 58eqeq12d 2486 . . . . . . 7  |-  ( [ s ]  .~  =  u  ->  ( ( ( a ( +g  `  ( Gs  H ) ) b )  .x.  [ s ]  .~  )  =  ( a  .x.  (
b  .x.  [ s ]  .~  ) )  <->  ( (
a ( +g  `  ( Gs  H ) ) b )  .x.  u )  =  ( a  .x.  ( b  .x.  u
) ) ) )
60592ralbidv 2832 . . . . . 6  |-  ( [ s ]  .~  =  u  ->  ( A. a  e.  ( Base `  ( Gs  H ) ) A. b  e.  ( Base `  ( Gs  H ) ) ( ( a ( +g  `  ( Gs  H ) ) b )  .x.  [ s ]  .~  )  =  ( a  .x.  (
b  .x.  [ s ]  .~  ) )  <->  A. a  e.  ( Base `  ( Gs  H ) ) A. b  e.  ( Base `  ( Gs  H ) ) ( ( a ( +g  `  ( Gs  H ) ) b )  .x.  u )  =  ( a  .x.  ( b  .x.  u
) ) ) )
6155, 60anbi12d 725 . . . . 5  |-  ( [ s ]  .~  =  u  ->  ( ( ( ( 0g `  ( Gs  H ) )  .x.  [ s ]  .~  )  =  [ s ]  .~  /\ 
A. a  e.  (
Base `  ( Gs  H
) ) A. b  e.  ( Base `  ( Gs  H ) ) ( ( a ( +g  `  ( Gs  H ) ) b )  .x.  [ s ]  .~  )  =  ( a  .x.  (
b  .x.  [ s ]  .~  ) ) )  <-> 
( ( ( 0g
`  ( Gs  H ) )  .x.  u )  =  u  /\  A. a  e.  ( Base `  ( Gs  H ) ) A. b  e.  ( Base `  ( Gs  H ) ) ( ( a ( +g  `  ( Gs  H ) ) b )  .x.  u )  =  ( a  .x.  ( b  .x.  u
) ) ) ) )
62 simpl 464 . . . . . . . 8  |-  ( (
ph  /\  s  e.  X )  ->  ph )
631adantr 472 . . . . . . . . 9  |-  ( (
ph  /\  s  e.  X )  ->  H  e.  (SubGrp `  G )
)
64 eqid 2471 . . . . . . . . . 10  |-  ( 0g
`  G )  =  ( 0g `  G
)
6564subg0cl 16903 . . . . . . . . 9  |-  ( H  e.  (SubGrp `  G
)  ->  ( 0g `  G )  e.  H
)
6663, 65syl 17 . . . . . . . 8  |-  ( (
ph  /\  s  e.  X )  ->  ( 0g `  G )  e.  H )
67 simpr 468 . . . . . . . 8  |-  ( (
ph  /\  s  e.  X )  ->  s  e.  X )
689, 5, 1, 8, 25, 10, 16sylow2blem1 17350 . . . . . . . 8  |-  ( (
ph  /\  ( 0g `  G )  e.  H  /\  s  e.  X
)  ->  ( ( 0g `  G )  .x.  [ s ]  .~  )  =  [ ( ( 0g
`  G )  .+  s ) ]  .~  )
6962, 66, 67, 68syl3anc 1292 . . . . . . 7  |-  ( (
ph  /\  s  e.  X )  ->  (
( 0g `  G
)  .x.  [ s ]  .~  )  =  [
( ( 0g `  G )  .+  s
) ]  .~  )
702, 64subg0 16901 . . . . . . . . 9  |-  ( H  e.  (SubGrp `  G
)  ->  ( 0g `  G )  =  ( 0g `  ( Gs  H ) ) )
7163, 70syl 17 . . . . . . . 8  |-  ( (
ph  /\  s  e.  X )  ->  ( 0g `  G )  =  ( 0g `  ( Gs  H ) ) )
7271oveq1d 6323 . . . . . . 7  |-  ( (
ph  /\  s  e.  X )  ->  (
( 0g `  G
)  .x.  [ s ]  .~  )  =  ( ( 0g `  ( Gs  H ) )  .x.  [ s ]  .~  )
)
739, 25, 64grplid 16774 . . . . . . . . 9  |-  ( ( G  e.  Grp  /\  s  e.  X )  ->  ( ( 0g `  G )  .+  s
)  =  s )
7430, 73sylan 479 . . . . . . . 8  |-  ( (
ph  /\  s  e.  X )  ->  (
( 0g `  G
)  .+  s )  =  s )
7574eceq1d 7418 . . . . . . 7  |-  ( (
ph  /\  s  e.  X )  ->  [ ( ( 0g `  G
)  .+  s ) ]  .~  =  [ s ]  .~  )
7669, 72, 753eqtr3d 2513 . . . . . 6  |-  ( (
ph  /\  s  e.  X )  ->  (
( 0g `  ( Gs  H ) )  .x.  [ s ]  .~  )  =  [ s ]  .~  )
7763adantr 472 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  s  e.  X )  /\  (
a  e.  H  /\  b  e.  H )
)  ->  H  e.  (SubGrp `  G ) )
7877, 29syl 17 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  s  e.  X )  /\  (
a  e.  H  /\  b  e.  H )
)  ->  G  e.  Grp )
7977, 32syl 17 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  s  e.  X )  /\  (
a  e.  H  /\  b  e.  H )
)  ->  H  C_  X
)
80 simprl 772 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  s  e.  X )  /\  (
a  e.  H  /\  b  e.  H )
)  ->  a  e.  H )
8179, 80sseldd 3419 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  s  e.  X )  /\  (
a  e.  H  /\  b  e.  H )
)  ->  a  e.  X )
82 simprr 774 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  s  e.  X )  /\  (
a  e.  H  /\  b  e.  H )
)  ->  b  e.  H )
8379, 82sseldd 3419 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  s  e.  X )  /\  (
a  e.  H  /\  b  e.  H )
)  ->  b  e.  X )
8467adantr 472 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  s  e.  X )  /\  (
a  e.  H  /\  b  e.  H )
)  ->  s  e.  X )
859, 25grpass 16758 . . . . . . . . . . . 12  |-  ( ( G  e.  Grp  /\  ( a  e.  X  /\  b  e.  X  /\  s  e.  X
) )  ->  (
( a  .+  b
)  .+  s )  =  ( a  .+  ( b  .+  s
) ) )
8678, 81, 83, 84, 85syl13anc 1294 . . . . . . . . . . 11  |-  ( ( ( ph  /\  s  e.  X )  /\  (
a  e.  H  /\  b  e.  H )
)  ->  ( (
a  .+  b )  .+  s )  =  ( a  .+  ( b 
.+  s ) ) )
8786eceq1d 7418 . . . . . . . . . 10  |-  ( ( ( ph  /\  s  e.  X )  /\  (
a  e.  H  /\  b  e.  H )
)  ->  [ (
( a  .+  b
)  .+  s ) ]  .~  =  [ ( a  .+  ( b 
.+  s ) ) ]  .~  )
8862adantr 472 . . . . . . . . . . 11  |-  ( ( ( ph  /\  s  e.  X )  /\  (
a  e.  H  /\  b  e.  H )
)  ->  ph )
899, 25grpcl 16757 . . . . . . . . . . . 12  |-  ( ( G  e.  Grp  /\  b  e.  X  /\  s  e.  X )  ->  ( b  .+  s
)  e.  X )
9078, 83, 84, 89syl3anc 1292 . . . . . . . . . . 11  |-  ( ( ( ph  /\  s  e.  X )  /\  (
a  e.  H  /\  b  e.  H )
)  ->  ( b  .+  s )  e.  X
)
919, 5, 1, 8, 25, 10, 16sylow2blem1 17350 . . . . . . . . . . 11  |-  ( (
ph  /\  a  e.  H  /\  ( b  .+  s )  e.  X
)  ->  ( a  .x.  [ ( b  .+  s ) ]  .~  )  =  [ (
a  .+  ( b  .+  s ) ) ]  .~  )
9288, 80, 90, 91syl3anc 1292 . . . . . . . . . 10  |-  ( ( ( ph  /\  s  e.  X )  /\  (
a  e.  H  /\  b  e.  H )
)  ->  ( a  .x.  [ ( b  .+  s ) ]  .~  )  =  [ (
a  .+  ( b  .+  s ) ) ]  .~  )
9387, 92eqtr4d 2508 . . . . . . . . 9  |-  ( ( ( ph  /\  s  e.  X )  /\  (
a  e.  H  /\  b  e.  H )
)  ->  [ (
( a  .+  b
)  .+  s ) ]  .~  =  ( a 
.x.  [ ( b  .+  s ) ]  .~  ) )
9425subgcl 16905 . . . . . . . . . . 11  |-  ( ( H  e.  (SubGrp `  G )  /\  a  e.  H  /\  b  e.  H )  ->  (
a  .+  b )  e.  H )
9577, 80, 82, 94syl3anc 1292 . . . . . . . . . 10  |-  ( ( ( ph  /\  s  e.  X )  /\  (
a  e.  H  /\  b  e.  H )
)  ->  ( a  .+  b )  e.  H
)
969, 5, 1, 8, 25, 10, 16sylow2blem1 17350 . . . . . . . . . 10  |-  ( (
ph  /\  ( a  .+  b )  e.  H  /\  s  e.  X
)  ->  ( (
a  .+  b )  .x.  [ s ]  .~  )  =  [ (
( a  .+  b
)  .+  s ) ]  .~  )
9788, 95, 84, 96syl3anc 1292 . . . . . . . . 9  |-  ( ( ( ph  /\  s  e.  X )  /\  (
a  e.  H  /\  b  e.  H )
)  ->  ( (
a  .+  b )  .x.  [ s ]  .~  )  =  [ (
( a  .+  b
)  .+  s ) ]  .~  )
989, 5, 1, 8, 25, 10, 16sylow2blem1 17350 . . . . . . . . . . 11  |-  ( (
ph  /\  b  e.  H  /\  s  e.  X
)  ->  ( b  .x.  [ s ]  .~  )  =  [ (
b  .+  s ) ]  .~  )
9988, 82, 84, 98syl3anc 1292 . . . . . . . . . 10  |-  ( ( ( ph  /\  s  e.  X )  /\  (
a  e.  H  /\  b  e.  H )
)  ->  ( b  .x.  [ s ]  .~  )  =  [ (
b  .+  s ) ]  .~  )
10099oveq2d 6324 . . . . . . . . 9  |-  ( ( ( ph  /\  s  e.  X )  /\  (
a  e.  H  /\  b  e.  H )
)  ->  ( a  .x.  ( b  .x.  [ s ]  .~  ) )  =  ( a  .x.  [ ( b  .+  s
) ]  .~  )
)
10193, 97, 1003eqtr4d 2515 . . . . . . . 8  |-  ( ( ( ph  /\  s  e.  X )  /\  (
a  e.  H  /\  b  e.  H )
)  ->  ( (
a  .+  b )  .x.  [ s ]  .~  )  =  ( a  .x.  ( b  .x.  [ s ]  .~  ) ) )
102101ralrimivva 2814 . . . . . . 7  |-  ( (
ph  /\  s  e.  X )  ->  A. a  e.  H  A. b  e.  H  ( (
a  .+  b )  .x.  [ s ]  .~  )  =  ( a  .x.  ( b  .x.  [ s ]  .~  ) ) )
10363, 48syl 17 . . . . . . . 8  |-  ( (
ph  /\  s  e.  X )  ->  H  =  ( Base `  ( Gs  H ) ) )
1042, 25ressplusg 15317 . . . . . . . . . . . . 13  |-  ( H  e.  (SubGrp `  G
)  ->  .+  =  ( +g  `  ( Gs  H ) ) )
1051, 104syl 17 . . . . . . . . . . . 12  |-  ( ph  ->  .+  =  ( +g  `  ( Gs  H ) ) )
106105oveqdr 6332 . . . . . . . . . . 11  |-  ( (
ph  /\  s  e.  X )  ->  (
a  .+  b )  =  ( a ( +g  `  ( Gs  H ) ) b ) )
107106oveq1d 6323 . . . . . . . . . 10  |-  ( (
ph  /\  s  e.  X )  ->  (
( a  .+  b
)  .x.  [ s ]  .~  )  =  ( ( a ( +g  `  ( Gs  H ) ) b )  .x.  [ s ]  .~  ) )
108107eqeq1d 2473 . . . . . . . . 9  |-  ( (
ph  /\  s  e.  X )  ->  (
( ( a  .+  b )  .x.  [ s ]  .~  )  =  ( a  .x.  (
b  .x.  [ s ]  .~  ) )  <->  ( (
a ( +g  `  ( Gs  H ) ) b )  .x.  [ s ]  .~  )  =  ( a  .x.  (
b  .x.  [ s ]  .~  ) ) ) )
109103, 108raleqbidv 2987 . . . . . . . 8  |-  ( (
ph  /\  s  e.  X )  ->  ( A. b  e.  H  ( ( a  .+  b )  .x.  [ s ]  .~  )  =  ( a  .x.  (
b  .x.  [ s ]  .~  ) )  <->  A. b  e.  ( Base `  ( Gs  H ) ) ( ( a ( +g  `  ( Gs  H ) ) b )  .x.  [ s ]  .~  )  =  ( a  .x.  (
b  .x.  [ s ]  .~  ) ) ) )
110103, 109raleqbidv 2987 . . . . . . 7  |-  ( (
ph  /\  s  e.  X )  ->  ( A. a  e.  H  A. b  e.  H  ( ( a  .+  b )  .x.  [ s ]  .~  )  =  ( a  .x.  (
b  .x.  [ s ]  .~  ) )  <->  A. a  e.  ( Base `  ( Gs  H ) ) A. b  e.  ( Base `  ( Gs  H ) ) ( ( a ( +g  `  ( Gs  H ) ) b )  .x.  [ s ]  .~  )  =  ( a  .x.  (
b  .x.  [ s ]  .~  ) ) ) )
111102, 110mpbid 215 . . . . . 6  |-  ( (
ph  /\  s  e.  X )  ->  A. a  e.  ( Base `  ( Gs  H ) ) A. b  e.  ( Base `  ( Gs  H ) ) ( ( a ( +g  `  ( Gs  H ) ) b )  .x.  [ s ]  .~  )  =  ( a  .x.  (
b  .x.  [ s ]  .~  ) ) )
11276, 111jca 541 . . . . 5  |-  ( (
ph  /\  s  e.  X )  ->  (
( ( 0g `  ( Gs  H ) )  .x.  [ s ]  .~  )  =  [ s ]  .~  /\ 
A. a  e.  (
Base `  ( Gs  H
) ) A. b  e.  ( Base `  ( Gs  H ) ) ( ( a ( +g  `  ( Gs  H ) ) b )  .x.  [ s ]  .~  )  =  ( a  .x.  (
b  .x.  [ s ]  .~  ) ) ) )
11322, 61, 112ectocld 7448 . . . 4  |-  ( (
ph  /\  u  e.  ( X /.  .~  )
)  ->  ( (
( 0g `  ( Gs  H ) )  .x.  u )  =  u  /\  A. a  e.  ( Base `  ( Gs  H ) ) A. b  e.  ( Base `  ( Gs  H ) ) ( ( a ( +g  `  ( Gs  H ) ) b )  .x.  u )  =  ( a  .x.  ( b  .x.  u
) ) ) )
114113ralrimiva 2809 . . 3  |-  ( ph  ->  A. u  e.  ( X /.  .~  )
( ( ( 0g
`  ( Gs  H ) )  .x.  u )  =  u  /\  A. a  e.  ( Base `  ( Gs  H ) ) A. b  e.  ( Base `  ( Gs  H ) ) ( ( a ( +g  `  ( Gs  H ) ) b )  .x.  u )  =  ( a  .x.  ( b  .x.  u
) ) ) )
11552, 114jca 541 . 2  |-  ( ph  ->  (  .x.  : ( ( Base `  ( Gs  H ) )  X.  ( X /.  .~  ) ) --> ( X /.  .~  )  /\  A. u  e.  ( X /.  .~  ) ( ( ( 0g `  ( Gs  H ) )  .x.  u )  =  u  /\  A. a  e.  ( Base `  ( Gs  H ) ) A. b  e.  ( Base `  ( Gs  H ) ) ( ( a ( +g  `  ( Gs  H ) ) b )  .x.  u )  =  ( a  .x.  ( b  .x.  u
) ) ) ) )
116 eqid 2471 . . 3  |-  ( Base `  ( Gs  H ) )  =  ( Base `  ( Gs  H ) )
117 eqid 2471 . . 3  |-  ( +g  `  ( Gs  H ) )  =  ( +g  `  ( Gs  H ) )
118 eqid 2471 . . 3  |-  ( 0g
`  ( Gs  H ) )  =  ( 0g
`  ( Gs  H ) )
119116, 117, 118isga 17023 . 2  |-  (  .x.  e.  ( ( Gs  H ) 
GrpAct  ( X /.  .~  ) )  <->  ( (
( Gs  H )  e.  Grp  /\  ( X /.  .~  )  e.  _V )  /\  (  .x.  : ( ( Base `  ( Gs  H ) )  X.  ( X /.  .~  ) ) --> ( X /.  .~  )  /\  A. u  e.  ( X /.  .~  ) ( ( ( 0g `  ( Gs  H ) )  .x.  u )  =  u  /\  A. a  e.  ( Base `  ( Gs  H ) ) A. b  e.  ( Base `  ( Gs  H ) ) ( ( a ( +g  `  ( Gs  H ) ) b )  .x.  u )  =  ( a  .x.  ( b  .x.  u
) ) ) ) ) )
12015, 115, 119sylanbrc 677 1  |-  ( ph  ->  .x.  e.  ( ( Gs  H )  GrpAct  ( X /.  .~  ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 376    /\ w3a 1007    = wceq 1452    e. wcel 1904   A.wral 2756   _Vcvv 3031    C_ wss 3390   ~Pcpw 3942    |-> cmpt 4454    X. cxp 4837   ran crn 4840    Fn wfn 5584   -->wf 5585   ` cfv 5589  (class class class)co 6308    |-> cmpt2 6310    Er wer 7378   [cec 7379   /.cqs 7380   Fincfn 7587   Basecbs 15199   ↾s cress 15200   +g cplusg 15268   0gc0g 15416   Grpcgrp 16747  SubGrpcsubg 16889   ~QG cqg 16891    GrpAct cga 17021
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-8 1906  ax-9 1913  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451  ax-rep 4508  ax-sep 4518  ax-nul 4527  ax-pow 4579  ax-pr 4639  ax-un 6602  ax-cnex 9613  ax-resscn 9614  ax-1cn 9615  ax-icn 9616  ax-addcl 9617  ax-addrcl 9618  ax-mulcl 9619  ax-mulrcl 9620  ax-mulcom 9621  ax-addass 9622  ax-mulass 9623  ax-distr 9624  ax-i2m1 9625  ax-1ne0 9626  ax-1rid 9627  ax-rnegex 9628  ax-rrecex 9629  ax-cnre 9630  ax-pre-lttri 9631  ax-pre-lttrn 9632  ax-pre-ltadd 9633  ax-pre-mulgt0 9634
This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-3or 1008  df-3an 1009  df-tru 1455  df-ex 1672  df-nf 1676  df-sb 1806  df-eu 2323  df-mo 2324  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ne 2643  df-nel 2644  df-ral 2761  df-rex 2762  df-reu 2763  df-rmo 2764  df-rab 2765  df-v 3033  df-sbc 3256  df-csb 3350  df-dif 3393  df-un 3395  df-in 3397  df-ss 3404  df-pss 3406  df-nul 3723  df-if 3873  df-pw 3944  df-sn 3960  df-pr 3962  df-tp 3964  df-op 3966  df-uni 4191  df-int 4227  df-iun 4271  df-br 4396  df-opab 4455  df-mpt 4456  df-tr 4491  df-eprel 4750  df-id 4754  df-po 4760  df-so 4761  df-fr 4798  df-we 4800  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-pred 5387  df-ord 5433  df-on 5434  df-lim 5435  df-suc 5436  df-iota 5553  df-fun 5591  df-fn 5592  df-f 5593  df-f1 5594  df-fo 5595  df-f1o 5596  df-fv 5597  df-riota 6270  df-ov 6311  df-oprab 6312  df-mpt2 6313  df-om 6712  df-1st 6812  df-2nd 6813  df-wrecs 7046  df-recs 7108  df-rdg 7146  df-1o 7200  df-2o 7201  df-oadd 7204  df-er 7381  df-ec 7383  df-qs 7387  df-map 7492  df-en 7588  df-dom 7589  df-sdom 7590  df-fin 7591  df-pnf 9695  df-mnf 9696  df-xr 9697  df-ltxr 9698  df-le 9699  df-sub 9882  df-neg 9883  df-nn 10632  df-2 10690  df-ndx 15202  df-slot 15203  df-base 15204  df-sets 15205  df-ress 15206  df-plusg 15281  df-0g 15418  df-mgm 16566  df-sgrp 16605  df-mnd 16615  df-grp 16751  df-minusg 16752  df-sbg 16753  df-subg 16892  df-eqg 16894  df-ga 17022
This theorem is referenced by:  sylow2blem3  17352
  Copyright terms: Public domain W3C validator