MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sylow2blem2 Structured version   Unicode version

Theorem sylow2blem2 16758
Description: Lemma for sylow2b 16760. Left multiplication in a subgroup  H is a group action on the set of all left cosets of  K. (Contributed by Mario Carneiro, 17-Jan-2015.)
Hypotheses
Ref Expression
sylow2b.x  |-  X  =  ( Base `  G
)
sylow2b.xf  |-  ( ph  ->  X  e.  Fin )
sylow2b.h  |-  ( ph  ->  H  e.  (SubGrp `  G ) )
sylow2b.k  |-  ( ph  ->  K  e.  (SubGrp `  G ) )
sylow2b.a  |-  .+  =  ( +g  `  G )
sylow2b.r  |-  .~  =  ( G ~QG  K )
sylow2b.m  |-  .x.  =  ( x  e.  H ,  y  e.  ( X /.  .~  )  |->  ran  ( z  e.  y 
|->  ( x  .+  z
) ) )
Assertion
Ref Expression
sylow2blem2  |-  ( ph  ->  .x.  e.  ( ( Gs  H )  GrpAct  ( X /.  .~  ) ) )
Distinct variable groups:    x, y,
z, G    x, K, y, z    x,  .x. , y,
z    x,  .+ , y, z   
x,  .~ , y, z    ph, z    x, H, y, z    x, X, y, z
Allowed substitution hints:    ph( x, y)

Proof of Theorem sylow2blem2
Dummy variables  a 
b  s  u  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sylow2b.h . . . 4  |-  ( ph  ->  H  e.  (SubGrp `  G ) )
2 eqid 2382 . . . . 5  |-  ( Gs  H )  =  ( Gs  H )
32subggrp 16321 . . . 4  |-  ( H  e.  (SubGrp `  G
)  ->  ( Gs  H
)  e.  Grp )
41, 3syl 16 . . 3  |-  ( ph  ->  ( Gs  H )  e.  Grp )
5 sylow2b.xf . . . . 5  |-  ( ph  ->  X  e.  Fin )
6 pwfi 7730 . . . . 5  |-  ( X  e.  Fin  <->  ~P X  e.  Fin )
75, 6sylib 196 . . . 4  |-  ( ph  ->  ~P X  e.  Fin )
8 sylow2b.k . . . . . 6  |-  ( ph  ->  K  e.  (SubGrp `  G ) )
9 sylow2b.x . . . . . . 7  |-  X  =  ( Base `  G
)
10 sylow2b.r . . . . . . 7  |-  .~  =  ( G ~QG  K )
119, 10eqger 16368 . . . . . 6  |-  ( K  e.  (SubGrp `  G
)  ->  .~  Er  X
)
128, 11syl 16 . . . . 5  |-  ( ph  ->  .~  Er  X )
1312qsss 7290 . . . 4  |-  ( ph  ->  ( X /.  .~  )  C_  ~P X )
147, 13ssexd 4512 . . 3  |-  ( ph  ->  ( X /.  .~  )  e.  _V )
154, 14jca 530 . 2  |-  ( ph  ->  ( ( Gs  H )  e.  Grp  /\  ( X /.  .~  )  e. 
_V ) )
16 sylow2b.m . . . . . . 7  |-  .x.  =  ( x  e.  H ,  y  e.  ( X /.  .~  )  |->  ran  ( z  e.  y 
|->  ( x  .+  z
) ) )
17 vex 3037 . . . . . . . . 9  |-  y  e. 
_V
1817mptex 6044 . . . . . . . 8  |-  ( z  e.  y  |->  ( x 
.+  z ) )  e.  _V
1918rnex 6633 . . . . . . 7  |-  ran  (
z  e.  y  |->  ( x  .+  z ) )  e.  _V
2016, 19fnmpt2i 6768 . . . . . 6  |-  .x.  Fn  ( H  X.  ( X /.  .~  ) )
2120a1i 11 . . . . 5  |-  ( ph  ->  .x.  Fn  ( H  X.  ( X /.  .~  ) ) )
22 eqid 2382 . . . . . . . 8  |-  ( X /.  .~  )  =  ( X /.  .~  )
23 oveq2 6204 . . . . . . . . 9  |-  ( [ s ]  .~  =  v  ->  ( u  .x.  [ s ]  .~  )  =  ( u  .x.  v ) )
2423eleq1d 2451 . . . . . . . 8  |-  ( [ s ]  .~  =  v  ->  ( ( u 
.x.  [ s ]  .~  )  e.  ( X /.  .~  )  <->  ( u  .x.  v )  e.  ( X /.  .~  )
) )
25 sylow2b.a . . . . . . . . . . 11  |-  .+  =  ( +g  `  G )
269, 5, 1, 8, 25, 10, 16sylow2blem1 16757 . . . . . . . . . 10  |-  ( (
ph  /\  u  e.  H  /\  s  e.  X
)  ->  ( u  .x.  [ s ]  .~  )  =  [ (
u  .+  s ) ]  .~  )
27 ovex 6224 . . . . . . . . . . . 12  |-  ( G ~QG  K )  e.  _V
2810, 27eqeltri 2466 . . . . . . . . . . 11  |-  .~  e.  _V
29 subgrcl 16323 . . . . . . . . . . . . . 14  |-  ( H  e.  (SubGrp `  G
)  ->  G  e.  Grp )
301, 29syl 16 . . . . . . . . . . . . 13  |-  ( ph  ->  G  e.  Grp )
31303ad2ant1 1015 . . . . . . . . . . . 12  |-  ( (
ph  /\  u  e.  H  /\  s  e.  X
)  ->  G  e.  Grp )
329subgss 16319 . . . . . . . . . . . . . . 15  |-  ( H  e.  (SubGrp `  G
)  ->  H  C_  X
)
331, 32syl 16 . . . . . . . . . . . . . 14  |-  ( ph  ->  H  C_  X )
3433sselda 3417 . . . . . . . . . . . . 13  |-  ( (
ph  /\  u  e.  H )  ->  u  e.  X )
35343adant3 1014 . . . . . . . . . . . 12  |-  ( (
ph  /\  u  e.  H  /\  s  e.  X
)  ->  u  e.  X )
36 simp3 996 . . . . . . . . . . . 12  |-  ( (
ph  /\  u  e.  H  /\  s  e.  X
)  ->  s  e.  X )
379, 25grpcl 16180 . . . . . . . . . . . 12  |-  ( ( G  e.  Grp  /\  u  e.  X  /\  s  e.  X )  ->  ( u  .+  s
)  e.  X )
3831, 35, 36, 37syl3anc 1226 . . . . . . . . . . 11  |-  ( (
ph  /\  u  e.  H  /\  s  e.  X
)  ->  ( u  .+  s )  e.  X
)
39 ecelqsg 7284 . . . . . . . . . . 11  |-  ( (  .~  e.  _V  /\  ( u  .+  s )  e.  X )  ->  [ ( u  .+  s ) ]  .~  e.  ( X /.  .~  ) )
4028, 38, 39sylancr 661 . . . . . . . . . 10  |-  ( (
ph  /\  u  e.  H  /\  s  e.  X
)  ->  [ (
u  .+  s ) ]  .~  e.  ( X /.  .~  ) )
4126, 40eqeltrd 2470 . . . . . . . . 9  |-  ( (
ph  /\  u  e.  H  /\  s  e.  X
)  ->  ( u  .x.  [ s ]  .~  )  e.  ( X /.  .~  ) )
42413expa 1194 . . . . . . . 8  |-  ( ( ( ph  /\  u  e.  H )  /\  s  e.  X )  ->  (
u  .x.  [ s ]  .~  )  e.  ( X /.  .~  )
)
4322, 24, 42ectocld 7296 . . . . . . 7  |-  ( ( ( ph  /\  u  e.  H )  /\  v  e.  ( X /.  .~  ) )  ->  (
u  .x.  v )  e.  ( X /.  .~  ) )
4443ralrimiva 2796 . . . . . 6  |-  ( (
ph  /\  u  e.  H )  ->  A. v  e.  ( X /.  .~  ) ( u  .x.  v )  e.  ( X /.  .~  )
)
4544ralrimiva 2796 . . . . 5  |-  ( ph  ->  A. u  e.  H  A. v  e.  ( X /.  .~  ) ( u  .x.  v )  e.  ( X /.  .~  ) )
46 ffnov 6305 . . . . 5  |-  (  .x.  : ( H  X.  ( X /.  .~  ) ) --> ( X /.  .~  ) 
<->  (  .x.  Fn  ( H  X.  ( X /.  .~  ) )  /\  A. u  e.  H  A. v  e.  ( X /.  .~  ) ( u 
.x.  v )  e.  ( X /.  .~  ) ) )
4721, 45, 46sylanbrc 662 . . . 4  |-  ( ph  ->  .x.  : ( H  X.  ( X /.  .~  ) ) --> ( X /.  .~  ) )
482subgbas 16322 . . . . . . 7  |-  ( H  e.  (SubGrp `  G
)  ->  H  =  ( Base `  ( Gs  H
) ) )
491, 48syl 16 . . . . . 6  |-  ( ph  ->  H  =  ( Base `  ( Gs  H ) ) )
5049xpeq1d 4936 . . . . 5  |-  ( ph  ->  ( H  X.  ( X /.  .~  ) )  =  ( ( Base `  ( Gs  H ) )  X.  ( X /.  .~  ) ) )
5150feq2d 5626 . . . 4  |-  ( ph  ->  (  .x.  : ( H  X.  ( X /.  .~  ) ) --> ( X /.  .~  ) 
<-> 
.x.  : ( ( Base `  ( Gs  H ) )  X.  ( X /.  .~  ) ) --> ( X /.  .~  ) ) )
5247, 51mpbid 210 . . 3  |-  ( ph  ->  .x.  : ( (
Base `  ( Gs  H
) )  X.  ( X /.  .~  ) ) --> ( X /.  .~  ) )
53 oveq2 6204 . . . . . . 7  |-  ( [ s ]  .~  =  u  ->  ( ( 0g
`  ( Gs  H ) )  .x.  [ s ]  .~  )  =  ( ( 0g `  ( Gs  H ) )  .x.  u ) )
54 id 22 . . . . . . 7  |-  ( [ s ]  .~  =  u  ->  [ s ]  .~  =  u )
5553, 54eqeq12d 2404 . . . . . 6  |-  ( [ s ]  .~  =  u  ->  ( ( ( 0g `  ( Gs  H ) )  .x.  [ s ]  .~  )  =  [ s ]  .~  <->  ( ( 0g `  ( Gs  H ) )  .x.  u )  =  u ) )
56 oveq2 6204 . . . . . . . 8  |-  ( [ s ]  .~  =  u  ->  ( ( a ( +g  `  ( Gs  H ) ) b )  .x.  [ s ]  .~  )  =  ( ( a ( +g  `  ( Gs  H ) ) b ) 
.x.  u ) )
57 oveq2 6204 . . . . . . . . 9  |-  ( [ s ]  .~  =  u  ->  ( b  .x.  [ s ]  .~  )  =  ( b  .x.  u ) )
5857oveq2d 6212 . . . . . . . 8  |-  ( [ s ]  .~  =  u  ->  ( a  .x.  ( b  .x.  [ s ]  .~  ) )  =  ( a  .x.  ( b  .x.  u
) ) )
5956, 58eqeq12d 2404 . . . . . . 7  |-  ( [ s ]  .~  =  u  ->  ( ( ( a ( +g  `  ( Gs  H ) ) b )  .x.  [ s ]  .~  )  =  ( a  .x.  (
b  .x.  [ s ]  .~  ) )  <->  ( (
a ( +g  `  ( Gs  H ) ) b )  .x.  u )  =  ( a  .x.  ( b  .x.  u
) ) ) )
60592ralbidv 2826 . . . . . 6  |-  ( [ s ]  .~  =  u  ->  ( A. a  e.  ( Base `  ( Gs  H ) ) A. b  e.  ( Base `  ( Gs  H ) ) ( ( a ( +g  `  ( Gs  H ) ) b )  .x.  [ s ]  .~  )  =  ( a  .x.  (
b  .x.  [ s ]  .~  ) )  <->  A. a  e.  ( Base `  ( Gs  H ) ) A. b  e.  ( Base `  ( Gs  H ) ) ( ( a ( +g  `  ( Gs  H ) ) b )  .x.  u )  =  ( a  .x.  ( b  .x.  u
) ) ) )
6155, 60anbi12d 708 . . . . 5  |-  ( [ s ]  .~  =  u  ->  ( ( ( ( 0g `  ( Gs  H ) )  .x.  [ s ]  .~  )  =  [ s ]  .~  /\ 
A. a  e.  (
Base `  ( Gs  H
) ) A. b  e.  ( Base `  ( Gs  H ) ) ( ( a ( +g  `  ( Gs  H ) ) b )  .x.  [ s ]  .~  )  =  ( a  .x.  (
b  .x.  [ s ]  .~  ) ) )  <-> 
( ( ( 0g
`  ( Gs  H ) )  .x.  u )  =  u  /\  A. a  e.  ( Base `  ( Gs  H ) ) A. b  e.  ( Base `  ( Gs  H ) ) ( ( a ( +g  `  ( Gs  H ) ) b )  .x.  u )  =  ( a  .x.  ( b  .x.  u
) ) ) ) )
62 simpl 455 . . . . . . . 8  |-  ( (
ph  /\  s  e.  X )  ->  ph )
631adantr 463 . . . . . . . . 9  |-  ( (
ph  /\  s  e.  X )  ->  H  e.  (SubGrp `  G )
)
64 eqid 2382 . . . . . . . . . 10  |-  ( 0g
`  G )  =  ( 0g `  G
)
6564subg0cl 16326 . . . . . . . . 9  |-  ( H  e.  (SubGrp `  G
)  ->  ( 0g `  G )  e.  H
)
6663, 65syl 16 . . . . . . . 8  |-  ( (
ph  /\  s  e.  X )  ->  ( 0g `  G )  e.  H )
67 simpr 459 . . . . . . . 8  |-  ( (
ph  /\  s  e.  X )  ->  s  e.  X )
689, 5, 1, 8, 25, 10, 16sylow2blem1 16757 . . . . . . . 8  |-  ( (
ph  /\  ( 0g `  G )  e.  H  /\  s  e.  X
)  ->  ( ( 0g `  G )  .x.  [ s ]  .~  )  =  [ ( ( 0g
`  G )  .+  s ) ]  .~  )
6962, 66, 67, 68syl3anc 1226 . . . . . . 7  |-  ( (
ph  /\  s  e.  X )  ->  (
( 0g `  G
)  .x.  [ s ]  .~  )  =  [
( ( 0g `  G )  .+  s
) ]  .~  )
702, 64subg0 16324 . . . . . . . . 9  |-  ( H  e.  (SubGrp `  G
)  ->  ( 0g `  G )  =  ( 0g `  ( Gs  H ) ) )
7163, 70syl 16 . . . . . . . 8  |-  ( (
ph  /\  s  e.  X )  ->  ( 0g `  G )  =  ( 0g `  ( Gs  H ) ) )
7271oveq1d 6211 . . . . . . 7  |-  ( (
ph  /\  s  e.  X )  ->  (
( 0g `  G
)  .x.  [ s ]  .~  )  =  ( ( 0g `  ( Gs  H ) )  .x.  [ s ]  .~  )
)
739, 25, 64grplid 16197 . . . . . . . . 9  |-  ( ( G  e.  Grp  /\  s  e.  X )  ->  ( ( 0g `  G )  .+  s
)  =  s )
7430, 73sylan 469 . . . . . . . 8  |-  ( (
ph  /\  s  e.  X )  ->  (
( 0g `  G
)  .+  s )  =  s )
7574eceq1d 7266 . . . . . . 7  |-  ( (
ph  /\  s  e.  X )  ->  [ ( ( 0g `  G
)  .+  s ) ]  .~  =  [ s ]  .~  )
7669, 72, 753eqtr3d 2431 . . . . . 6  |-  ( (
ph  /\  s  e.  X )  ->  (
( 0g `  ( Gs  H ) )  .x.  [ s ]  .~  )  =  [ s ]  .~  )
7763adantr 463 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  s  e.  X )  /\  (
a  e.  H  /\  b  e.  H )
)  ->  H  e.  (SubGrp `  G ) )
7877, 29syl 16 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  s  e.  X )  /\  (
a  e.  H  /\  b  e.  H )
)  ->  G  e.  Grp )
7977, 32syl 16 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  s  e.  X )  /\  (
a  e.  H  /\  b  e.  H )
)  ->  H  C_  X
)
80 simprl 754 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  s  e.  X )  /\  (
a  e.  H  /\  b  e.  H )
)  ->  a  e.  H )
8179, 80sseldd 3418 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  s  e.  X )  /\  (
a  e.  H  /\  b  e.  H )
)  ->  a  e.  X )
82 simprr 755 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  s  e.  X )  /\  (
a  e.  H  /\  b  e.  H )
)  ->  b  e.  H )
8379, 82sseldd 3418 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  s  e.  X )  /\  (
a  e.  H  /\  b  e.  H )
)  ->  b  e.  X )
8467adantr 463 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  s  e.  X )  /\  (
a  e.  H  /\  b  e.  H )
)  ->  s  e.  X )
859, 25grpass 16181 . . . . . . . . . . . 12  |-  ( ( G  e.  Grp  /\  ( a  e.  X  /\  b  e.  X  /\  s  e.  X
) )  ->  (
( a  .+  b
)  .+  s )  =  ( a  .+  ( b  .+  s
) ) )
8678, 81, 83, 84, 85syl13anc 1228 . . . . . . . . . . 11  |-  ( ( ( ph  /\  s  e.  X )  /\  (
a  e.  H  /\  b  e.  H )
)  ->  ( (
a  .+  b )  .+  s )  =  ( a  .+  ( b 
.+  s ) ) )
8786eceq1d 7266 . . . . . . . . . 10  |-  ( ( ( ph  /\  s  e.  X )  /\  (
a  e.  H  /\  b  e.  H )
)  ->  [ (
( a  .+  b
)  .+  s ) ]  .~  =  [ ( a  .+  ( b 
.+  s ) ) ]  .~  )
8862adantr 463 . . . . . . . . . . 11  |-  ( ( ( ph  /\  s  e.  X )  /\  (
a  e.  H  /\  b  e.  H )
)  ->  ph )
899, 25grpcl 16180 . . . . . . . . . . . 12  |-  ( ( G  e.  Grp  /\  b  e.  X  /\  s  e.  X )  ->  ( b  .+  s
)  e.  X )
9078, 83, 84, 89syl3anc 1226 . . . . . . . . . . 11  |-  ( ( ( ph  /\  s  e.  X )  /\  (
a  e.  H  /\  b  e.  H )
)  ->  ( b  .+  s )  e.  X
)
919, 5, 1, 8, 25, 10, 16sylow2blem1 16757 . . . . . . . . . . 11  |-  ( (
ph  /\  a  e.  H  /\  ( b  .+  s )  e.  X
)  ->  ( a  .x.  [ ( b  .+  s ) ]  .~  )  =  [ (
a  .+  ( b  .+  s ) ) ]  .~  )
9288, 80, 90, 91syl3anc 1226 . . . . . . . . . 10  |-  ( ( ( ph  /\  s  e.  X )  /\  (
a  e.  H  /\  b  e.  H )
)  ->  ( a  .x.  [ ( b  .+  s ) ]  .~  )  =  [ (
a  .+  ( b  .+  s ) ) ]  .~  )
9387, 92eqtr4d 2426 . . . . . . . . 9  |-  ( ( ( ph  /\  s  e.  X )  /\  (
a  e.  H  /\  b  e.  H )
)  ->  [ (
( a  .+  b
)  .+  s ) ]  .~  =  ( a 
.x.  [ ( b  .+  s ) ]  .~  ) )
9425subgcl 16328 . . . . . . . . . . 11  |-  ( ( H  e.  (SubGrp `  G )  /\  a  e.  H  /\  b  e.  H )  ->  (
a  .+  b )  e.  H )
9577, 80, 82, 94syl3anc 1226 . . . . . . . . . 10  |-  ( ( ( ph  /\  s  e.  X )  /\  (
a  e.  H  /\  b  e.  H )
)  ->  ( a  .+  b )  e.  H
)
969, 5, 1, 8, 25, 10, 16sylow2blem1 16757 . . . . . . . . . 10  |-  ( (
ph  /\  ( a  .+  b )  e.  H  /\  s  e.  X
)  ->  ( (
a  .+  b )  .x.  [ s ]  .~  )  =  [ (
( a  .+  b
)  .+  s ) ]  .~  )
9788, 95, 84, 96syl3anc 1226 . . . . . . . . 9  |-  ( ( ( ph  /\  s  e.  X )  /\  (
a  e.  H  /\  b  e.  H )
)  ->  ( (
a  .+  b )  .x.  [ s ]  .~  )  =  [ (
( a  .+  b
)  .+  s ) ]  .~  )
989, 5, 1, 8, 25, 10, 16sylow2blem1 16757 . . . . . . . . . . 11  |-  ( (
ph  /\  b  e.  H  /\  s  e.  X
)  ->  ( b  .x.  [ s ]  .~  )  =  [ (
b  .+  s ) ]  .~  )
9988, 82, 84, 98syl3anc 1226 . . . . . . . . . 10  |-  ( ( ( ph  /\  s  e.  X )  /\  (
a  e.  H  /\  b  e.  H )
)  ->  ( b  .x.  [ s ]  .~  )  =  [ (
b  .+  s ) ]  .~  )
10099oveq2d 6212 . . . . . . . . 9  |-  ( ( ( ph  /\  s  e.  X )  /\  (
a  e.  H  /\  b  e.  H )
)  ->  ( a  .x.  ( b  .x.  [ s ]  .~  ) )  =  ( a  .x.  [ ( b  .+  s
) ]  .~  )
)
10193, 97, 1003eqtr4d 2433 . . . . . . . 8  |-  ( ( ( ph  /\  s  e.  X )  /\  (
a  e.  H  /\  b  e.  H )
)  ->  ( (
a  .+  b )  .x.  [ s ]  .~  )  =  ( a  .x.  ( b  .x.  [ s ]  .~  ) ) )
102101ralrimivva 2803 . . . . . . 7  |-  ( (
ph  /\  s  e.  X )  ->  A. a  e.  H  A. b  e.  H  ( (
a  .+  b )  .x.  [ s ]  .~  )  =  ( a  .x.  ( b  .x.  [ s ]  .~  ) ) )
10363, 48syl 16 . . . . . . . 8  |-  ( (
ph  /\  s  e.  X )  ->  H  =  ( Base `  ( Gs  H ) ) )
1042, 25ressplusg 14748 . . . . . . . . . . . . 13  |-  ( H  e.  (SubGrp `  G
)  ->  .+  =  ( +g  `  ( Gs  H ) ) )
1051, 104syl 16 . . . . . . . . . . . 12  |-  ( ph  ->  .+  =  ( +g  `  ( Gs  H ) ) )
106105oveqdr 6220 . . . . . . . . . . 11  |-  ( (
ph  /\  s  e.  X )  ->  (
a  .+  b )  =  ( a ( +g  `  ( Gs  H ) ) b ) )
107106oveq1d 6211 . . . . . . . . . 10  |-  ( (
ph  /\  s  e.  X )  ->  (
( a  .+  b
)  .x.  [ s ]  .~  )  =  ( ( a ( +g  `  ( Gs  H ) ) b )  .x.  [ s ]  .~  ) )
108107eqeq1d 2384 . . . . . . . . 9  |-  ( (
ph  /\  s  e.  X )  ->  (
( ( a  .+  b )  .x.  [ s ]  .~  )  =  ( a  .x.  (
b  .x.  [ s ]  .~  ) )  <->  ( (
a ( +g  `  ( Gs  H ) ) b )  .x.  [ s ]  .~  )  =  ( a  .x.  (
b  .x.  [ s ]  .~  ) ) ) )
109103, 108raleqbidv 2993 . . . . . . . 8  |-  ( (
ph  /\  s  e.  X )  ->  ( A. b  e.  H  ( ( a  .+  b )  .x.  [ s ]  .~  )  =  ( a  .x.  (
b  .x.  [ s ]  .~  ) )  <->  A. b  e.  ( Base `  ( Gs  H ) ) ( ( a ( +g  `  ( Gs  H ) ) b )  .x.  [ s ]  .~  )  =  ( a  .x.  (
b  .x.  [ s ]  .~  ) ) ) )
110103, 109raleqbidv 2993 . . . . . . 7  |-  ( (
ph  /\  s  e.  X )  ->  ( A. a  e.  H  A. b  e.  H  ( ( a  .+  b )  .x.  [ s ]  .~  )  =  ( a  .x.  (
b  .x.  [ s ]  .~  ) )  <->  A. a  e.  ( Base `  ( Gs  H ) ) A. b  e.  ( Base `  ( Gs  H ) ) ( ( a ( +g  `  ( Gs  H ) ) b )  .x.  [ s ]  .~  )  =  ( a  .x.  (
b  .x.  [ s ]  .~  ) ) ) )
111102, 110mpbid 210 . . . . . 6  |-  ( (
ph  /\  s  e.  X )  ->  A. a  e.  ( Base `  ( Gs  H ) ) A. b  e.  ( Base `  ( Gs  H ) ) ( ( a ( +g  `  ( Gs  H ) ) b )  .x.  [ s ]  .~  )  =  ( a  .x.  (
b  .x.  [ s ]  .~  ) ) )
11276, 111jca 530 . . . . 5  |-  ( (
ph  /\  s  e.  X )  ->  (
( ( 0g `  ( Gs  H ) )  .x.  [ s ]  .~  )  =  [ s ]  .~  /\ 
A. a  e.  (
Base `  ( Gs  H
) ) A. b  e.  ( Base `  ( Gs  H ) ) ( ( a ( +g  `  ( Gs  H ) ) b )  .x.  [ s ]  .~  )  =  ( a  .x.  (
b  .x.  [ s ]  .~  ) ) ) )
11322, 61, 112ectocld 7296 . . . 4  |-  ( (
ph  /\  u  e.  ( X /.  .~  )
)  ->  ( (
( 0g `  ( Gs  H ) )  .x.  u )  =  u  /\  A. a  e.  ( Base `  ( Gs  H ) ) A. b  e.  ( Base `  ( Gs  H ) ) ( ( a ( +g  `  ( Gs  H ) ) b )  .x.  u )  =  ( a  .x.  ( b  .x.  u
) ) ) )
114113ralrimiva 2796 . . 3  |-  ( ph  ->  A. u  e.  ( X /.  .~  )
( ( ( 0g
`  ( Gs  H ) )  .x.  u )  =  u  /\  A. a  e.  ( Base `  ( Gs  H ) ) A. b  e.  ( Base `  ( Gs  H ) ) ( ( a ( +g  `  ( Gs  H ) ) b )  .x.  u )  =  ( a  .x.  ( b  .x.  u
) ) ) )
11552, 114jca 530 . 2  |-  ( ph  ->  (  .x.  : ( ( Base `  ( Gs  H ) )  X.  ( X /.  .~  ) ) --> ( X /.  .~  )  /\  A. u  e.  ( X /.  .~  ) ( ( ( 0g `  ( Gs  H ) )  .x.  u )  =  u  /\  A. a  e.  ( Base `  ( Gs  H ) ) A. b  e.  ( Base `  ( Gs  H ) ) ( ( a ( +g  `  ( Gs  H ) ) b )  .x.  u )  =  ( a  .x.  ( b  .x.  u
) ) ) ) )
116 eqid 2382 . . 3  |-  ( Base `  ( Gs  H ) )  =  ( Base `  ( Gs  H ) )
117 eqid 2382 . . 3  |-  ( +g  `  ( Gs  H ) )  =  ( +g  `  ( Gs  H ) )
118 eqid 2382 . . 3  |-  ( 0g
`  ( Gs  H ) )  =  ( 0g
`  ( Gs  H ) )
119116, 117, 118isga 16446 . 2  |-  (  .x.  e.  ( ( Gs  H ) 
GrpAct  ( X /.  .~  ) )  <->  ( (
( Gs  H )  e.  Grp  /\  ( X /.  .~  )  e.  _V )  /\  (  .x.  : ( ( Base `  ( Gs  H ) )  X.  ( X /.  .~  ) ) --> ( X /.  .~  )  /\  A. u  e.  ( X /.  .~  ) ( ( ( 0g `  ( Gs  H ) )  .x.  u )  =  u  /\  A. a  e.  ( Base `  ( Gs  H ) ) A. b  e.  ( Base `  ( Gs  H ) ) ( ( a ( +g  `  ( Gs  H ) ) b )  .x.  u )  =  ( a  .x.  ( b  .x.  u
) ) ) ) ) )
12015, 115, 119sylanbrc 662 1  |-  ( ph  ->  .x.  e.  ( ( Gs  H )  GrpAct  ( X /.  .~  ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 367    /\ w3a 971    = wceq 1399    e. wcel 1826   A.wral 2732   _Vcvv 3034    C_ wss 3389   ~Pcpw 3927    |-> cmpt 4425    X. cxp 4911   ran crn 4914    Fn wfn 5491   -->wf 5492   ` cfv 5496  (class class class)co 6196    |-> cmpt2 6198    Er wer 7226   [cec 7227   /.cqs 7228   Fincfn 7435   Basecbs 14634   ↾s cress 14635   +g cplusg 14702   0gc0g 14847   Grpcgrp 16170  SubGrpcsubg 16312   ~QG cqg 16314    GrpAct cga 16444
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1626  ax-4 1639  ax-5 1712  ax-6 1755  ax-7 1798  ax-8 1828  ax-9 1830  ax-10 1845  ax-11 1850  ax-12 1862  ax-13 2006  ax-ext 2360  ax-rep 4478  ax-sep 4488  ax-nul 4496  ax-pow 4543  ax-pr 4601  ax-un 6491  ax-cnex 9459  ax-resscn 9460  ax-1cn 9461  ax-icn 9462  ax-addcl 9463  ax-addrcl 9464  ax-mulcl 9465  ax-mulrcl 9466  ax-mulcom 9467  ax-addass 9468  ax-mulass 9469  ax-distr 9470  ax-i2m1 9471  ax-1ne0 9472  ax-1rid 9473  ax-rnegex 9474  ax-rrecex 9475  ax-cnre 9476  ax-pre-lttri 9477  ax-pre-lttrn 9478  ax-pre-ltadd 9479  ax-pre-mulgt0 9480
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1402  df-ex 1621  df-nf 1625  df-sb 1748  df-eu 2222  df-mo 2223  df-clab 2368  df-cleq 2374  df-clel 2377  df-nfc 2532  df-ne 2579  df-nel 2580  df-ral 2737  df-rex 2738  df-reu 2739  df-rmo 2740  df-rab 2741  df-v 3036  df-sbc 3253  df-csb 3349  df-dif 3392  df-un 3394  df-in 3396  df-ss 3403  df-pss 3405  df-nul 3712  df-if 3858  df-pw 3929  df-sn 3945  df-pr 3947  df-tp 3949  df-op 3951  df-uni 4164  df-int 4200  df-iun 4245  df-br 4368  df-opab 4426  df-mpt 4427  df-tr 4461  df-eprel 4705  df-id 4709  df-po 4714  df-so 4715  df-fr 4752  df-we 4754  df-ord 4795  df-on 4796  df-lim 4797  df-suc 4798  df-xp 4919  df-rel 4920  df-cnv 4921  df-co 4922  df-dm 4923  df-rn 4924  df-res 4925  df-ima 4926  df-iota 5460  df-fun 5498  df-fn 5499  df-f 5500  df-f1 5501  df-fo 5502  df-f1o 5503  df-fv 5504  df-riota 6158  df-ov 6199  df-oprab 6200  df-mpt2 6201  df-om 6600  df-1st 6699  df-2nd 6700  df-recs 6960  df-rdg 6994  df-1o 7048  df-2o 7049  df-oadd 7052  df-er 7229  df-ec 7231  df-qs 7235  df-map 7340  df-en 7436  df-dom 7437  df-sdom 7438  df-fin 7439  df-pnf 9541  df-mnf 9542  df-xr 9543  df-ltxr 9544  df-le 9545  df-sub 9720  df-neg 9721  df-nn 10453  df-2 10511  df-ndx 14637  df-slot 14638  df-base 14639  df-sets 14640  df-ress 14641  df-plusg 14715  df-0g 14849  df-mgm 15989  df-sgrp 16028  df-mnd 16038  df-grp 16174  df-minusg 16175  df-sbg 16176  df-subg 16315  df-eqg 16317  df-ga 16445
This theorem is referenced by:  sylow2blem3  16759
  Copyright terms: Public domain W3C validator