MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sylow2blem2 Structured version   Unicode version

Theorem sylow2blem2 16515
Description: Lemma for sylow2b 16517. Left multiplication in a subgroup  H is a group action on the set of all left cosets of  K. (Contributed by Mario Carneiro, 17-Jan-2015.)
Hypotheses
Ref Expression
sylow2b.x  |-  X  =  ( Base `  G
)
sylow2b.xf  |-  ( ph  ->  X  e.  Fin )
sylow2b.h  |-  ( ph  ->  H  e.  (SubGrp `  G ) )
sylow2b.k  |-  ( ph  ->  K  e.  (SubGrp `  G ) )
sylow2b.a  |-  .+  =  ( +g  `  G )
sylow2b.r  |-  .~  =  ( G ~QG  K )
sylow2b.m  |-  .x.  =  ( x  e.  H ,  y  e.  ( X /.  .~  )  |->  ran  ( z  e.  y 
|->  ( x  .+  z
) ) )
Assertion
Ref Expression
sylow2blem2  |-  ( ph  ->  .x.  e.  ( ( Gs  H )  GrpAct  ( X /.  .~  ) ) )
Distinct variable groups:    x, y,
z, G    x, K, y, z    x,  .x. , y,
z    x,  .+ , y, z   
x,  .~ , y, z    ph, z    x, H, y, z    x, X, y, z
Allowed substitution hints:    ph( x, y)

Proof of Theorem sylow2blem2
Dummy variables  a 
b  s  u  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sylow2b.h . . . 4  |-  ( ph  ->  H  e.  (SubGrp `  G ) )
2 eqid 2443 . . . . 5  |-  ( Gs  H )  =  ( Gs  H )
32subggrp 16078 . . . 4  |-  ( H  e.  (SubGrp `  G
)  ->  ( Gs  H
)  e.  Grp )
41, 3syl 16 . . 3  |-  ( ph  ->  ( Gs  H )  e.  Grp )
5 sylow2b.xf . . . . 5  |-  ( ph  ->  X  e.  Fin )
6 pwfi 7817 . . . . 5  |-  ( X  e.  Fin  <->  ~P X  e.  Fin )
75, 6sylib 196 . . . 4  |-  ( ph  ->  ~P X  e.  Fin )
8 sylow2b.k . . . . . 6  |-  ( ph  ->  K  e.  (SubGrp `  G ) )
9 sylow2b.x . . . . . . 7  |-  X  =  ( Base `  G
)
10 sylow2b.r . . . . . . 7  |-  .~  =  ( G ~QG  K )
119, 10eqger 16125 . . . . . 6  |-  ( K  e.  (SubGrp `  G
)  ->  .~  Er  X
)
128, 11syl 16 . . . . 5  |-  ( ph  ->  .~  Er  X )
1312qsss 7374 . . . 4  |-  ( ph  ->  ( X /.  .~  )  C_  ~P X )
147, 13ssexd 4584 . . 3  |-  ( ph  ->  ( X /.  .~  )  e.  _V )
154, 14jca 532 . 2  |-  ( ph  ->  ( ( Gs  H )  e.  Grp  /\  ( X /.  .~  )  e. 
_V ) )
16 sylow2b.m . . . . . . 7  |-  .x.  =  ( x  e.  H ,  y  e.  ( X /.  .~  )  |->  ran  ( z  e.  y 
|->  ( x  .+  z
) ) )
17 vex 3098 . . . . . . . . 9  |-  y  e. 
_V
1817mptex 6128 . . . . . . . 8  |-  ( z  e.  y  |->  ( x 
.+  z ) )  e.  _V
1918rnex 6719 . . . . . . 7  |-  ran  (
z  e.  y  |->  ( x  .+  z ) )  e.  _V
2016, 19fnmpt2i 6854 . . . . . 6  |-  .x.  Fn  ( H  X.  ( X /.  .~  ) )
2120a1i 11 . . . . 5  |-  ( ph  ->  .x.  Fn  ( H  X.  ( X /.  .~  ) ) )
22 eqid 2443 . . . . . . . 8  |-  ( X /.  .~  )  =  ( X /.  .~  )
23 oveq2 6289 . . . . . . . . 9  |-  ( [ s ]  .~  =  v  ->  ( u  .x.  [ s ]  .~  )  =  ( u  .x.  v ) )
2423eleq1d 2512 . . . . . . . 8  |-  ( [ s ]  .~  =  v  ->  ( ( u 
.x.  [ s ]  .~  )  e.  ( X /.  .~  )  <->  ( u  .x.  v )  e.  ( X /.  .~  )
) )
25 sylow2b.a . . . . . . . . . . 11  |-  .+  =  ( +g  `  G )
269, 5, 1, 8, 25, 10, 16sylow2blem1 16514 . . . . . . . . . 10  |-  ( (
ph  /\  u  e.  H  /\  s  e.  X
)  ->  ( u  .x.  [ s ]  .~  )  =  [ (
u  .+  s ) ]  .~  )
27 ovex 6309 . . . . . . . . . . . 12  |-  ( G ~QG  K )  e.  _V
2810, 27eqeltri 2527 . . . . . . . . . . 11  |-  .~  e.  _V
29 subgrcl 16080 . . . . . . . . . . . . . 14  |-  ( H  e.  (SubGrp `  G
)  ->  G  e.  Grp )
301, 29syl 16 . . . . . . . . . . . . 13  |-  ( ph  ->  G  e.  Grp )
31303ad2ant1 1018 . . . . . . . . . . . 12  |-  ( (
ph  /\  u  e.  H  /\  s  e.  X
)  ->  G  e.  Grp )
329subgss 16076 . . . . . . . . . . . . . . 15  |-  ( H  e.  (SubGrp `  G
)  ->  H  C_  X
)
331, 32syl 16 . . . . . . . . . . . . . 14  |-  ( ph  ->  H  C_  X )
3433sselda 3489 . . . . . . . . . . . . 13  |-  ( (
ph  /\  u  e.  H )  ->  u  e.  X )
35343adant3 1017 . . . . . . . . . . . 12  |-  ( (
ph  /\  u  e.  H  /\  s  e.  X
)  ->  u  e.  X )
36 simp3 999 . . . . . . . . . . . 12  |-  ( (
ph  /\  u  e.  H  /\  s  e.  X
)  ->  s  e.  X )
379, 25grpcl 15937 . . . . . . . . . . . 12  |-  ( ( G  e.  Grp  /\  u  e.  X  /\  s  e.  X )  ->  ( u  .+  s
)  e.  X )
3831, 35, 36, 37syl3anc 1229 . . . . . . . . . . 11  |-  ( (
ph  /\  u  e.  H  /\  s  e.  X
)  ->  ( u  .+  s )  e.  X
)
39 ecelqsg 7368 . . . . . . . . . . 11  |-  ( (  .~  e.  _V  /\  ( u  .+  s )  e.  X )  ->  [ ( u  .+  s ) ]  .~  e.  ( X /.  .~  ) )
4028, 38, 39sylancr 663 . . . . . . . . . 10  |-  ( (
ph  /\  u  e.  H  /\  s  e.  X
)  ->  [ (
u  .+  s ) ]  .~  e.  ( X /.  .~  ) )
4126, 40eqeltrd 2531 . . . . . . . . 9  |-  ( (
ph  /\  u  e.  H  /\  s  e.  X
)  ->  ( u  .x.  [ s ]  .~  )  e.  ( X /.  .~  ) )
42413expa 1197 . . . . . . . 8  |-  ( ( ( ph  /\  u  e.  H )  /\  s  e.  X )  ->  (
u  .x.  [ s ]  .~  )  e.  ( X /.  .~  )
)
4322, 24, 42ectocld 7380 . . . . . . 7  |-  ( ( ( ph  /\  u  e.  H )  /\  v  e.  ( X /.  .~  ) )  ->  (
u  .x.  v )  e.  ( X /.  .~  ) )
4443ralrimiva 2857 . . . . . 6  |-  ( (
ph  /\  u  e.  H )  ->  A. v  e.  ( X /.  .~  ) ( u  .x.  v )  e.  ( X /.  .~  )
)
4544ralrimiva 2857 . . . . 5  |-  ( ph  ->  A. u  e.  H  A. v  e.  ( X /.  .~  ) ( u  .x.  v )  e.  ( X /.  .~  ) )
46 ffnov 6391 . . . . 5  |-  (  .x.  : ( H  X.  ( X /.  .~  ) ) --> ( X /.  .~  ) 
<->  (  .x.  Fn  ( H  X.  ( X /.  .~  ) )  /\  A. u  e.  H  A. v  e.  ( X /.  .~  ) ( u 
.x.  v )  e.  ( X /.  .~  ) ) )
4721, 45, 46sylanbrc 664 . . . 4  |-  ( ph  ->  .x.  : ( H  X.  ( X /.  .~  ) ) --> ( X /.  .~  ) )
482subgbas 16079 . . . . . . 7  |-  ( H  e.  (SubGrp `  G
)  ->  H  =  ( Base `  ( Gs  H
) ) )
491, 48syl 16 . . . . . 6  |-  ( ph  ->  H  =  ( Base `  ( Gs  H ) ) )
5049xpeq1d 5012 . . . . 5  |-  ( ph  ->  ( H  X.  ( X /.  .~  ) )  =  ( ( Base `  ( Gs  H ) )  X.  ( X /.  .~  ) ) )
5150feq2d 5708 . . . 4  |-  ( ph  ->  (  .x.  : ( H  X.  ( X /.  .~  ) ) --> ( X /.  .~  ) 
<-> 
.x.  : ( ( Base `  ( Gs  H ) )  X.  ( X /.  .~  ) ) --> ( X /.  .~  ) ) )
5247, 51mpbid 210 . . 3  |-  ( ph  ->  .x.  : ( (
Base `  ( Gs  H
) )  X.  ( X /.  .~  ) ) --> ( X /.  .~  ) )
53 oveq2 6289 . . . . . . 7  |-  ( [ s ]  .~  =  u  ->  ( ( 0g
`  ( Gs  H ) )  .x.  [ s ]  .~  )  =  ( ( 0g `  ( Gs  H ) )  .x.  u ) )
54 id 22 . . . . . . 7  |-  ( [ s ]  .~  =  u  ->  [ s ]  .~  =  u )
5553, 54eqeq12d 2465 . . . . . 6  |-  ( [ s ]  .~  =  u  ->  ( ( ( 0g `  ( Gs  H ) )  .x.  [ s ]  .~  )  =  [ s ]  .~  <->  ( ( 0g `  ( Gs  H ) )  .x.  u )  =  u ) )
56 oveq2 6289 . . . . . . . 8  |-  ( [ s ]  .~  =  u  ->  ( ( a ( +g  `  ( Gs  H ) ) b )  .x.  [ s ]  .~  )  =  ( ( a ( +g  `  ( Gs  H ) ) b ) 
.x.  u ) )
57 oveq2 6289 . . . . . . . . 9  |-  ( [ s ]  .~  =  u  ->  ( b  .x.  [ s ]  .~  )  =  ( b  .x.  u ) )
5857oveq2d 6297 . . . . . . . 8  |-  ( [ s ]  .~  =  u  ->  ( a  .x.  ( b  .x.  [ s ]  .~  ) )  =  ( a  .x.  ( b  .x.  u
) ) )
5956, 58eqeq12d 2465 . . . . . . 7  |-  ( [ s ]  .~  =  u  ->  ( ( ( a ( +g  `  ( Gs  H ) ) b )  .x.  [ s ]  .~  )  =  ( a  .x.  (
b  .x.  [ s ]  .~  ) )  <->  ( (
a ( +g  `  ( Gs  H ) ) b )  .x.  u )  =  ( a  .x.  ( b  .x.  u
) ) ) )
60592ralbidv 2887 . . . . . 6  |-  ( [ s ]  .~  =  u  ->  ( A. a  e.  ( Base `  ( Gs  H ) ) A. b  e.  ( Base `  ( Gs  H ) ) ( ( a ( +g  `  ( Gs  H ) ) b )  .x.  [ s ]  .~  )  =  ( a  .x.  (
b  .x.  [ s ]  .~  ) )  <->  A. a  e.  ( Base `  ( Gs  H ) ) A. b  e.  ( Base `  ( Gs  H ) ) ( ( a ( +g  `  ( Gs  H ) ) b )  .x.  u )  =  ( a  .x.  ( b  .x.  u
) ) ) )
6155, 60anbi12d 710 . . . . 5  |-  ( [ s ]  .~  =  u  ->  ( ( ( ( 0g `  ( Gs  H ) )  .x.  [ s ]  .~  )  =  [ s ]  .~  /\ 
A. a  e.  (
Base `  ( Gs  H
) ) A. b  e.  ( Base `  ( Gs  H ) ) ( ( a ( +g  `  ( Gs  H ) ) b )  .x.  [ s ]  .~  )  =  ( a  .x.  (
b  .x.  [ s ]  .~  ) ) )  <-> 
( ( ( 0g
`  ( Gs  H ) )  .x.  u )  =  u  /\  A. a  e.  ( Base `  ( Gs  H ) ) A. b  e.  ( Base `  ( Gs  H ) ) ( ( a ( +g  `  ( Gs  H ) ) b )  .x.  u )  =  ( a  .x.  ( b  .x.  u
) ) ) ) )
62 simpl 457 . . . . . . . 8  |-  ( (
ph  /\  s  e.  X )  ->  ph )
631adantr 465 . . . . . . . . 9  |-  ( (
ph  /\  s  e.  X )  ->  H  e.  (SubGrp `  G )
)
64 eqid 2443 . . . . . . . . . 10  |-  ( 0g
`  G )  =  ( 0g `  G
)
6564subg0cl 16083 . . . . . . . . 9  |-  ( H  e.  (SubGrp `  G
)  ->  ( 0g `  G )  e.  H
)
6663, 65syl 16 . . . . . . . 8  |-  ( (
ph  /\  s  e.  X )  ->  ( 0g `  G )  e.  H )
67 simpr 461 . . . . . . . 8  |-  ( (
ph  /\  s  e.  X )  ->  s  e.  X )
689, 5, 1, 8, 25, 10, 16sylow2blem1 16514 . . . . . . . 8  |-  ( (
ph  /\  ( 0g `  G )  e.  H  /\  s  e.  X
)  ->  ( ( 0g `  G )  .x.  [ s ]  .~  )  =  [ ( ( 0g
`  G )  .+  s ) ]  .~  )
6962, 66, 67, 68syl3anc 1229 . . . . . . 7  |-  ( (
ph  /\  s  e.  X )  ->  (
( 0g `  G
)  .x.  [ s ]  .~  )  =  [
( ( 0g `  G )  .+  s
) ]  .~  )
702, 64subg0 16081 . . . . . . . . 9  |-  ( H  e.  (SubGrp `  G
)  ->  ( 0g `  G )  =  ( 0g `  ( Gs  H ) ) )
7163, 70syl 16 . . . . . . . 8  |-  ( (
ph  /\  s  e.  X )  ->  ( 0g `  G )  =  ( 0g `  ( Gs  H ) ) )
7271oveq1d 6296 . . . . . . 7  |-  ( (
ph  /\  s  e.  X )  ->  (
( 0g `  G
)  .x.  [ s ]  .~  )  =  ( ( 0g `  ( Gs  H ) )  .x.  [ s ]  .~  )
)
739, 25, 64grplid 15954 . . . . . . . . 9  |-  ( ( G  e.  Grp  /\  s  e.  X )  ->  ( ( 0g `  G )  .+  s
)  =  s )
7430, 73sylan 471 . . . . . . . 8  |-  ( (
ph  /\  s  e.  X )  ->  (
( 0g `  G
)  .+  s )  =  s )
7574eceq1d 7350 . . . . . . 7  |-  ( (
ph  /\  s  e.  X )  ->  [ ( ( 0g `  G
)  .+  s ) ]  .~  =  [ s ]  .~  )
7669, 72, 753eqtr3d 2492 . . . . . 6  |-  ( (
ph  /\  s  e.  X )  ->  (
( 0g `  ( Gs  H ) )  .x.  [ s ]  .~  )  =  [ s ]  .~  )
7763adantr 465 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  s  e.  X )  /\  (
a  e.  H  /\  b  e.  H )
)  ->  H  e.  (SubGrp `  G ) )
7877, 29syl 16 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  s  e.  X )  /\  (
a  e.  H  /\  b  e.  H )
)  ->  G  e.  Grp )
7977, 32syl 16 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  s  e.  X )  /\  (
a  e.  H  /\  b  e.  H )
)  ->  H  C_  X
)
80 simprl 756 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  s  e.  X )  /\  (
a  e.  H  /\  b  e.  H )
)  ->  a  e.  H )
8179, 80sseldd 3490 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  s  e.  X )  /\  (
a  e.  H  /\  b  e.  H )
)  ->  a  e.  X )
82 simprr 757 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  s  e.  X )  /\  (
a  e.  H  /\  b  e.  H )
)  ->  b  e.  H )
8379, 82sseldd 3490 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  s  e.  X )  /\  (
a  e.  H  /\  b  e.  H )
)  ->  b  e.  X )
8467adantr 465 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  s  e.  X )  /\  (
a  e.  H  /\  b  e.  H )
)  ->  s  e.  X )
859, 25grpass 15938 . . . . . . . . . . . 12  |-  ( ( G  e.  Grp  /\  ( a  e.  X  /\  b  e.  X  /\  s  e.  X
) )  ->  (
( a  .+  b
)  .+  s )  =  ( a  .+  ( b  .+  s
) ) )
8678, 81, 83, 84, 85syl13anc 1231 . . . . . . . . . . 11  |-  ( ( ( ph  /\  s  e.  X )  /\  (
a  e.  H  /\  b  e.  H )
)  ->  ( (
a  .+  b )  .+  s )  =  ( a  .+  ( b 
.+  s ) ) )
8786eceq1d 7350 . . . . . . . . . 10  |-  ( ( ( ph  /\  s  e.  X )  /\  (
a  e.  H  /\  b  e.  H )
)  ->  [ (
( a  .+  b
)  .+  s ) ]  .~  =  [ ( a  .+  ( b 
.+  s ) ) ]  .~  )
8862adantr 465 . . . . . . . . . . 11  |-  ( ( ( ph  /\  s  e.  X )  /\  (
a  e.  H  /\  b  e.  H )
)  ->  ph )
899, 25grpcl 15937 . . . . . . . . . . . 12  |-  ( ( G  e.  Grp  /\  b  e.  X  /\  s  e.  X )  ->  ( b  .+  s
)  e.  X )
9078, 83, 84, 89syl3anc 1229 . . . . . . . . . . 11  |-  ( ( ( ph  /\  s  e.  X )  /\  (
a  e.  H  /\  b  e.  H )
)  ->  ( b  .+  s )  e.  X
)
919, 5, 1, 8, 25, 10, 16sylow2blem1 16514 . . . . . . . . . . 11  |-  ( (
ph  /\  a  e.  H  /\  ( b  .+  s )  e.  X
)  ->  ( a  .x.  [ ( b  .+  s ) ]  .~  )  =  [ (
a  .+  ( b  .+  s ) ) ]  .~  )
9288, 80, 90, 91syl3anc 1229 . . . . . . . . . 10  |-  ( ( ( ph  /\  s  e.  X )  /\  (
a  e.  H  /\  b  e.  H )
)  ->  ( a  .x.  [ ( b  .+  s ) ]  .~  )  =  [ (
a  .+  ( b  .+  s ) ) ]  .~  )
9387, 92eqtr4d 2487 . . . . . . . . 9  |-  ( ( ( ph  /\  s  e.  X )  /\  (
a  e.  H  /\  b  e.  H )
)  ->  [ (
( a  .+  b
)  .+  s ) ]  .~  =  ( a 
.x.  [ ( b  .+  s ) ]  .~  ) )
9425subgcl 16085 . . . . . . . . . . 11  |-  ( ( H  e.  (SubGrp `  G )  /\  a  e.  H  /\  b  e.  H )  ->  (
a  .+  b )  e.  H )
9577, 80, 82, 94syl3anc 1229 . . . . . . . . . 10  |-  ( ( ( ph  /\  s  e.  X )  /\  (
a  e.  H  /\  b  e.  H )
)  ->  ( a  .+  b )  e.  H
)
969, 5, 1, 8, 25, 10, 16sylow2blem1 16514 . . . . . . . . . 10  |-  ( (
ph  /\  ( a  .+  b )  e.  H  /\  s  e.  X
)  ->  ( (
a  .+  b )  .x.  [ s ]  .~  )  =  [ (
( a  .+  b
)  .+  s ) ]  .~  )
9788, 95, 84, 96syl3anc 1229 . . . . . . . . 9  |-  ( ( ( ph  /\  s  e.  X )  /\  (
a  e.  H  /\  b  e.  H )
)  ->  ( (
a  .+  b )  .x.  [ s ]  .~  )  =  [ (
( a  .+  b
)  .+  s ) ]  .~  )
989, 5, 1, 8, 25, 10, 16sylow2blem1 16514 . . . . . . . . . . 11  |-  ( (
ph  /\  b  e.  H  /\  s  e.  X
)  ->  ( b  .x.  [ s ]  .~  )  =  [ (
b  .+  s ) ]  .~  )
9988, 82, 84, 98syl3anc 1229 . . . . . . . . . 10  |-  ( ( ( ph  /\  s  e.  X )  /\  (
a  e.  H  /\  b  e.  H )
)  ->  ( b  .x.  [ s ]  .~  )  =  [ (
b  .+  s ) ]  .~  )
10099oveq2d 6297 . . . . . . . . 9  |-  ( ( ( ph  /\  s  e.  X )  /\  (
a  e.  H  /\  b  e.  H )
)  ->  ( a  .x.  ( b  .x.  [ s ]  .~  ) )  =  ( a  .x.  [ ( b  .+  s
) ]  .~  )
)
10193, 97, 1003eqtr4d 2494 . . . . . . . 8  |-  ( ( ( ph  /\  s  e.  X )  /\  (
a  e.  H  /\  b  e.  H )
)  ->  ( (
a  .+  b )  .x.  [ s ]  .~  )  =  ( a  .x.  ( b  .x.  [ s ]  .~  ) ) )
102101ralrimivva 2864 . . . . . . 7  |-  ( (
ph  /\  s  e.  X )  ->  A. a  e.  H  A. b  e.  H  ( (
a  .+  b )  .x.  [ s ]  .~  )  =  ( a  .x.  ( b  .x.  [ s ]  .~  ) ) )
10363, 48syl 16 . . . . . . . 8  |-  ( (
ph  /\  s  e.  X )  ->  H  =  ( Base `  ( Gs  H ) ) )
1042, 25ressplusg 14616 . . . . . . . . . . . . 13  |-  ( H  e.  (SubGrp `  G
)  ->  .+  =  ( +g  `  ( Gs  H ) ) )
1051, 104syl 16 . . . . . . . . . . . 12  |-  ( ph  ->  .+  =  ( +g  `  ( Gs  H ) ) )
106105oveqdr 6305 . . . . . . . . . . 11  |-  ( (
ph  /\  s  e.  X )  ->  (
a  .+  b )  =  ( a ( +g  `  ( Gs  H ) ) b ) )
107106oveq1d 6296 . . . . . . . . . 10  |-  ( (
ph  /\  s  e.  X )  ->  (
( a  .+  b
)  .x.  [ s ]  .~  )  =  ( ( a ( +g  `  ( Gs  H ) ) b )  .x.  [ s ]  .~  ) )
108107eqeq1d 2445 . . . . . . . . 9  |-  ( (
ph  /\  s  e.  X )  ->  (
( ( a  .+  b )  .x.  [ s ]  .~  )  =  ( a  .x.  (
b  .x.  [ s ]  .~  ) )  <->  ( (
a ( +g  `  ( Gs  H ) ) b )  .x.  [ s ]  .~  )  =  ( a  .x.  (
b  .x.  [ s ]  .~  ) ) ) )
109103, 108raleqbidv 3054 . . . . . . . 8  |-  ( (
ph  /\  s  e.  X )  ->  ( A. b  e.  H  ( ( a  .+  b )  .x.  [ s ]  .~  )  =  ( a  .x.  (
b  .x.  [ s ]  .~  ) )  <->  A. b  e.  ( Base `  ( Gs  H ) ) ( ( a ( +g  `  ( Gs  H ) ) b )  .x.  [ s ]  .~  )  =  ( a  .x.  (
b  .x.  [ s ]  .~  ) ) ) )
110103, 109raleqbidv 3054 . . . . . . 7  |-  ( (
ph  /\  s  e.  X )  ->  ( A. a  e.  H  A. b  e.  H  ( ( a  .+  b )  .x.  [ s ]  .~  )  =  ( a  .x.  (
b  .x.  [ s ]  .~  ) )  <->  A. a  e.  ( Base `  ( Gs  H ) ) A. b  e.  ( Base `  ( Gs  H ) ) ( ( a ( +g  `  ( Gs  H ) ) b )  .x.  [ s ]  .~  )  =  ( a  .x.  (
b  .x.  [ s ]  .~  ) ) ) )
111102, 110mpbid 210 . . . . . 6  |-  ( (
ph  /\  s  e.  X )  ->  A. a  e.  ( Base `  ( Gs  H ) ) A. b  e.  ( Base `  ( Gs  H ) ) ( ( a ( +g  `  ( Gs  H ) ) b )  .x.  [ s ]  .~  )  =  ( a  .x.  (
b  .x.  [ s ]  .~  ) ) )
11276, 111jca 532 . . . . 5  |-  ( (
ph  /\  s  e.  X )  ->  (
( ( 0g `  ( Gs  H ) )  .x.  [ s ]  .~  )  =  [ s ]  .~  /\ 
A. a  e.  (
Base `  ( Gs  H
) ) A. b  e.  ( Base `  ( Gs  H ) ) ( ( a ( +g  `  ( Gs  H ) ) b )  .x.  [ s ]  .~  )  =  ( a  .x.  (
b  .x.  [ s ]  .~  ) ) ) )
11322, 61, 112ectocld 7380 . . . 4  |-  ( (
ph  /\  u  e.  ( X /.  .~  )
)  ->  ( (
( 0g `  ( Gs  H ) )  .x.  u )  =  u  /\  A. a  e.  ( Base `  ( Gs  H ) ) A. b  e.  ( Base `  ( Gs  H ) ) ( ( a ( +g  `  ( Gs  H ) ) b )  .x.  u )  =  ( a  .x.  ( b  .x.  u
) ) ) )
114113ralrimiva 2857 . . 3  |-  ( ph  ->  A. u  e.  ( X /.  .~  )
( ( ( 0g
`  ( Gs  H ) )  .x.  u )  =  u  /\  A. a  e.  ( Base `  ( Gs  H ) ) A. b  e.  ( Base `  ( Gs  H ) ) ( ( a ( +g  `  ( Gs  H ) ) b )  .x.  u )  =  ( a  .x.  ( b  .x.  u
) ) ) )
11552, 114jca 532 . 2  |-  ( ph  ->  (  .x.  : ( ( Base `  ( Gs  H ) )  X.  ( X /.  .~  ) ) --> ( X /.  .~  )  /\  A. u  e.  ( X /.  .~  ) ( ( ( 0g `  ( Gs  H ) )  .x.  u )  =  u  /\  A. a  e.  ( Base `  ( Gs  H ) ) A. b  e.  ( Base `  ( Gs  H ) ) ( ( a ( +g  `  ( Gs  H ) ) b )  .x.  u )  =  ( a  .x.  ( b  .x.  u
) ) ) ) )
116 eqid 2443 . . 3  |-  ( Base `  ( Gs  H ) )  =  ( Base `  ( Gs  H ) )
117 eqid 2443 . . 3  |-  ( +g  `  ( Gs  H ) )  =  ( +g  `  ( Gs  H ) )
118 eqid 2443 . . 3  |-  ( 0g
`  ( Gs  H ) )  =  ( 0g
`  ( Gs  H ) )
119116, 117, 118isga 16203 . 2  |-  (  .x.  e.  ( ( Gs  H ) 
GrpAct  ( X /.  .~  ) )  <->  ( (
( Gs  H )  e.  Grp  /\  ( X /.  .~  )  e.  _V )  /\  (  .x.  : ( ( Base `  ( Gs  H ) )  X.  ( X /.  .~  ) ) --> ( X /.  .~  )  /\  A. u  e.  ( X /.  .~  ) ( ( ( 0g `  ( Gs  H ) )  .x.  u )  =  u  /\  A. a  e.  ( Base `  ( Gs  H ) ) A. b  e.  ( Base `  ( Gs  H ) ) ( ( a ( +g  `  ( Gs  H ) ) b )  .x.  u )  =  ( a  .x.  ( b  .x.  u
) ) ) ) ) )
12015, 115, 119sylanbrc 664 1  |-  ( ph  ->  .x.  e.  ( ( Gs  H )  GrpAct  ( X /.  .~  ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 974    = wceq 1383    e. wcel 1804   A.wral 2793   _Vcvv 3095    C_ wss 3461   ~Pcpw 3997    |-> cmpt 4495    X. cxp 4987   ran crn 4990    Fn wfn 5573   -->wf 5574   ` cfv 5578  (class class class)co 6281    |-> cmpt2 6283    Er wer 7310   [cec 7311   /.cqs 7312   Fincfn 7518   Basecbs 14509   ↾s cress 14510   +g cplusg 14574   0gc0g 14714   Grpcgrp 15927  SubGrpcsubg 16069   ~QG cqg 16071    GrpAct cga 16201
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1605  ax-4 1618  ax-5 1691  ax-6 1734  ax-7 1776  ax-8 1806  ax-9 1808  ax-10 1823  ax-11 1828  ax-12 1840  ax-13 1985  ax-ext 2421  ax-rep 4548  ax-sep 4558  ax-nul 4566  ax-pow 4615  ax-pr 4676  ax-un 6577  ax-cnex 9551  ax-resscn 9552  ax-1cn 9553  ax-icn 9554  ax-addcl 9555  ax-addrcl 9556  ax-mulcl 9557  ax-mulrcl 9558  ax-mulcom 9559  ax-addass 9560  ax-mulass 9561  ax-distr 9562  ax-i2m1 9563  ax-1ne0 9564  ax-1rid 9565  ax-rnegex 9566  ax-rrecex 9567  ax-cnre 9568  ax-pre-lttri 9569  ax-pre-lttrn 9570  ax-pre-ltadd 9571  ax-pre-mulgt0 9572
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 975  df-3an 976  df-tru 1386  df-ex 1600  df-nf 1604  df-sb 1727  df-eu 2272  df-mo 2273  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2593  df-ne 2640  df-nel 2641  df-ral 2798  df-rex 2799  df-reu 2800  df-rmo 2801  df-rab 2802  df-v 3097  df-sbc 3314  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3771  df-if 3927  df-pw 3999  df-sn 4015  df-pr 4017  df-tp 4019  df-op 4021  df-uni 4235  df-int 4272  df-iun 4317  df-br 4438  df-opab 4496  df-mpt 4497  df-tr 4531  df-eprel 4781  df-id 4785  df-po 4790  df-so 4791  df-fr 4828  df-we 4830  df-ord 4871  df-on 4872  df-lim 4873  df-suc 4874  df-xp 4995  df-rel 4996  df-cnv 4997  df-co 4998  df-dm 4999  df-rn 5000  df-res 5001  df-ima 5002  df-iota 5541  df-fun 5580  df-fn 5581  df-f 5582  df-f1 5583  df-fo 5584  df-f1o 5585  df-fv 5586  df-riota 6242  df-ov 6284  df-oprab 6285  df-mpt2 6286  df-om 6686  df-1st 6785  df-2nd 6786  df-recs 7044  df-rdg 7078  df-1o 7132  df-2o 7133  df-oadd 7136  df-er 7313  df-ec 7315  df-qs 7319  df-map 7424  df-en 7519  df-dom 7520  df-sdom 7521  df-fin 7522  df-pnf 9633  df-mnf 9634  df-xr 9635  df-ltxr 9636  df-le 9637  df-sub 9812  df-neg 9813  df-nn 10543  df-2 10600  df-ndx 14512  df-slot 14513  df-base 14514  df-sets 14515  df-ress 14516  df-plusg 14587  df-0g 14716  df-mgm 15746  df-sgrp 15785  df-mnd 15795  df-grp 15931  df-minusg 15932  df-sbg 15933  df-subg 16072  df-eqg 16074  df-ga 16202
This theorem is referenced by:  sylow2blem3  16516
  Copyright terms: Public domain W3C validator