MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sylow2blem1 Structured version   Unicode version

Theorem sylow2blem1 16099
Description: Lemma for sylow2b 16102. Evaluate the group action on a left coset. (Contributed by Mario Carneiro, 17-Jan-2015.)
Hypotheses
Ref Expression
sylow2b.x  |-  X  =  ( Base `  G
)
sylow2b.xf  |-  ( ph  ->  X  e.  Fin )
sylow2b.h  |-  ( ph  ->  H  e.  (SubGrp `  G ) )
sylow2b.k  |-  ( ph  ->  K  e.  (SubGrp `  G ) )
sylow2b.a  |-  .+  =  ( +g  `  G )
sylow2b.r  |-  .~  =  ( G ~QG  K )
sylow2b.m  |-  .x.  =  ( x  e.  H ,  y  e.  ( X /.  .~  )  |->  ran  ( z  e.  y 
|->  ( x  .+  z
) ) )
Assertion
Ref Expression
sylow2blem1  |-  ( (
ph  /\  B  e.  H  /\  C  e.  X
)  ->  ( B  .x.  [ C ]  .~  )  =  [ ( B  .+  C ) ]  .~  )
Distinct variable groups:    x, y,
z, G    x, K, y, z    x,  .x. , y,
z    x,  .+ , y, z   
x,  .~ , y, z    ph, z    x, B, y, z    x, C, y, z    x, H, y, z    x, X, y, z
Allowed substitution hints:    ph( x, y)

Proof of Theorem sylow2blem1
StepHypRef Expression
1 simp2 982 . . 3  |-  ( (
ph  /\  B  e.  H  /\  C  e.  X
)  ->  B  e.  H )
2 sylow2b.r . . . . 5  |-  .~  =  ( G ~QG  K )
3 ovex 6105 . . . . 5  |-  ( G ~QG  K )  e.  _V
42, 3eqeltri 2503 . . . 4  |-  .~  e.  _V
5 simp3 983 . . . 4  |-  ( (
ph  /\  B  e.  H  /\  C  e.  X
)  ->  C  e.  X )
6 ecelqsg 7143 . . . 4  |-  ( (  .~  e.  _V  /\  C  e.  X )  ->  [ C ]  .~  e.  ( X /.  .~  ) )
74, 5, 6sylancr 656 . . 3  |-  ( (
ph  /\  B  e.  H  /\  C  e.  X
)  ->  [ C ]  .~  e.  ( X /.  .~  ) )
8 simpr 458 . . . . . 6  |-  ( ( x  =  B  /\  y  =  [ C ]  .~  )  ->  y  =  [ C ]  .~  )
9 simpl 454 . . . . . . 7  |-  ( ( x  =  B  /\  y  =  [ C ]  .~  )  ->  x  =  B )
109oveq1d 6095 . . . . . 6  |-  ( ( x  =  B  /\  y  =  [ C ]  .~  )  ->  (
x  .+  z )  =  ( B  .+  z ) )
118, 10mpteq12dv 4358 . . . . 5  |-  ( ( x  =  B  /\  y  =  [ C ]  .~  )  ->  (
z  e.  y  |->  ( x  .+  z ) )  =  ( z  e.  [ C ]  .~  |->  ( B  .+  z ) ) )
1211rneqd 5054 . . . 4  |-  ( ( x  =  B  /\  y  =  [ C ]  .~  )  ->  ran  ( z  e.  y 
|->  ( x  .+  z
) )  =  ran  ( z  e.  [ C ]  .~  |->  ( B 
.+  z ) ) )
13 sylow2b.m . . . 4  |-  .x.  =  ( x  e.  H ,  y  e.  ( X /.  .~  )  |->  ran  ( z  e.  y 
|->  ( x  .+  z
) ) )
14 ecexg 7093 . . . . . . 7  |-  (  .~  e.  _V  ->  [ C ]  .~  e.  _V )
154, 14ax-mp 5 . . . . . 6  |-  [ C ]  .~  e.  _V
1615mptex 5935 . . . . 5  |-  ( z  e.  [ C ]  .~  |->  ( B  .+  z ) )  e. 
_V
1716rnex 6501 . . . 4  |-  ran  (
z  e.  [ C ]  .~  |->  ( B  .+  z ) )  e. 
_V
1812, 13, 17ovmpt2a 6210 . . 3  |-  ( ( B  e.  H  /\  [ C ]  .~  e.  ( X /.  .~  )
)  ->  ( B  .x.  [ C ]  .~  )  =  ran  ( z  e.  [ C ]  .~  |->  ( B  .+  z ) ) )
191, 7, 18syl2anc 654 . 2  |-  ( (
ph  /\  B  e.  H  /\  C  e.  X
)  ->  ( B  .x.  [ C ]  .~  )  =  ran  ( z  e.  [ C ]  .~  |->  ( B  .+  z ) ) )
20 sylow2b.xf . . . . 5  |-  ( ph  ->  X  e.  Fin )
21 sylow2b.k . . . . . . 7  |-  ( ph  ->  K  e.  (SubGrp `  G ) )
22 sylow2b.x . . . . . . . 8  |-  X  =  ( Base `  G
)
2322, 2eqger 15711 . . . . . . 7  |-  ( K  e.  (SubGrp `  G
)  ->  .~  Er  X
)
2421, 23syl 16 . . . . . 6  |-  ( ph  ->  .~  Er  X )
2524ecss 7130 . . . . 5  |-  ( ph  ->  [ ( B  .+  C ) ]  .~  C_  X )
26 ssfi 7521 . . . . 5  |-  ( ( X  e.  Fin  /\  [ ( B  .+  C
) ]  .~  C_  X
)  ->  [ ( B  .+  C ) ]  .~  e.  Fin )
2720, 25, 26syl2anc 654 . . . 4  |-  ( ph  ->  [ ( B  .+  C ) ]  .~  e.  Fin )
28273ad2ant1 1002 . . 3  |-  ( (
ph  /\  B  e.  H  /\  C  e.  X
)  ->  [ ( B  .+  C ) ]  .~  e.  Fin )
29 vex 2965 . . . . . . . 8  |-  z  e. 
_V
30 elecg 7127 . . . . . . . 8  |-  ( ( z  e.  _V  /\  C  e.  X )  ->  ( z  e.  [ C ]  .~  <->  C  .~  z ) )
3129, 5, 30sylancr 656 . . . . . . 7  |-  ( (
ph  /\  B  e.  H  /\  C  e.  X
)  ->  ( z  e.  [ C ]  .~  <->  C  .~  z ) )
3231biimpa 481 . . . . . 6  |-  ( ( ( ph  /\  B  e.  H  /\  C  e.  X )  /\  z  e.  [ C ]  .~  )  ->  C  .~  z
)
33 sylow2b.h . . . . . . . . . . . 12  |-  ( ph  ->  H  e.  (SubGrp `  G ) )
34 subgrcl 15666 . . . . . . . . . . . 12  |-  ( H  e.  (SubGrp `  G
)  ->  G  e.  Grp )
3533, 34syl 16 . . . . . . . . . . 11  |-  ( ph  ->  G  e.  Grp )
36353ad2ant1 1002 . . . . . . . . . 10  |-  ( (
ph  /\  B  e.  H  /\  C  e.  X
)  ->  G  e.  Grp )
3722subgss 15662 . . . . . . . . . . . . 13  |-  ( H  e.  (SubGrp `  G
)  ->  H  C_  X
)
3833, 37syl 16 . . . . . . . . . . . 12  |-  ( ph  ->  H  C_  X )
39383ad2ant1 1002 . . . . . . . . . . 11  |-  ( (
ph  /\  B  e.  H  /\  C  e.  X
)  ->  H  C_  X
)
4039, 1sseldd 3345 . . . . . . . . . 10  |-  ( (
ph  /\  B  e.  H  /\  C  e.  X
)  ->  B  e.  X )
41 sylow2b.a . . . . . . . . . . 11  |-  .+  =  ( +g  `  G )
4222, 41grpcl 15531 . . . . . . . . . 10  |-  ( ( G  e.  Grp  /\  B  e.  X  /\  C  e.  X )  ->  ( B  .+  C
)  e.  X )
4336, 40, 5, 42syl3anc 1211 . . . . . . . . 9  |-  ( (
ph  /\  B  e.  H  /\  C  e.  X
)  ->  ( B  .+  C )  e.  X
)
4443adantr 462 . . . . . . . 8  |-  ( ( ( ph  /\  B  e.  H  /\  C  e.  X )  /\  C  .~  z )  ->  ( B  .+  C )  e.  X )
4536adantr 462 . . . . . . . . 9  |-  ( ( ( ph  /\  B  e.  H  /\  C  e.  X )  /\  C  .~  z )  ->  G  e.  Grp )
4640adantr 462 . . . . . . . . 9  |-  ( ( ( ph  /\  B  e.  H  /\  C  e.  X )  /\  C  .~  z )  ->  B  e.  X )
4722subgss 15662 . . . . . . . . . . . . . 14  |-  ( K  e.  (SubGrp `  G
)  ->  K  C_  X
)
4821, 47syl 16 . . . . . . . . . . . . 13  |-  ( ph  ->  K  C_  X )
49 eqid 2433 . . . . . . . . . . . . . 14  |-  ( invg `  G )  =  ( invg `  G )
5022, 49, 41, 2eqgval 15710 . . . . . . . . . . . . 13  |-  ( ( G  e.  Grp  /\  K  C_  X )  -> 
( C  .~  z  <->  ( C  e.  X  /\  z  e.  X  /\  ( ( ( invg `  G ) `
 C )  .+  z )  e.  K
) ) )
5135, 48, 50syl2anc 654 . . . . . . . . . . . 12  |-  ( ph  ->  ( C  .~  z  <->  ( C  e.  X  /\  z  e.  X  /\  ( ( ( invg `  G ) `
 C )  .+  z )  e.  K
) ) )
52513ad2ant1 1002 . . . . . . . . . . 11  |-  ( (
ph  /\  B  e.  H  /\  C  e.  X
)  ->  ( C  .~  z  <->  ( C  e.  X  /\  z  e.  X  /\  ( ( ( invg `  G ) `  C
)  .+  z )  e.  K ) ) )
5352biimpa 481 . . . . . . . . . 10  |-  ( ( ( ph  /\  B  e.  H  /\  C  e.  X )  /\  C  .~  z )  ->  ( C  e.  X  /\  z  e.  X  /\  ( ( ( invg `  G ) `
 C )  .+  z )  e.  K
) )
5453simp2d 994 . . . . . . . . 9  |-  ( ( ( ph  /\  B  e.  H  /\  C  e.  X )  /\  C  .~  z )  ->  z  e.  X )
5522, 41grpcl 15531 . . . . . . . . 9  |-  ( ( G  e.  Grp  /\  B  e.  X  /\  z  e.  X )  ->  ( B  .+  z
)  e.  X )
5645, 46, 54, 55syl3anc 1211 . . . . . . . 8  |-  ( ( ( ph  /\  B  e.  H  /\  C  e.  X )  /\  C  .~  z )  ->  ( B  .+  z )  e.  X )
5722, 49grpinvcl 15563 . . . . . . . . . . . . 13  |-  ( ( G  e.  Grp  /\  ( B  .+  C )  e.  X )  -> 
( ( invg `  G ) `  ( B  .+  C ) )  e.  X )
5836, 43, 57syl2anc 654 . . . . . . . . . . . 12  |-  ( (
ph  /\  B  e.  H  /\  C  e.  X
)  ->  ( ( invg `  G ) `
 ( B  .+  C ) )  e.  X )
5958adantr 462 . . . . . . . . . . 11  |-  ( ( ( ph  /\  B  e.  H  /\  C  e.  X )  /\  C  .~  z )  ->  (
( invg `  G ) `  ( B  .+  C ) )  e.  X )
6022, 41grpass 15532 . . . . . . . . . . 11  |-  ( ( G  e.  Grp  /\  ( ( ( invg `  G ) `
 ( B  .+  C ) )  e.  X  /\  B  e.  X  /\  z  e.  X ) )  -> 
( ( ( ( invg `  G
) `  ( B  .+  C ) )  .+  B )  .+  z
)  =  ( ( ( invg `  G ) `  ( B  .+  C ) ) 
.+  ( B  .+  z ) ) )
6145, 59, 46, 54, 60syl13anc 1213 . . . . . . . . . 10  |-  ( ( ( ph  /\  B  e.  H  /\  C  e.  X )  /\  C  .~  z )  ->  (
( ( ( invg `  G ) `
 ( B  .+  C ) )  .+  B )  .+  z
)  =  ( ( ( invg `  G ) `  ( B  .+  C ) ) 
.+  ( B  .+  z ) ) )
6222, 41, 49grpinvadd 15584 . . . . . . . . . . . . . . . 16  |-  ( ( G  e.  Grp  /\  B  e.  X  /\  C  e.  X )  ->  ( ( invg `  G ) `  ( B  .+  C ) )  =  ( ( ( invg `  G
) `  C )  .+  ( ( invg `  G ) `  B
) ) )
6336, 40, 5, 62syl3anc 1211 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  B  e.  H  /\  C  e.  X
)  ->  ( ( invg `  G ) `
 ( B  .+  C ) )  =  ( ( ( invg `  G ) `
 C )  .+  ( ( invg `  G ) `  B
) ) )
6422, 49grpinvcl 15563 . . . . . . . . . . . . . . . . 17  |-  ( ( G  e.  Grp  /\  C  e.  X )  ->  ( ( invg `  G ) `  C
)  e.  X )
6536, 5, 64syl2anc 654 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  B  e.  H  /\  C  e.  X
)  ->  ( ( invg `  G ) `
 C )  e.  X )
66 eqid 2433 . . . . . . . . . . . . . . . . 17  |-  ( -g `  G )  =  (
-g `  G )
6722, 41, 49, 66grpsubval 15561 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( invg `  G ) `  C
)  e.  X  /\  B  e.  X )  ->  ( ( ( invg `  G ) `
 C ) (
-g `  G ) B )  =  ( ( ( invg `  G ) `  C
)  .+  ( ( invg `  G ) `
 B ) ) )
6865, 40, 67syl2anc 654 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  B  e.  H  /\  C  e.  X
)  ->  ( (
( invg `  G ) `  C
) ( -g `  G
) B )  =  ( ( ( invg `  G ) `
 C )  .+  ( ( invg `  G ) `  B
) ) )
6963, 68eqtr4d 2468 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  B  e.  H  /\  C  e.  X
)  ->  ( ( invg `  G ) `
 ( B  .+  C ) )  =  ( ( ( invg `  G ) `
 C ) (
-g `  G ) B ) )
7069oveq1d 6095 . . . . . . . . . . . . 13  |-  ( (
ph  /\  B  e.  H  /\  C  e.  X
)  ->  ( (
( invg `  G ) `  ( B  .+  C ) ) 
.+  B )  =  ( ( ( ( invg `  G
) `  C )
( -g `  G ) B )  .+  B
) )
7122, 41, 66grpnpcan 15597 . . . . . . . . . . . . . 14  |-  ( ( G  e.  Grp  /\  ( ( invg `  G ) `  C
)  e.  X  /\  B  e.  X )  ->  ( ( ( ( invg `  G
) `  C )
( -g `  G ) B )  .+  B
)  =  ( ( invg `  G
) `  C )
)
7236, 65, 40, 71syl3anc 1211 . . . . . . . . . . . . 13  |-  ( (
ph  /\  B  e.  H  /\  C  e.  X
)  ->  ( (
( ( invg `  G ) `  C
) ( -g `  G
) B )  .+  B )  =  ( ( invg `  G ) `  C
) )
7370, 72eqtrd 2465 . . . . . . . . . . . 12  |-  ( (
ph  /\  B  e.  H  /\  C  e.  X
)  ->  ( (
( invg `  G ) `  ( B  .+  C ) ) 
.+  B )  =  ( ( invg `  G ) `  C
) )
7473oveq1d 6095 . . . . . . . . . . 11  |-  ( (
ph  /\  B  e.  H  /\  C  e.  X
)  ->  ( (
( ( invg `  G ) `  ( B  .+  C ) ) 
.+  B )  .+  z )  =  ( ( ( invg `  G ) `  C
)  .+  z )
)
7574adantr 462 . . . . . . . . . 10  |-  ( ( ( ph  /\  B  e.  H  /\  C  e.  X )  /\  C  .~  z )  ->  (
( ( ( invg `  G ) `
 ( B  .+  C ) )  .+  B )  .+  z
)  =  ( ( ( invg `  G ) `  C
)  .+  z )
)
7661, 75eqtr3d 2467 . . . . . . . . 9  |-  ( ( ( ph  /\  B  e.  H  /\  C  e.  X )  /\  C  .~  z )  ->  (
( ( invg `  G ) `  ( B  .+  C ) ) 
.+  ( B  .+  z ) )  =  ( ( ( invg `  G ) `
 C )  .+  z ) )
7753simp3d 995 . . . . . . . . 9  |-  ( ( ( ph  /\  B  e.  H  /\  C  e.  X )  /\  C  .~  z )  ->  (
( ( invg `  G ) `  C
)  .+  z )  e.  K )
7876, 77eqeltrd 2507 . . . . . . . 8  |-  ( ( ( ph  /\  B  e.  H  /\  C  e.  X )  /\  C  .~  z )  ->  (
( ( invg `  G ) `  ( B  .+  C ) ) 
.+  ( B  .+  z ) )  e.  K )
7922, 49, 41, 2eqgval 15710 . . . . . . . . . . 11  |-  ( ( G  e.  Grp  /\  K  C_  X )  -> 
( ( B  .+  C )  .~  ( B  .+  z )  <->  ( ( B  .+  C )  e.  X  /\  ( B 
.+  z )  e.  X  /\  ( ( ( invg `  G ) `  ( B  .+  C ) ) 
.+  ( B  .+  z ) )  e.  K ) ) )
8035, 48, 79syl2anc 654 . . . . . . . . . 10  |-  ( ph  ->  ( ( B  .+  C )  .~  ( B  .+  z )  <->  ( ( B  .+  C )  e.  X  /\  ( B 
.+  z )  e.  X  /\  ( ( ( invg `  G ) `  ( B  .+  C ) ) 
.+  ( B  .+  z ) )  e.  K ) ) )
81803ad2ant1 1002 . . . . . . . . 9  |-  ( (
ph  /\  B  e.  H  /\  C  e.  X
)  ->  ( ( B  .+  C )  .~  ( B  .+  z )  <-> 
( ( B  .+  C )  e.  X  /\  ( B  .+  z
)  e.  X  /\  ( ( ( invg `  G ) `
 ( B  .+  C ) )  .+  ( B  .+  z ) )  e.  K ) ) )
8281adantr 462 . . . . . . . 8  |-  ( ( ( ph  /\  B  e.  H  /\  C  e.  X )  /\  C  .~  z )  ->  (
( B  .+  C
)  .~  ( B  .+  z )  <->  ( ( B  .+  C )  e.  X  /\  ( B 
.+  z )  e.  X  /\  ( ( ( invg `  G ) `  ( B  .+  C ) ) 
.+  ( B  .+  z ) )  e.  K ) ) )
8344, 56, 78, 82mpbir3and 1164 . . . . . . 7  |-  ( ( ( ph  /\  B  e.  H  /\  C  e.  X )  /\  C  .~  z )  ->  ( B  .+  C )  .~  ( B  .+  z ) )
84 ovex 6105 . . . . . . . 8  |-  ( B 
.+  z )  e. 
_V
85 ovex 6105 . . . . . . . 8  |-  ( B 
.+  C )  e. 
_V
8684, 85elec 7128 . . . . . . 7  |-  ( ( B  .+  z )  e.  [ ( B 
.+  C ) ]  .~  <->  ( B  .+  C )  .~  ( B  .+  z ) )
8783, 86sylibr 212 . . . . . 6  |-  ( ( ( ph  /\  B  e.  H  /\  C  e.  X )  /\  C  .~  z )  ->  ( B  .+  z )  e. 
[ ( B  .+  C ) ]  .~  )
8832, 87syldan 467 . . . . 5  |-  ( ( ( ph  /\  B  e.  H  /\  C  e.  X )  /\  z  e.  [ C ]  .~  )  ->  ( B  .+  z )  e.  [
( B  .+  C
) ]  .~  )
89 eqid 2433 . . . . 5  |-  ( z  e.  [ C ]  .~  |->  ( B  .+  z ) )  =  ( z  e.  [ C ]  .~  |->  ( B 
.+  z ) )
9088, 89fmptd 5855 . . . 4  |-  ( (
ph  /\  B  e.  H  /\  C  e.  X
)  ->  ( z  e.  [ C ]  .~  |->  ( B  .+  z ) ) : [ C ]  .~  --> [ ( B 
.+  C ) ]  .~  )
91 frn 5553 . . . 4  |-  ( ( z  e.  [ C ]  .~  |->  ( B  .+  z ) ) : [ C ]  .~  --> [ ( B  .+  C ) ]  .~  ->  ran  ( z  e. 
[ C ]  .~  |->  ( B  .+  z ) )  C_  [ ( B  .+  C ) ]  .~  )
9290, 91syl 16 . . 3  |-  ( (
ph  /\  B  e.  H  /\  C  e.  X
)  ->  ran  ( z  e.  [ C ]  .~  |->  ( B  .+  z ) )  C_  [ ( B  .+  C
) ]  .~  )
93 eqid 2433 . . . . . . . . . . 11  |-  ( z  e.  X  |->  ( B 
.+  z ) )  =  ( z  e.  X  |->  ( B  .+  z ) )
9422, 41, 93grplmulf1o 15580 . . . . . . . . . 10  |-  ( ( G  e.  Grp  /\  B  e.  X )  ->  ( z  e.  X  |->  ( B  .+  z
) ) : X -1-1-onto-> X
)
9536, 40, 94syl2anc 654 . . . . . . . . 9  |-  ( (
ph  /\  B  e.  H  /\  C  e.  X
)  ->  ( z  e.  X  |->  ( B 
.+  z ) ) : X -1-1-onto-> X )
96 f1of1 5628 . . . . . . . . 9  |-  ( ( z  e.  X  |->  ( B  .+  z ) ) : X -1-1-onto-> X  -> 
( z  e.  X  |->  ( B  .+  z
) ) : X -1-1-> X )
9795, 96syl 16 . . . . . . . 8  |-  ( (
ph  /\  B  e.  H  /\  C  e.  X
)  ->  ( z  e.  X  |->  ( B 
.+  z ) ) : X -1-1-> X )
9824ecss 7130 . . . . . . . . 9  |-  ( ph  ->  [ C ]  .~  C_  X )
99983ad2ant1 1002 . . . . . . . 8  |-  ( (
ph  /\  B  e.  H  /\  C  e.  X
)  ->  [ C ]  .~  C_  X )
100 f1ssres 5601 . . . . . . . 8  |-  ( ( ( z  e.  X  |->  ( B  .+  z
) ) : X -1-1-> X  /\  [ C ]  .~  C_  X )  -> 
( ( z  e.  X  |->  ( B  .+  z ) )  |`  [ C ]  .~  ) : [ C ]  .~  -1-1-> X )
10197, 99, 100syl2anc 654 . . . . . . 7  |-  ( (
ph  /\  B  e.  H  /\  C  e.  X
)  ->  ( (
z  e.  X  |->  ( B  .+  z ) )  |`  [ C ]  .~  ) : [ C ]  .~  -1-1-> X )
102 resmpt 5144 . . . . . . . 8  |-  ( [ C ]  .~  C_  X  ->  ( ( z  e.  X  |->  ( B  .+  z ) )  |`  [ C ]  .~  )  =  ( z  e. 
[ C ]  .~  |->  ( B  .+  z ) ) )
103 f1eq1 5589 . . . . . . . 8  |-  ( ( ( z  e.  X  |->  ( B  .+  z
) )  |`  [ C ]  .~  )  =  ( z  e.  [ C ]  .~  |->  ( B  .+  z ) )  -> 
( ( ( z  e.  X  |->  ( B 
.+  z ) )  |`  [ C ]  .~  ) : [ C ]  .~ 
-1-1-> X  <->  ( z  e. 
[ C ]  .~  |->  ( B  .+  z ) ) : [ C ]  .~  -1-1-> X ) )
10499, 102, 1033syl 20 . . . . . . 7  |-  ( (
ph  /\  B  e.  H  /\  C  e.  X
)  ->  ( (
( z  e.  X  |->  ( B  .+  z
) )  |`  [ C ]  .~  ) : [ C ]  .~  -1-1-> X  <->  ( z  e.  [ C ]  .~  |->  ( B  .+  z ) ) : [ C ]  .~  -1-1-> X ) )
105101, 104mpbid 210 . . . . . 6  |-  ( (
ph  /\  B  e.  H  /\  C  e.  X
)  ->  ( z  e.  [ C ]  .~  |->  ( B  .+  z ) ) : [ C ]  .~  -1-1-> X )
106 f1f1orn 5640 . . . . . 6  |-  ( ( z  e.  [ C ]  .~  |->  ( B  .+  z ) ) : [ C ]  .~  -1-1-> X  ->  ( z  e. 
[ C ]  .~  |->  ( B  .+  z ) ) : [ C ]  .~ 
-1-1-onto-> ran  ( z  e.  [ C ]  .~  |->  ( B 
.+  z ) ) )
107105, 106syl 16 . . . . 5  |-  ( (
ph  /\  B  e.  H  /\  C  e.  X
)  ->  ( z  e.  [ C ]  .~  |->  ( B  .+  z ) ) : [ C ]  .~ 
-1-1-onto-> ran  ( z  e.  [ C ]  .~  |->  ( B 
.+  z ) ) )
10815f1oen 7318 . . . . 5  |-  ( ( z  e.  [ C ]  .~  |->  ( B  .+  z ) ) : [ C ]  .~  -1-1-onto-> ran  ( z  e.  [ C ]  .~  |->  ( B 
.+  z ) )  ->  [ C ]  .~  ~~  ran  ( z  e.  [ C ]  .~  |->  ( B  .+  z ) ) )
109 ensym 7346 . . . . 5  |-  ( [ C ]  .~  ~~  ran  ( z  e.  [ C ]  .~  |->  ( B 
.+  z ) )  ->  ran  ( z  e.  [ C ]  .~  |->  ( B  .+  z ) )  ~~  [ C ]  .~  )
110107, 108, 1093syl 20 . . . 4  |-  ( (
ph  /\  B  e.  H  /\  C  e.  X
)  ->  ran  ( z  e.  [ C ]  .~  |->  ( B  .+  z ) )  ~~  [ C ]  .~  )
111213ad2ant1 1002 . . . . . . 7  |-  ( (
ph  /\  B  e.  H  /\  C  e.  X
)  ->  K  e.  (SubGrp `  G ) )
11222, 2eqgen 15714 . . . . . . 7  |-  ( ( K  e.  (SubGrp `  G )  /\  [ C ]  .~  e.  ( X /.  .~  )
)  ->  K  ~~  [ C ]  .~  )
113111, 7, 112syl2anc 654 . . . . . 6  |-  ( (
ph  /\  B  e.  H  /\  C  e.  X
)  ->  K  ~~  [ C ]  .~  )
114 ensym 7346 . . . . . 6  |-  ( K 
~~  [ C ]  .~  ->  [ C ]  .~  ~~  K )
115113, 114syl 16 . . . . 5  |-  ( (
ph  /\  B  e.  H  /\  C  e.  X
)  ->  [ C ]  .~  ~~  K )
116 ecelqsg 7143 . . . . . . 7  |-  ( (  .~  e.  _V  /\  ( B  .+  C )  e.  X )  ->  [ ( B  .+  C ) ]  .~  e.  ( X /.  .~  ) )
1174, 43, 116sylancr 656 . . . . . 6  |-  ( (
ph  /\  B  e.  H  /\  C  e.  X
)  ->  [ ( B  .+  C ) ]  .~  e.  ( X /.  .~  ) )
11822, 2eqgen 15714 . . . . . 6  |-  ( ( K  e.  (SubGrp `  G )  /\  [
( B  .+  C
) ]  .~  e.  ( X /.  .~  )
)  ->  K  ~~  [ ( B  .+  C
) ]  .~  )
119111, 117, 118syl2anc 654 . . . . 5  |-  ( (
ph  /\  B  e.  H  /\  C  e.  X
)  ->  K  ~~  [ ( B  .+  C
) ]  .~  )
120 entr 7349 . . . . 5  |-  ( ( [ C ]  .~  ~~  K  /\  K  ~~  [ ( B  .+  C
) ]  .~  )  ->  [ C ]  .~  ~~ 
[ ( B  .+  C ) ]  .~  )
121115, 119, 120syl2anc 654 . . . 4  |-  ( (
ph  /\  B  e.  H  /\  C  e.  X
)  ->  [ C ]  .~  ~~  [ ( B  .+  C ) ]  .~  )
122 entr 7349 . . . 4  |-  ( ( ran  ( z  e. 
[ C ]  .~  |->  ( B  .+  z ) )  ~~  [ C ]  .~  /\  [ C ]  .~  ~~  [ ( B  .+  C ) ]  .~  )  ->  ran  ( z  e.  [ C ]  .~  |->  ( B 
.+  z ) ) 
~~  [ ( B 
.+  C ) ]  .~  )
123110, 121, 122syl2anc 654 . . 3  |-  ( (
ph  /\  B  e.  H  /\  C  e.  X
)  ->  ran  ( z  e.  [ C ]  .~  |->  ( B  .+  z ) )  ~~  [ ( B  .+  C
) ]  .~  )
124 fisseneq 7512 . . 3  |-  ( ( [ ( B  .+  C ) ]  .~  e.  Fin  /\  ran  (
z  e.  [ C ]  .~  |->  ( B  .+  z ) )  C_  [ ( B  .+  C
) ]  .~  /\  ran  ( z  e.  [ C ]  .~  |->  ( B 
.+  z ) ) 
~~  [ ( B 
.+  C ) ]  .~  )  ->  ran  ( z  e.  [ C ]  .~  |->  ( B 
.+  z ) )  =  [ ( B 
.+  C ) ]  .~  )
12528, 92, 123, 124syl3anc 1211 . 2  |-  ( (
ph  /\  B  e.  H  /\  C  e.  X
)  ->  ran  ( z  e.  [ C ]  .~  |->  ( B  .+  z ) )  =  [ ( B  .+  C ) ]  .~  )
12619, 125eqtrd 2465 1  |-  ( (
ph  /\  B  e.  H  /\  C  e.  X
)  ->  ( B  .x.  [ C ]  .~  )  =  [ ( B  .+  C ) ]  .~  )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 958    = wceq 1362    e. wcel 1755   _Vcvv 2962    C_ wss 3316   class class class wbr 4280    e. cmpt 4338   ran crn 4828    |` cres 4829   -->wf 5402   -1-1->wf1 5403   -1-1-onto->wf1o 5405   ` cfv 5406  (class class class)co 6080    e. cmpt2 6082    Er wer 7086   [cec 7087   /.cqs 7088    ~~ cen 7295   Fincfn 7298   Basecbs 14157   +g cplusg 14221   Grpcgrp 15393   invgcminusg 15394   -gcsg 15396  SubGrpcsubg 15655   ~QG cqg 15657
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1594  ax-4 1605  ax-5 1669  ax-6 1707  ax-7 1727  ax-8 1757  ax-9 1759  ax-10 1774  ax-11 1779  ax-12 1791  ax-13 1942  ax-ext 2414  ax-rep 4391  ax-sep 4401  ax-nul 4409  ax-pow 4458  ax-pr 4519  ax-un 6361  ax-cnex 9326  ax-resscn 9327  ax-1cn 9328  ax-icn 9329  ax-addcl 9330  ax-addrcl 9331  ax-mulcl 9332  ax-mulrcl 9333  ax-mulcom 9334  ax-addass 9335  ax-mulass 9336  ax-distr 9337  ax-i2m1 9338  ax-1ne0 9339  ax-1rid 9340  ax-rnegex 9341  ax-rrecex 9342  ax-cnre 9343  ax-pre-lttri 9344  ax-pre-lttrn 9345  ax-pre-ltadd 9346  ax-pre-mulgt0 9347
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 959  df-3an 960  df-tru 1365  df-ex 1590  df-nf 1593  df-sb 1700  df-eu 2258  df-mo 2259  df-clab 2420  df-cleq 2426  df-clel 2429  df-nfc 2558  df-ne 2598  df-nel 2599  df-ral 2710  df-rex 2711  df-reu 2712  df-rmo 2713  df-rab 2714  df-v 2964  df-sbc 3176  df-csb 3277  df-dif 3319  df-un 3321  df-in 3323  df-ss 3330  df-pss 3332  df-nul 3626  df-if 3780  df-pw 3850  df-sn 3866  df-pr 3868  df-tp 3870  df-op 3872  df-uni 4080  df-iun 4161  df-br 4281  df-opab 4339  df-mpt 4340  df-tr 4374  df-eprel 4619  df-id 4623  df-po 4628  df-so 4629  df-fr 4666  df-we 4668  df-ord 4709  df-on 4710  df-lim 4711  df-suc 4712  df-xp 4833  df-rel 4834  df-cnv 4835  df-co 4836  df-dm 4837  df-rn 4838  df-res 4839  df-ima 4840  df-iota 5369  df-fun 5408  df-fn 5409  df-f 5410  df-f1 5411  df-fo 5412  df-f1o 5413  df-fv 5414  df-riota 6039  df-ov 6083  df-oprab 6084  df-mpt2 6085  df-om 6466  df-1st 6566  df-2nd 6567  df-recs 6818  df-rdg 6852  df-er 7089  df-ec 7091  df-qs 7095  df-en 7299  df-dom 7300  df-sdom 7301  df-fin 7302  df-pnf 9408  df-mnf 9409  df-xr 9410  df-ltxr 9411  df-le 9412  df-sub 9585  df-neg 9586  df-nn 10311  df-2 10368  df-ndx 14160  df-slot 14161  df-base 14162  df-sets 14163  df-ress 14164  df-plusg 14234  df-0g 14363  df-mnd 15398  df-grp 15525  df-minusg 15526  df-sbg 15527  df-subg 15658  df-eqg 15660
This theorem is referenced by:  sylow2blem2  16100  sylow2blem3  16101
  Copyright terms: Public domain W3C validator