MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sylow2b Structured version   Visualization version   Unicode version

Theorem sylow2b 17353
Description: Sylow's second theorem. Any  P-group  H is a subgroup of a conjugated  P-group  K of order  P ^ n  ||  ( # `  X
) with  n maximal. This is usually stated under the assumption that  K is a Sylow subgroup, but we use a slightly different definition, whose equivalence to this one requires this theorem. This is part of Metamath 100 proof #72. (Contributed by Mario Carneiro, 18-Jan-2015.)
Hypotheses
Ref Expression
sylow2b.x  |-  X  =  ( Base `  G
)
sylow2b.xf  |-  ( ph  ->  X  e.  Fin )
sylow2b.h  |-  ( ph  ->  H  e.  (SubGrp `  G ) )
sylow2b.k  |-  ( ph  ->  K  e.  (SubGrp `  G ) )
sylow2b.a  |-  .+  =  ( +g  `  G )
sylow2b.hp  |-  ( ph  ->  P pGrp  ( Gs  H ) )
sylow2b.kn  |-  ( ph  ->  ( # `  K
)  =  ( P ^ ( P  pCnt  (
# `  X )
) ) )
sylow2b.d  |-  .-  =  ( -g `  G )
Assertion
Ref Expression
sylow2b  |-  ( ph  ->  E. g  e.  X  H  C_  ran  ( x  e.  K  |->  ( ( g  .+  x ) 
.-  g ) ) )
Distinct variable groups:    x, g, G    g, K, x    .+ , g, x    ph, g    x,  .-    g, H, x    g, X, x
Allowed substitution hints:    ph( x)    P( x, g)    .- ( g)

Proof of Theorem sylow2b
Dummy variables  s  u  v  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sylow2b.x . 2  |-  X  =  ( Base `  G
)
2 sylow2b.xf . 2  |-  ( ph  ->  X  e.  Fin )
3 sylow2b.h . 2  |-  ( ph  ->  H  e.  (SubGrp `  G ) )
4 sylow2b.k . 2  |-  ( ph  ->  K  e.  (SubGrp `  G ) )
5 sylow2b.a . 2  |-  .+  =  ( +g  `  G )
6 eqid 2471 . 2  |-  ( G ~QG  K )  =  ( G ~QG  K )
7 oveq2 6316 . . . . . 6  |-  ( s  =  z  ->  (
u  .+  s )  =  ( u  .+  z ) )
87cbvmptv 4488 . . . . 5  |-  ( s  e.  v  |->  ( u 
.+  s ) )  =  ( z  e.  v  |->  ( u  .+  z ) )
9 oveq1 6315 . . . . . 6  |-  ( u  =  x  ->  (
u  .+  z )  =  ( x  .+  z ) )
109mpteq2dv 4483 . . . . 5  |-  ( u  =  x  ->  (
z  e.  v  |->  ( u  .+  z ) )  =  ( z  e.  v  |->  ( x 
.+  z ) ) )
118, 10syl5eq 2517 . . . 4  |-  ( u  =  x  ->  (
s  e.  v  |->  ( u  .+  s ) )  =  ( z  e.  v  |->  ( x 
.+  z ) ) )
1211rneqd 5068 . . 3  |-  ( u  =  x  ->  ran  ( s  e.  v 
|->  ( u  .+  s
) )  =  ran  ( z  e.  v 
|->  ( x  .+  z
) ) )
13 mpteq1 4476 . . . 4  |-  ( v  =  y  ->  (
z  e.  v  |->  ( x  .+  z ) )  =  ( z  e.  y  |->  ( x 
.+  z ) ) )
1413rneqd 5068 . . 3  |-  ( v  =  y  ->  ran  ( z  e.  v 
|->  ( x  .+  z
) )  =  ran  ( z  e.  y 
|->  ( x  .+  z
) ) )
1512, 14cbvmpt2v 6390 . 2  |-  ( u  e.  H ,  v  e.  ( X /. ( G ~QG  K ) )  |->  ran  ( s  e.  v 
|->  ( u  .+  s
) ) )  =  ( x  e.  H ,  y  e.  ( X /. ( G ~QG  K ) )  |->  ran  ( z  e.  y  |->  ( x 
.+  z ) ) )
16 sylow2b.hp . 2  |-  ( ph  ->  P pGrp  ( Gs  H ) )
17 sylow2b.kn . 2  |-  ( ph  ->  ( # `  K
)  =  ( P ^ ( P  pCnt  (
# `  X )
) ) )
18 sylow2b.d . 2  |-  .-  =  ( -g `  G )
191, 2, 3, 4, 5, 6, 15, 16, 17, 18sylow2blem3 17352 1  |-  ( ph  ->  E. g  e.  X  H  C_  ran  ( x  e.  K  |->  ( ( g  .+  x ) 
.-  g ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1452    e. wcel 1904   E.wrex 2757    C_ wss 3390   class class class wbr 4395    |-> cmpt 4454   ran crn 4840   ` cfv 5589  (class class class)co 6308    |-> cmpt2 6310   /.cqs 7380   Fincfn 7587   ^cexp 12310   #chash 12553    pCnt cpc 14865   Basecbs 15199   ↾s cress 15200   +g cplusg 15268   -gcsg 16749  SubGrpcsubg 16889   ~QG cqg 16891   pGrp cpgp 17247
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-8 1906  ax-9 1913  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451  ax-rep 4508  ax-sep 4518  ax-nul 4527  ax-pow 4579  ax-pr 4639  ax-un 6602  ax-inf2 8164  ax-cnex 9613  ax-resscn 9614  ax-1cn 9615  ax-icn 9616  ax-addcl 9617  ax-addrcl 9618  ax-mulcl 9619  ax-mulrcl 9620  ax-mulcom 9621  ax-addass 9622  ax-mulass 9623  ax-distr 9624  ax-i2m1 9625  ax-1ne0 9626  ax-1rid 9627  ax-rnegex 9628  ax-rrecex 9629  ax-cnre 9630  ax-pre-lttri 9631  ax-pre-lttrn 9632  ax-pre-ltadd 9633  ax-pre-mulgt0 9634  ax-pre-sup 9635
This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-3or 1008  df-3an 1009  df-tru 1455  df-fal 1458  df-ex 1672  df-nf 1676  df-sb 1806  df-eu 2323  df-mo 2324  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ne 2643  df-nel 2644  df-ral 2761  df-rex 2762  df-reu 2763  df-rmo 2764  df-rab 2765  df-v 3033  df-sbc 3256  df-csb 3350  df-dif 3393  df-un 3395  df-in 3397  df-ss 3404  df-pss 3406  df-nul 3723  df-if 3873  df-pw 3944  df-sn 3960  df-pr 3962  df-tp 3964  df-op 3966  df-uni 4191  df-int 4227  df-iun 4271  df-disj 4367  df-br 4396  df-opab 4455  df-mpt 4456  df-tr 4491  df-eprel 4750  df-id 4754  df-po 4760  df-so 4761  df-fr 4798  df-se 4799  df-we 4800  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-pred 5387  df-ord 5433  df-on 5434  df-lim 5435  df-suc 5436  df-iota 5553  df-fun 5591  df-fn 5592  df-f 5593  df-f1 5594  df-fo 5595  df-f1o 5596  df-fv 5597  df-isom 5598  df-riota 6270  df-ov 6311  df-oprab 6312  df-mpt2 6313  df-om 6712  df-1st 6812  df-2nd 6813  df-wrecs 7046  df-recs 7108  df-rdg 7146  df-1o 7200  df-2o 7201  df-oadd 7204  df-omul 7205  df-er 7381  df-ec 7383  df-qs 7387  df-map 7492  df-en 7588  df-dom 7589  df-sdom 7590  df-fin 7591  df-sup 7974  df-inf 7975  df-oi 8043  df-card 8391  df-acn 8394  df-cda 8616  df-pnf 9695  df-mnf 9696  df-xr 9697  df-ltxr 9698  df-le 9699  df-sub 9882  df-neg 9883  df-div 10292  df-nn 10632  df-2 10690  df-3 10691  df-n0 10894  df-z 10962  df-uz 11183  df-q 11288  df-rp 11326  df-fz 11811  df-fzo 11943  df-fl 12061  df-mod 12130  df-seq 12252  df-exp 12311  df-fac 12498  df-bc 12526  df-hash 12554  df-cj 13239  df-re 13240  df-im 13241  df-sqrt 13375  df-abs 13376  df-clim 13629  df-sum 13830  df-dvds 14383  df-gcd 14548  df-prm 14702  df-pc 14866  df-ndx 15202  df-slot 15203  df-base 15204  df-sets 15205  df-ress 15206  df-plusg 15281  df-0g 15418  df-mgm 16566  df-sgrp 16605  df-mnd 16615  df-submnd 16661  df-grp 16751  df-minusg 16752  df-sbg 16753  df-mulg 16754  df-subg 16892  df-eqg 16894  df-ga 17022  df-od 17250  df-pgp 17254
This theorem is referenced by:  slwhash  17354  sylow2  17356
  Copyright terms: Public domain W3C validator