MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sylow2alem2 Unicode version

Theorem sylow2alem2 15207
Description: Lemma for sylow2a 15208. All the orbits which are not for fixed points have size  |  G  |  /  |  G x  | (where  G x is the stabilizer subgroup) and thus are powers of  P. And since they are all nontrivial (because any orbit which is a singleton is a fixed point), they all divide  P, and so does the sum of all of them. (Contributed by Mario Carneiro, 17-Jan-2015.)
Hypotheses
Ref Expression
sylow2a.x  |-  X  =  ( Base `  G
)
sylow2a.m  |-  ( ph  -> 
.(+)  e.  ( G  GrpAct  Y ) )
sylow2a.p  |-  ( ph  ->  P pGrp  G )
sylow2a.f  |-  ( ph  ->  X  e.  Fin )
sylow2a.y  |-  ( ph  ->  Y  e.  Fin )
sylow2a.z  |-  Z  =  { u  e.  Y  |  A. h  e.  X  ( h  .(+)  u )  =  u }
sylow2a.r  |-  .~  =  { <. x ,  y
>.  |  ( {
x ,  y } 
C_  Y  /\  E. g  e.  X  (
g  .(+)  x )  =  y ) }
Assertion
Ref Expression
sylow2alem2  |-  ( ph  ->  P  ||  sum_ z  e.  ( ( Y /.  .~  )  \  ~P Z
) ( # `  z
) )
Distinct variable groups:    z, h,  .~    g, h, u, x, y    g, G, x, y    z, P    .(+) , g, h, u, x, y    g, X, h, u, x, y   
z, Z    ph, h, z   
z, g, Y, h, u, x, y
Allowed substitution hints:    ph( x, y, u, g)    P( x, y, u, g, h)    .(+) (
z)    .~ ( x, y, u, g)    G( z, u, h)    X( z)    Z( x, y, u, g, h)

Proof of Theorem sylow2alem2
Dummy variables  k  n  w  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sylow2a.y . . . . 5  |-  ( ph  ->  Y  e.  Fin )
2 pwfi 7360 . . . . 5  |-  ( Y  e.  Fin  <->  ~P Y  e.  Fin )
31, 2sylib 189 . . . 4  |-  ( ph  ->  ~P Y  e.  Fin )
4 sylow2a.m . . . . . 6  |-  ( ph  -> 
.(+)  e.  ( G  GrpAct  Y ) )
5 sylow2a.r . . . . . . 7  |-  .~  =  { <. x ,  y
>.  |  ( {
x ,  y } 
C_  Y  /\  E. g  e.  X  (
g  .(+)  x )  =  y ) }
6 sylow2a.x . . . . . . 7  |-  X  =  ( Base `  G
)
75, 6gaorber 15040 . . . . . 6  |-  (  .(+)  e.  ( G  GrpAct  Y )  ->  .~  Er  Y
)
84, 7syl 16 . . . . 5  |-  ( ph  ->  .~  Er  Y )
98qsss 6924 . . . 4  |-  ( ph  ->  ( Y /.  .~  )  C_  ~P Y )
10 ssfi 7288 . . . 4  |-  ( ( ~P Y  e.  Fin  /\  ( Y /.  .~  )  C_  ~P Y )  ->  ( Y /.  .~  )  e.  Fin )
113, 9, 10syl2anc 643 . . 3  |-  ( ph  ->  ( Y /.  .~  )  e.  Fin )
12 diffi 7298 . . 3  |-  ( ( Y /.  .~  )  e.  Fin  ->  ( ( Y /.  .~  )  \  ~P Z )  e.  Fin )
1311, 12syl 16 . 2  |-  ( ph  ->  ( ( Y /.  .~  )  \  ~P Z
)  e.  Fin )
14 sylow2a.p . . . . 5  |-  ( ph  ->  P pGrp  G )
15 gagrp 15024 . . . . . . 7  |-  (  .(+)  e.  ( G  GrpAct  Y )  ->  G  e.  Grp )
164, 15syl 16 . . . . . 6  |-  ( ph  ->  G  e.  Grp )
17 sylow2a.f . . . . . 6  |-  ( ph  ->  X  e.  Fin )
186pgpfi 15194 . . . . . 6  |-  ( ( G  e.  Grp  /\  X  e.  Fin )  ->  ( P pGrp  G  <->  ( P  e.  Prime  /\  E. n  e.  NN0  ( # `  X
)  =  ( P ^ n ) ) ) )
1916, 17, 18syl2anc 643 . . . . 5  |-  ( ph  ->  ( P pGrp  G  <->  ( P  e.  Prime  /\  E. n  e.  NN0  ( # `  X
)  =  ( P ^ n ) ) ) )
2014, 19mpbid 202 . . . 4  |-  ( ph  ->  ( P  e.  Prime  /\ 
E. n  e.  NN0  ( # `  X )  =  ( P ^
n ) ) )
2120simpld 446 . . 3  |-  ( ph  ->  P  e.  Prime )
22 prmz 13038 . . 3  |-  ( P  e.  Prime  ->  P  e.  ZZ )
2321, 22syl 16 . 2  |-  ( ph  ->  P  e.  ZZ )
24 eldifi 3429 . . . . 5  |-  ( z  e.  ( ( Y /.  .~  )  \  ~P Z )  ->  z  e.  ( Y /.  .~  ) )
251adantr 452 . . . . . 6  |-  ( (
ph  /\  z  e.  ( Y /.  .~  )
)  ->  Y  e.  Fin )
269sselda 3308 . . . . . . 7  |-  ( (
ph  /\  z  e.  ( Y /.  .~  )
)  ->  z  e.  ~P Y )
2726elpwid 3768 . . . . . 6  |-  ( (
ph  /\  z  e.  ( Y /.  .~  )
)  ->  z  C_  Y )
28 ssfi 7288 . . . . . 6  |-  ( ( Y  e.  Fin  /\  z  C_  Y )  -> 
z  e.  Fin )
2925, 27, 28syl2anc 643 . . . . 5  |-  ( (
ph  /\  z  e.  ( Y /.  .~  )
)  ->  z  e.  Fin )
3024, 29sylan2 461 . . . 4  |-  ( (
ph  /\  z  e.  ( ( Y /.  .~  )  \  ~P Z
) )  ->  z  e.  Fin )
31 hashcl 11594 . . . 4  |-  ( z  e.  Fin  ->  ( # `
 z )  e. 
NN0 )
3230, 31syl 16 . . 3  |-  ( (
ph  /\  z  e.  ( ( Y /.  .~  )  \  ~P Z
) )  ->  ( # `
 z )  e. 
NN0 )
3332nn0zd 10329 . 2  |-  ( (
ph  /\  z  e.  ( ( Y /.  .~  )  \  ~P Z
) )  ->  ( # `
 z )  e.  ZZ )
34 eldif 3290 . . 3  |-  ( z  e.  ( ( Y /.  .~  )  \  ~P Z )  <->  ( z  e.  ( Y /.  .~  )  /\  -.  z  e. 
~P Z ) )
35 eqid 2404 . . . . 5  |-  ( Y /.  .~  )  =  ( Y /.  .~  )
36 sseq1 3329 . . . . . . . 8  |-  ( [ w ]  .~  =  z  ->  ( [ w ]  .~  C_  Z  <->  z  C_  Z ) )
37 vex 2919 . . . . . . . . 9  |-  z  e. 
_V
3837elpw 3765 . . . . . . . 8  |-  ( z  e.  ~P Z  <->  z  C_  Z )
3936, 38syl6bbr 255 . . . . . . 7  |-  ( [ w ]  .~  =  z  ->  ( [ w ]  .~  C_  Z  <->  z  e.  ~P Z ) )
4039notbid 286 . . . . . 6  |-  ( [ w ]  .~  =  z  ->  ( -.  [
w ]  .~  C_  Z  <->  -.  z  e.  ~P Z
) )
41 fveq2 5687 . . . . . . 7  |-  ( [ w ]  .~  =  z  ->  ( # `  [
w ]  .~  )  =  ( # `  z
) )
4241breq2d 4184 . . . . . 6  |-  ( [ w ]  .~  =  z  ->  ( P  ||  ( # `  [ w ]  .~  )  <->  P  ||  ( # `
 z ) ) )
4340, 42imbi12d 312 . . . . 5  |-  ( [ w ]  .~  =  z  ->  ( ( -. 
[ w ]  .~  C_  Z  ->  P  ||  ( # `
 [ w ]  .~  ) )  <->  ( -.  z  e.  ~P Z  ->  P  ||  ( # `  z ) ) ) )
4421adantr 452 . . . . . . . . . 10  |-  ( (
ph  /\  w  e.  Y )  ->  P  e.  Prime )
458adantr 452 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  w  e.  Y )  ->  .~  Er  Y )
46 simpr 448 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  w  e.  Y )  ->  w  e.  Y )
4745, 46erref 6884 . . . . . . . . . . . . 13  |-  ( (
ph  /\  w  e.  Y )  ->  w  .~  w )
48 vex 2919 . . . . . . . . . . . . . 14  |-  w  e. 
_V
4948, 48elec 6903 . . . . . . . . . . . . 13  |-  ( w  e.  [ w ]  .~ 
<->  w  .~  w )
5047, 49sylibr 204 . . . . . . . . . . . 12  |-  ( (
ph  /\  w  e.  Y )  ->  w  e.  [ w ]  .~  )
51 ne0i 3594 . . . . . . . . . . . 12  |-  ( w  e.  [ w ]  .~  ->  [ w ]  .~  =/=  (/) )
5250, 51syl 16 . . . . . . . . . . 11  |-  ( (
ph  /\  w  e.  Y )  ->  [ w ]  .~  =/=  (/) )
538ecss 6905 . . . . . . . . . . . . . 14  |-  ( ph  ->  [ w ]  .~  C_  Y )
54 ssfi 7288 . . . . . . . . . . . . . 14  |-  ( ( Y  e.  Fin  /\  [ w ]  .~  C_  Y
)  ->  [ w ]  .~  e.  Fin )
551, 53, 54syl2anc 643 . . . . . . . . . . . . 13  |-  ( ph  ->  [ w ]  .~  e.  Fin )
5655adantr 452 . . . . . . . . . . . 12  |-  ( (
ph  /\  w  e.  Y )  ->  [ w ]  .~  e.  Fin )
57 hashnncl 11600 . . . . . . . . . . . 12  |-  ( [ w ]  .~  e.  Fin  ->  ( ( # `  [ w ]  .~  )  e.  NN  <->  [ w ]  .~  =/=  (/) ) )
5856, 57syl 16 . . . . . . . . . . 11  |-  ( (
ph  /\  w  e.  Y )  ->  (
( # `  [ w ]  .~  )  e.  NN  <->  [ w ]  .~  =/=  (/) ) )
5952, 58mpbird 224 . . . . . . . . . 10  |-  ( (
ph  /\  w  e.  Y )  ->  ( # `
 [ w ]  .~  )  e.  NN )
60 pceq0 13199 . . . . . . . . . 10  |-  ( ( P  e.  Prime  /\  ( # `
 [ w ]  .~  )  e.  NN )  ->  ( ( P 
pCnt  ( # `  [
w ]  .~  )
)  =  0  <->  -.  P  ||  ( # `  [
w ]  .~  )
) )
6144, 59, 60syl2anc 643 . . . . . . . . 9  |-  ( (
ph  /\  w  e.  Y )  ->  (
( P  pCnt  ( # `
 [ w ]  .~  ) )  =  0  <->  -.  P  ||  ( # `  [ w ]  .~  ) ) )
62 oveq2 6048 . . . . . . . . . 10  |-  ( ( P  pCnt  ( # `  [
w ]  .~  )
)  =  0  -> 
( P ^ ( P  pCnt  ( # `  [
w ]  .~  )
) )  =  ( P ^ 0 ) )
63 hashcl 11594 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( [ w ]  .~  e.  Fin  ->  ( # `  [
w ]  .~  )  e.  NN0 )
6455, 63syl 16 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  ( # `  [
w ]  .~  )  e.  NN0 )
6564nn0zd 10329 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  ( # `  [
w ]  .~  )  e.  ZZ )
66 ssrab2 3388 . . . . . . . . . . . . . . . . . . . . . . 23  |-  { v  e.  X  |  ( v  .(+)  w )  =  w }  C_  X
67 ssfi 7288 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( X  e.  Fin  /\  { v  e.  X  | 
( v  .(+)  w )  =  w }  C_  X )  ->  { v  e.  X  |  ( v  .(+)  w )  =  w }  e.  Fin )
6817, 66, 67sylancl 644 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ph  ->  { v  e.  X  |  ( v  .(+)  w )  =  w }  e.  Fin )
69 hashcl 11594 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( { v  e.  X  | 
( v  .(+)  w )  =  w }  e.  Fin  ->  ( # `  {
v  e.  X  | 
( v  .(+)  w )  =  w } )  e.  NN0 )
7068, 69syl 16 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  ( # `  {
v  e.  X  | 
( v  .(+)  w )  =  w } )  e.  NN0 )
7170nn0zd 10329 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  ( # `  {
v  e.  X  | 
( v  .(+)  w )  =  w } )  e.  ZZ )
72 dvdsmul1 12826 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( # `  [
w ]  .~  )  e.  ZZ  /\  ( # `  { v  e.  X  |  ( v  .(+)  w )  =  w }
)  e.  ZZ )  ->  ( # `  [
w ]  .~  )  ||  ( ( # `  [
w ]  .~  )  x.  ( # `  {
v  e.  X  | 
( v  .(+)  w )  =  w } ) ) )
7365, 71, 72syl2anc 643 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( # `  [
w ]  .~  )  ||  ( ( # `  [
w ]  .~  )  x.  ( # `  {
v  e.  X  | 
( v  .(+)  w )  =  w } ) ) )
7473adantr 452 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  w  e.  Y )  ->  ( # `
 [ w ]  .~  )  ||  ( (
# `  [ w ]  .~  )  x.  ( # `
 { v  e.  X  |  ( v 
.(+)  w )  =  w } ) ) )
754adantr 452 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  w  e.  Y )  ->  .(+)  e.  ( G  GrpAct  Y ) )
7617adantr 452 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  w  e.  Y )  ->  X  e.  Fin )
77 eqid 2404 . . . . . . . . . . . . . . . . . . . 20  |-  { v  e.  X  |  ( v  .(+)  w )  =  w }  =  {
v  e.  X  | 
( v  .(+)  w )  =  w }
78 eqid 2404 . . . . . . . . . . . . . . . . . . . 20  |-  ( G ~QG  {
v  e.  X  | 
( v  .(+)  w )  =  w } )  =  ( G ~QG  { v  e.  X  |  ( v  .(+)  w )  =  w } )
796, 77, 78, 5orbsta2 15046 . . . . . . . . . . . . . . . . . . 19  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  w  e.  Y )  /\  X  e.  Fin )  ->  ( # `  X
)  =  ( (
# `  [ w ]  .~  )  x.  ( # `
 { v  e.  X  |  ( v 
.(+)  w )  =  w } ) ) )
8075, 46, 76, 79syl21anc 1183 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  w  e.  Y )  ->  ( # `
 X )  =  ( ( # `  [
w ]  .~  )  x.  ( # `  {
v  e.  X  | 
( v  .(+)  w )  =  w } ) ) )
8174, 80breqtrrd 4198 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  w  e.  Y )  ->  ( # `
 [ w ]  .~  )  ||  ( # `  X ) )
8220simprd 450 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  E. n  e.  NN0  ( # `  X )  =  ( P ^
n ) )
8382adantr 452 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  w  e.  Y )  ->  E. n  e.  NN0  ( # `  X
)  =  ( P ^ n ) )
84 breq2 4176 . . . . . . . . . . . . . . . . . . 19  |-  ( (
# `  X )  =  ( P ^
n )  ->  (
( # `  [ w ]  .~  )  ||  ( # `
 X )  <->  ( # `  [
w ]  .~  )  ||  ( P ^ n
) ) )
8584biimpcd 216 . . . . . . . . . . . . . . . . . 18  |-  ( (
# `  [ w ]  .~  )  ||  ( # `
 X )  -> 
( ( # `  X
)  =  ( P ^ n )  -> 
( # `  [ w ]  .~  )  ||  ( P ^ n ) ) )
8685reximdv 2777 . . . . . . . . . . . . . . . . 17  |-  ( (
# `  [ w ]  .~  )  ||  ( # `
 X )  -> 
( E. n  e. 
NN0  ( # `  X
)  =  ( P ^ n )  ->  E. n  e.  NN0  ( # `  [ w ]  .~  )  ||  ( P ^ n ) ) )
8781, 83, 86sylc 58 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  w  e.  Y )  ->  E. n  e.  NN0  ( # `  [
w ]  .~  )  ||  ( P ^ n
) )
88 pcprmpw2 13210 . . . . . . . . . . . . . . . . 17  |-  ( ( P  e.  Prime  /\  ( # `
 [ w ]  .~  )  e.  NN )  ->  ( E. n  e.  NN0  ( # `  [
w ]  .~  )  ||  ( P ^ n
)  <->  ( # `  [
w ]  .~  )  =  ( P ^
( P  pCnt  ( # `
 [ w ]  .~  ) ) ) ) )
8944, 59, 88syl2anc 643 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  w  e.  Y )  ->  ( E. n  e.  NN0  ( # `  [ w ]  .~  )  ||  ( P ^ n )  <->  ( # `  [
w ]  .~  )  =  ( P ^
( P  pCnt  ( # `
 [ w ]  .~  ) ) ) ) )
9087, 89mpbid 202 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  w  e.  Y )  ->  ( # `
 [ w ]  .~  )  =  ( P ^ ( P  pCnt  (
# `  [ w ]  .~  ) ) ) )
9190eqcomd 2409 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  w  e.  Y )  ->  ( P ^ ( P  pCnt  (
# `  [ w ]  .~  ) ) )  =  ( # `  [
w ]  .~  )
)
9223adantr 452 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  w  e.  Y )  ->  P  e.  ZZ )
9392zcnd 10332 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  w  e.  Y )  ->  P  e.  CC )
9493exp0d 11472 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  w  e.  Y )  ->  ( P ^ 0 )  =  1 )
95 hash1 11628 . . . . . . . . . . . . . . 15  |-  ( # `  1o )  =  1
9694, 95syl6eqr 2454 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  w  e.  Y )  ->  ( P ^ 0 )  =  ( # `  1o ) )
9791, 96eqeq12d 2418 . . . . . . . . . . . . 13  |-  ( (
ph  /\  w  e.  Y )  ->  (
( P ^ ( P  pCnt  ( # `  [
w ]  .~  )
) )  =  ( P ^ 0 )  <-> 
( # `  [ w ]  .~  )  =  (
# `  1o )
) )
98 df1o2 6695 . . . . . . . . . . . . . . 15  |-  1o  =  { (/) }
99 snfi 7146 . . . . . . . . . . . . . . 15  |-  { (/) }  e.  Fin
10098, 99eqeltri 2474 . . . . . . . . . . . . . 14  |-  1o  e.  Fin
101 hashen 11586 . . . . . . . . . . . . . 14  |-  ( ( [ w ]  .~  e.  Fin  /\  1o  e.  Fin )  ->  ( (
# `  [ w ]  .~  )  =  (
# `  1o )  <->  [ w ]  .~  ~~  1o ) )
10256, 100, 101sylancl 644 . . . . . . . . . . . . 13  |-  ( (
ph  /\  w  e.  Y )  ->  (
( # `  [ w ]  .~  )  =  (
# `  1o )  <->  [ w ]  .~  ~~  1o ) )
10397, 102bitrd 245 . . . . . . . . . . . 12  |-  ( (
ph  /\  w  e.  Y )  ->  (
( P ^ ( P  pCnt  ( # `  [
w ]  .~  )
) )  =  ( P ^ 0 )  <->  [ w ]  .~  ~~  1o ) )
104 en1b 7134 . . . . . . . . . . . 12  |-  ( [ w ]  .~  ~~  1o 
<->  [ w ]  .~  =  { U. [ w ]  .~  } )
105103, 104syl6bb 253 . . . . . . . . . . 11  |-  ( (
ph  /\  w  e.  Y )  ->  (
( P ^ ( P  pCnt  ( # `  [
w ]  .~  )
) )  =  ( P ^ 0 )  <->  [ w ]  .~  =  { U. [ w ]  .~  } ) )
10646adantr 452 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  w  e.  Y )  /\  (
h  e.  X  /\  [ w ]  .~  =  { U. [ w ]  .~  } ) )  ->  w  e.  Y )
1074ad2antrr 707 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  w  e.  Y )  /\  (
h  e.  X  /\  [ w ]  .~  =  { U. [ w ]  .~  } ) )  ->  .(+)  e.  ( G  GrpAct  Y ) )
1086gaf 15027 . . . . . . . . . . . . . . . . . . . 20  |-  (  .(+)  e.  ( G  GrpAct  Y )  ->  .(+)  : ( X  X.  Y ) --> Y )
109107, 108syl 16 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  w  e.  Y )  /\  (
h  e.  X  /\  [ w ]  .~  =  { U. [ w ]  .~  } ) )  ->  .(+)  : ( X  X.  Y ) --> Y )
110 simprl 733 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  w  e.  Y )  /\  (
h  e.  X  /\  [ w ]  .~  =  { U. [ w ]  .~  } ) )  ->  h  e.  X )
111109, 110, 106fovrnd 6177 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  w  e.  Y )  /\  (
h  e.  X  /\  [ w ]  .~  =  { U. [ w ]  .~  } ) )  -> 
( h  .(+)  w )  e.  Y )
112 eqid 2404 . . . . . . . . . . . . . . . . . . 19  |-  ( h 
.(+)  w )  =  ( h  .(+)  w )
113 oveq1 6047 . . . . . . . . . . . . . . . . . . . . 21  |-  ( k  =  h  ->  (
k  .(+)  w )  =  ( h  .(+)  w ) )
114113eqeq1d 2412 . . . . . . . . . . . . . . . . . . . 20  |-  ( k  =  h  ->  (
( k  .(+)  w )  =  ( h  .(+)  w )  <->  ( h  .(+)  w )  =  ( h 
.(+)  w ) ) )
115114rspcev 3012 . . . . . . . . . . . . . . . . . . 19  |-  ( ( h  e.  X  /\  ( h  .(+)  w )  =  ( h  .(+)  w ) )  ->  E. k  e.  X  ( k  .(+)  w )  =  ( h  .(+)  w )
)
116110, 112, 115sylancl 644 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  w  e.  Y )  /\  (
h  e.  X  /\  [ w ]  .~  =  { U. [ w ]  .~  } ) )  ->  E. k  e.  X  ( k  .(+)  w )  =  ( h  .(+)  w ) )
1175gaorb 15039 . . . . . . . . . . . . . . . . . 18  |-  ( w  .~  ( h  .(+)  w )  <->  ( w  e.  Y  /\  ( h 
.(+)  w )  e.  Y  /\  E. k  e.  X  ( k  .(+)  w )  =  ( h  .(+)  w ) ) )
118106, 111, 116, 117syl3anbrc 1138 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  w  e.  Y )  /\  (
h  e.  X  /\  [ w ]  .~  =  { U. [ w ]  .~  } ) )  ->  w  .~  ( h  .(+)  w ) )
119 ovex 6065 . . . . . . . . . . . . . . . . . 18  |-  ( h 
.(+)  w )  e.  _V
120119, 48elec 6903 . . . . . . . . . . . . . . . . 17  |-  ( ( h  .(+)  w )  e.  [ w ]  .~  <->  w  .~  ( h  .(+)  w ) )
121118, 120sylibr 204 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  w  e.  Y )  /\  (
h  e.  X  /\  [ w ]  .~  =  { U. [ w ]  .~  } ) )  -> 
( h  .(+)  w )  e.  [ w ]  .~  )
122 simprr 734 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  w  e.  Y )  /\  (
h  e.  X  /\  [ w ]  .~  =  { U. [ w ]  .~  } ) )  ->  [ w ]  .~  =  { U. [ w ]  .~  } )
123121, 122eleqtrd 2480 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  w  e.  Y )  /\  (
h  e.  X  /\  [ w ]  .~  =  { U. [ w ]  .~  } ) )  -> 
( h  .(+)  w )  e.  { U. [
w ]  .~  }
)
124119elsnc 3797 . . . . . . . . . . . . . . 15  |-  ( ( h  .(+)  w )  e.  { U. [ w ]  .~  }  <->  ( h  .(+) 
w )  =  U. [ w ]  .~  )
125123, 124sylib 189 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  w  e.  Y )  /\  (
h  e.  X  /\  [ w ]  .~  =  { U. [ w ]  .~  } ) )  -> 
( h  .(+)  w )  =  U. [ w ]  .~  )
12650adantr 452 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  w  e.  Y )  /\  (
h  e.  X  /\  [ w ]  .~  =  { U. [ w ]  .~  } ) )  ->  w  e.  [ w ]  .~  )
127126, 122eleqtrd 2480 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  w  e.  Y )  /\  (
h  e.  X  /\  [ w ]  .~  =  { U. [ w ]  .~  } ) )  ->  w  e.  { U. [
w ]  .~  }
)
12848elsnc 3797 . . . . . . . . . . . . . . 15  |-  ( w  e.  { U. [
w ]  .~  }  <->  w  =  U. [ w ]  .~  )
129127, 128sylib 189 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  w  e.  Y )  /\  (
h  e.  X  /\  [ w ]  .~  =  { U. [ w ]  .~  } ) )  ->  w  =  U. [ w ]  .~  )
130125, 129eqtr4d 2439 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  w  e.  Y )  /\  (
h  e.  X  /\  [ w ]  .~  =  { U. [ w ]  .~  } ) )  -> 
( h  .(+)  w )  =  w )
131130expr 599 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  w  e.  Y )  /\  h  e.  X )  ->  ( [ w ]  .~  =  { U. [ w ]  .~  }  ->  (
h  .(+)  w )  =  w ) )
132131ralrimdva 2756 . . . . . . . . . . 11  |-  ( (
ph  /\  w  e.  Y )  ->  ( [ w ]  .~  =  { U. [ w ]  .~  }  ->  A. h  e.  X  ( h  .(+) 
w )  =  w ) )
133105, 132sylbid 207 . . . . . . . . . 10  |-  ( (
ph  /\  w  e.  Y )  ->  (
( P ^ ( P  pCnt  ( # `  [
w ]  .~  )
) )  =  ( P ^ 0 )  ->  A. h  e.  X  ( h  .(+)  w )  =  w ) )
13462, 133syl5 30 . . . . . . . . 9  |-  ( (
ph  /\  w  e.  Y )  ->  (
( P  pCnt  ( # `
 [ w ]  .~  ) )  =  0  ->  A. h  e.  X  ( h  .(+)  w )  =  w ) )
13561, 134sylbird 227 . . . . . . . 8  |-  ( (
ph  /\  w  e.  Y )  ->  ( -.  P  ||  ( # `  [ w ]  .~  )  ->  A. h  e.  X  ( h  .(+)  w )  =  w ) )
136 oveq2 6048 . . . . . . . . . . . . 13  |-  ( u  =  w  ->  (
h  .(+)  u )  =  ( h  .(+)  w ) )
137 id 20 . . . . . . . . . . . . 13  |-  ( u  =  w  ->  u  =  w )
138136, 137eqeq12d 2418 . . . . . . . . . . . 12  |-  ( u  =  w  ->  (
( h  .(+)  u )  =  u  <->  ( h  .(+) 
w )  =  w ) )
139138ralbidv 2686 . . . . . . . . . . 11  |-  ( u  =  w  ->  ( A. h  e.  X  ( h  .(+)  u )  =  u  <->  A. h  e.  X  ( h  .(+) 
w )  =  w ) )
140 sylow2a.z . . . . . . . . . . 11  |-  Z  =  { u  e.  Y  |  A. h  e.  X  ( h  .(+)  u )  =  u }
141139, 140elrab2 3054 . . . . . . . . . 10  |-  ( w  e.  Z  <->  ( w  e.  Y  /\  A. h  e.  X  ( h  .(+) 
w )  =  w ) )
142141baib 872 . . . . . . . . 9  |-  ( w  e.  Y  ->  (
w  e.  Z  <->  A. h  e.  X  ( h  .(+) 
w )  =  w ) )
143142adantl 453 . . . . . . . 8  |-  ( (
ph  /\  w  e.  Y )  ->  (
w  e.  Z  <->  A. h  e.  X  ( h  .(+) 
w )  =  w ) )
144135, 143sylibrd 226 . . . . . . 7  |-  ( (
ph  /\  w  e.  Y )  ->  ( -.  P  ||  ( # `  [ w ]  .~  )  ->  w  e.  Z
) )
1456, 4, 14, 17, 1, 140, 5sylow2alem1 15206 . . . . . . . . . 10  |-  ( (
ph  /\  w  e.  Z )  ->  [ w ]  .~  =  { w } )
146 simpr 448 . . . . . . . . . . 11  |-  ( (
ph  /\  w  e.  Z )  ->  w  e.  Z )
147146snssd 3903 . . . . . . . . . 10  |-  ( (
ph  /\  w  e.  Z )  ->  { w }  C_  Z )
148145, 147eqsstrd 3342 . . . . . . . . 9  |-  ( (
ph  /\  w  e.  Z )  ->  [ w ]  .~  C_  Z )
149148ex 424 . . . . . . . 8  |-  ( ph  ->  ( w  e.  Z  ->  [ w ]  .~  C_  Z ) )
150149adantr 452 . . . . . . 7  |-  ( (
ph  /\  w  e.  Y )  ->  (
w  e.  Z  ->  [ w ]  .~  C_  Z ) )
151144, 150syld 42 . . . . . 6  |-  ( (
ph  /\  w  e.  Y )  ->  ( -.  P  ||  ( # `  [ w ]  .~  )  ->  [ w ]  .~  C_  Z ) )
152151con1d 118 . . . . 5  |-  ( (
ph  /\  w  e.  Y )  ->  ( -.  [ w ]  .~  C_  Z  ->  P  ||  ( # `
 [ w ]  .~  ) ) )
15335, 43, 152ectocld 6930 . . . 4  |-  ( (
ph  /\  z  e.  ( Y /.  .~  )
)  ->  ( -.  z  e.  ~P Z  ->  P  ||  ( # `  z ) ) )
154153impr 603 . . 3  |-  ( (
ph  /\  ( z  e.  ( Y /.  .~  )  /\  -.  z  e. 
~P Z ) )  ->  P  ||  ( # `
 z ) )
15534, 154sylan2b 462 . 2  |-  ( (
ph  /\  z  e.  ( ( Y /.  .~  )  \  ~P Z
) )  ->  P  ||  ( # `  z
) )
15613, 23, 33, 155fsumdvds 12848 1  |-  ( ph  ->  P  ||  sum_ z  e.  ( ( Y /.  .~  )  \  ~P Z
) ( # `  z
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1649    e. wcel 1721    =/= wne 2567   A.wral 2666   E.wrex 2667   {crab 2670    \ cdif 3277    C_ wss 3280   (/)c0 3588   ~Pcpw 3759   {csn 3774   {cpr 3775   U.cuni 3975   class class class wbr 4172   {copab 4225    X. cxp 4835   -->wf 5409   ` cfv 5413  (class class class)co 6040   1oc1o 6676    Er wer 6861   [cec 6862   /.cqs 6863    ~~ cen 7065   Fincfn 7068   0cc0 8946   1c1 8947    x. cmul 8951   NNcn 9956   NN0cn0 10177   ZZcz 10238   ^cexp 11337   #chash 11573   sum_csu 12434    || cdivides 12807   Primecprime 13034    pCnt cpc 13165   Basecbs 13424   Grpcgrp 14640   ~QG cqg 14895    GrpAct cga 15021   pGrp cpgp 15120
This theorem is referenced by:  sylow2a  15208
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-rep 4280  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-inf2 7552  ax-cnex 9002  ax-resscn 9003  ax-1cn 9004  ax-icn 9005  ax-addcl 9006  ax-addrcl 9007  ax-mulcl 9008  ax-mulrcl 9009  ax-mulcom 9010  ax-addass 9011  ax-mulass 9012  ax-distr 9013  ax-i2m1 9014  ax-1ne0 9015  ax-1rid 9016  ax-rnegex 9017  ax-rrecex 9018  ax-cnre 9019  ax-pre-lttri 9020  ax-pre-lttrn 9021  ax-pre-ltadd 9022  ax-pre-mulgt0 9023  ax-pre-sup 9024
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rmo 2674  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-int 4011  df-iun 4055  df-disj 4143  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-se 4502  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-isom 5422  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-1st 6308  df-2nd 6309  df-riota 6508  df-recs 6592  df-rdg 6627  df-1o 6683  df-2o 6684  df-oadd 6687  df-omul 6688  df-er 6864  df-ec 6866  df-qs 6870  df-map 6979  df-en 7069  df-dom 7070  df-sdom 7071  df-fin 7072  df-sup 7404  df-oi 7435  df-card 7782  df-acn 7785  df-cda 8004  df-pnf 9078  df-mnf 9079  df-xr 9080  df-ltxr 9081  df-le 9082  df-sub 9249  df-neg 9250  df-div 9634  df-nn 9957  df-2 10014  df-3 10015  df-n0 10178  df-z 10239  df-uz 10445  df-q 10531  df-rp 10569  df-fz 11000  df-fzo 11091  df-fl 11157  df-mod 11206  df-seq 11279  df-exp 11338  df-fac 11522  df-bc 11549  df-hash 11574  df-cj 11859  df-re 11860  df-im 11861  df-sqr 11995  df-abs 11996  df-clim 12237  df-sum 12435  df-dvds 12808  df-gcd 12962  df-prm 13035  df-pc 13166  df-ndx 13427  df-slot 13428  df-base 13429  df-sets 13430  df-ress 13431  df-plusg 13497  df-0g 13682  df-mnd 14645  df-submnd 14694  df-grp 14767  df-minusg 14768  df-sbg 14769  df-mulg 14770  df-subg 14896  df-eqg 14898  df-ga 15022  df-od 15122  df-pgp 15124
  Copyright terms: Public domain W3C validator