MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sylow2alem2 Structured version   Unicode version

Theorem sylow2alem2 16110
Description: Lemma for sylow2a 16111. All the orbits which are not for fixed points have size  |  G  |  /  |  G x  | (where  G x is the stabilizer subgroup) and thus are powers of  P. And since they are all nontrivial (because any orbit which is a singleton is a fixed point), they all divide  P, and so does the sum of all of them. (Contributed by Mario Carneiro, 17-Jan-2015.)
Hypotheses
Ref Expression
sylow2a.x  |-  X  =  ( Base `  G
)
sylow2a.m  |-  ( ph  -> 
.(+)  e.  ( G  GrpAct  Y ) )
sylow2a.p  |-  ( ph  ->  P pGrp  G )
sylow2a.f  |-  ( ph  ->  X  e.  Fin )
sylow2a.y  |-  ( ph  ->  Y  e.  Fin )
sylow2a.z  |-  Z  =  { u  e.  Y  |  A. h  e.  X  ( h  .(+)  u )  =  u }
sylow2a.r  |-  .~  =  { <. x ,  y
>.  |  ( {
x ,  y } 
C_  Y  /\  E. g  e.  X  (
g  .(+)  x )  =  y ) }
Assertion
Ref Expression
sylow2alem2  |-  ( ph  ->  P  ||  sum_ z  e.  ( ( Y /.  .~  )  \  ~P Z
) ( # `  z
) )
Distinct variable groups:    z, h,  .~    g, h, u, x, y    g, G, x, y    z, P    .(+) , g, h, u, x, y    g, X, h, u, x, y   
z, Z    ph, h, z   
z, g, Y, h, u, x, y
Allowed substitution hints:    ph( x, y, u, g)    P( x, y, u, g, h)    .(+) (
z)    .~ ( x, y, u, g)    G( z, u, h)    X( z)    Z( x, y, u, g, h)

Proof of Theorem sylow2alem2
Dummy variables  k  n  w  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sylow2a.y . . . . 5  |-  ( ph  ->  Y  e.  Fin )
2 pwfi 7602 . . . . 5  |-  ( Y  e.  Fin  <->  ~P Y  e.  Fin )
31, 2sylib 196 . . . 4  |-  ( ph  ->  ~P Y  e.  Fin )
4 sylow2a.m . . . . . 6  |-  ( ph  -> 
.(+)  e.  ( G  GrpAct  Y ) )
5 sylow2a.r . . . . . . 7  |-  .~  =  { <. x ,  y
>.  |  ( {
x ,  y } 
C_  Y  /\  E. g  e.  X  (
g  .(+)  x )  =  y ) }
6 sylow2a.x . . . . . . 7  |-  X  =  ( Base `  G
)
75, 6gaorber 15819 . . . . . 6  |-  (  .(+)  e.  ( G  GrpAct  Y )  ->  .~  Er  Y
)
84, 7syl 16 . . . . 5  |-  ( ph  ->  .~  Er  Y )
98qsss 7157 . . . 4  |-  ( ph  ->  ( Y /.  .~  )  C_  ~P Y )
10 ssfi 7529 . . . 4  |-  ( ( ~P Y  e.  Fin  /\  ( Y /.  .~  )  C_  ~P Y )  ->  ( Y /.  .~  )  e.  Fin )
113, 9, 10syl2anc 656 . . 3  |-  ( ph  ->  ( Y /.  .~  )  e.  Fin )
12 diffi 7539 . . 3  |-  ( ( Y /.  .~  )  e.  Fin  ->  ( ( Y /.  .~  )  \  ~P Z )  e.  Fin )
1311, 12syl 16 . 2  |-  ( ph  ->  ( ( Y /.  .~  )  \  ~P Z
)  e.  Fin )
14 sylow2a.p . . . . 5  |-  ( ph  ->  P pGrp  G )
15 gagrp 15803 . . . . . . 7  |-  (  .(+)  e.  ( G  GrpAct  Y )  ->  G  e.  Grp )
164, 15syl 16 . . . . . 6  |-  ( ph  ->  G  e.  Grp )
17 sylow2a.f . . . . . 6  |-  ( ph  ->  X  e.  Fin )
186pgpfi 16097 . . . . . 6  |-  ( ( G  e.  Grp  /\  X  e.  Fin )  ->  ( P pGrp  G  <->  ( P  e.  Prime  /\  E. n  e.  NN0  ( # `  X
)  =  ( P ^ n ) ) ) )
1916, 17, 18syl2anc 656 . . . . 5  |-  ( ph  ->  ( P pGrp  G  <->  ( P  e.  Prime  /\  E. n  e.  NN0  ( # `  X
)  =  ( P ^ n ) ) ) )
2014, 19mpbid 210 . . . 4  |-  ( ph  ->  ( P  e.  Prime  /\ 
E. n  e.  NN0  ( # `  X )  =  ( P ^
n ) ) )
2120simpld 456 . . 3  |-  ( ph  ->  P  e.  Prime )
22 prmz 13763 . . 3  |-  ( P  e.  Prime  ->  P  e.  ZZ )
2321, 22syl 16 . 2  |-  ( ph  ->  P  e.  ZZ )
24 eldifi 3475 . . . . 5  |-  ( z  e.  ( ( Y /.  .~  )  \  ~P Z )  ->  z  e.  ( Y /.  .~  ) )
251adantr 462 . . . . . 6  |-  ( (
ph  /\  z  e.  ( Y /.  .~  )
)  ->  Y  e.  Fin )
269sselda 3353 . . . . . . 7  |-  ( (
ph  /\  z  e.  ( Y /.  .~  )
)  ->  z  e.  ~P Y )
2726elpwid 3867 . . . . . 6  |-  ( (
ph  /\  z  e.  ( Y /.  .~  )
)  ->  z  C_  Y )
28 ssfi 7529 . . . . . 6  |-  ( ( Y  e.  Fin  /\  z  C_  Y )  -> 
z  e.  Fin )
2925, 27, 28syl2anc 656 . . . . 5  |-  ( (
ph  /\  z  e.  ( Y /.  .~  )
)  ->  z  e.  Fin )
3024, 29sylan2 471 . . . 4  |-  ( (
ph  /\  z  e.  ( ( Y /.  .~  )  \  ~P Z
) )  ->  z  e.  Fin )
31 hashcl 12122 . . . 4  |-  ( z  e.  Fin  ->  ( # `
 z )  e. 
NN0 )
3230, 31syl 16 . . 3  |-  ( (
ph  /\  z  e.  ( ( Y /.  .~  )  \  ~P Z
) )  ->  ( # `
 z )  e. 
NN0 )
3332nn0zd 10741 . 2  |-  ( (
ph  /\  z  e.  ( ( Y /.  .~  )  \  ~P Z
) )  ->  ( # `
 z )  e.  ZZ )
34 eldif 3335 . . 3  |-  ( z  e.  ( ( Y /.  .~  )  \  ~P Z )  <->  ( z  e.  ( Y /.  .~  )  /\  -.  z  e. 
~P Z ) )
35 eqid 2441 . . . . 5  |-  ( Y /.  .~  )  =  ( Y /.  .~  )
36 sseq1 3374 . . . . . . . 8  |-  ( [ w ]  .~  =  z  ->  ( [ w ]  .~  C_  Z  <->  z  C_  Z ) )
37 selpw 3864 . . . . . . . 8  |-  ( z  e.  ~P Z  <->  z  C_  Z )
3836, 37syl6bbr 263 . . . . . . 7  |-  ( [ w ]  .~  =  z  ->  ( [ w ]  .~  C_  Z  <->  z  e.  ~P Z ) )
3938notbid 294 . . . . . 6  |-  ( [ w ]  .~  =  z  ->  ( -.  [
w ]  .~  C_  Z  <->  -.  z  e.  ~P Z
) )
40 fveq2 5688 . . . . . . 7  |-  ( [ w ]  .~  =  z  ->  ( # `  [
w ]  .~  )  =  ( # `  z
) )
4140breq2d 4301 . . . . . 6  |-  ( [ w ]  .~  =  z  ->  ( P  ||  ( # `  [ w ]  .~  )  <->  P  ||  ( # `
 z ) ) )
4239, 41imbi12d 320 . . . . 5  |-  ( [ w ]  .~  =  z  ->  ( ( -. 
[ w ]  .~  C_  Z  ->  P  ||  ( # `
 [ w ]  .~  ) )  <->  ( -.  z  e.  ~P Z  ->  P  ||  ( # `  z ) ) ) )
4321adantr 462 . . . . . . . . . 10  |-  ( (
ph  /\  w  e.  Y )  ->  P  e.  Prime )
448adantr 462 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  w  e.  Y )  ->  .~  Er  Y )
45 simpr 458 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  w  e.  Y )  ->  w  e.  Y )
4644, 45erref 7117 . . . . . . . . . . . . 13  |-  ( (
ph  /\  w  e.  Y )  ->  w  .~  w )
47 vex 2973 . . . . . . . . . . . . . 14  |-  w  e. 
_V
4847, 47elec 7136 . . . . . . . . . . . . 13  |-  ( w  e.  [ w ]  .~ 
<->  w  .~  w )
4946, 48sylibr 212 . . . . . . . . . . . 12  |-  ( (
ph  /\  w  e.  Y )  ->  w  e.  [ w ]  .~  )
50 ne0i 3640 . . . . . . . . . . . 12  |-  ( w  e.  [ w ]  .~  ->  [ w ]  .~  =/=  (/) )
5149, 50syl 16 . . . . . . . . . . 11  |-  ( (
ph  /\  w  e.  Y )  ->  [ w ]  .~  =/=  (/) )
528ecss 7138 . . . . . . . . . . . . . 14  |-  ( ph  ->  [ w ]  .~  C_  Y )
53 ssfi 7529 . . . . . . . . . . . . . 14  |-  ( ( Y  e.  Fin  /\  [ w ]  .~  C_  Y
)  ->  [ w ]  .~  e.  Fin )
541, 52, 53syl2anc 656 . . . . . . . . . . . . 13  |-  ( ph  ->  [ w ]  .~  e.  Fin )
5554adantr 462 . . . . . . . . . . . 12  |-  ( (
ph  /\  w  e.  Y )  ->  [ w ]  .~  e.  Fin )
56 hashnncl 12130 . . . . . . . . . . . 12  |-  ( [ w ]  .~  e.  Fin  ->  ( ( # `  [ w ]  .~  )  e.  NN  <->  [ w ]  .~  =/=  (/) ) )
5755, 56syl 16 . . . . . . . . . . 11  |-  ( (
ph  /\  w  e.  Y )  ->  (
( # `  [ w ]  .~  )  e.  NN  <->  [ w ]  .~  =/=  (/) ) )
5851, 57mpbird 232 . . . . . . . . . 10  |-  ( (
ph  /\  w  e.  Y )  ->  ( # `
 [ w ]  .~  )  e.  NN )
59 pceq0 13933 . . . . . . . . . 10  |-  ( ( P  e.  Prime  /\  ( # `
 [ w ]  .~  )  e.  NN )  ->  ( ( P 
pCnt  ( # `  [
w ]  .~  )
)  =  0  <->  -.  P  ||  ( # `  [
w ]  .~  )
) )
6043, 58, 59syl2anc 656 . . . . . . . . 9  |-  ( (
ph  /\  w  e.  Y )  ->  (
( P  pCnt  ( # `
 [ w ]  .~  ) )  =  0  <->  -.  P  ||  ( # `  [ w ]  .~  ) ) )
61 oveq2 6098 . . . . . . . . . 10  |-  ( ( P  pCnt  ( # `  [
w ]  .~  )
)  =  0  -> 
( P ^ ( P  pCnt  ( # `  [
w ]  .~  )
) )  =  ( P ^ 0 ) )
62 hashcl 12122 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( [ w ]  .~  e.  Fin  ->  ( # `  [
w ]  .~  )  e.  NN0 )
6354, 62syl 16 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  ( # `  [
w ]  .~  )  e.  NN0 )
6463nn0zd 10741 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  ( # `  [
w ]  .~  )  e.  ZZ )
65 ssrab2 3434 . . . . . . . . . . . . . . . . . . . . . . 23  |-  { v  e.  X  |  ( v  .(+)  w )  =  w }  C_  X
66 ssfi 7529 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( X  e.  Fin  /\  { v  e.  X  | 
( v  .(+)  w )  =  w }  C_  X )  ->  { v  e.  X  |  ( v  .(+)  w )  =  w }  e.  Fin )
6717, 65, 66sylancl 657 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ph  ->  { v  e.  X  |  ( v  .(+)  w )  =  w }  e.  Fin )
68 hashcl 12122 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( { v  e.  X  | 
( v  .(+)  w )  =  w }  e.  Fin  ->  ( # `  {
v  e.  X  | 
( v  .(+)  w )  =  w } )  e.  NN0 )
6967, 68syl 16 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  ( # `  {
v  e.  X  | 
( v  .(+)  w )  =  w } )  e.  NN0 )
7069nn0zd 10741 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  ( # `  {
v  e.  X  | 
( v  .(+)  w )  =  w } )  e.  ZZ )
71 dvdsmul1 13550 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( # `  [
w ]  .~  )  e.  ZZ  /\  ( # `  { v  e.  X  |  ( v  .(+)  w )  =  w }
)  e.  ZZ )  ->  ( # `  [
w ]  .~  )  ||  ( ( # `  [
w ]  .~  )  x.  ( # `  {
v  e.  X  | 
( v  .(+)  w )  =  w } ) ) )
7264, 70, 71syl2anc 656 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( # `  [
w ]  .~  )  ||  ( ( # `  [
w ]  .~  )  x.  ( # `  {
v  e.  X  | 
( v  .(+)  w )  =  w } ) ) )
7372adantr 462 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  w  e.  Y )  ->  ( # `
 [ w ]  .~  )  ||  ( (
# `  [ w ]  .~  )  x.  ( # `
 { v  e.  X  |  ( v 
.(+)  w )  =  w } ) ) )
744adantr 462 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  w  e.  Y )  ->  .(+)  e.  ( G  GrpAct  Y ) )
7517adantr 462 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  w  e.  Y )  ->  X  e.  Fin )
76 eqid 2441 . . . . . . . . . . . . . . . . . . . 20  |-  { v  e.  X  |  ( v  .(+)  w )  =  w }  =  {
v  e.  X  | 
( v  .(+)  w )  =  w }
77 eqid 2441 . . . . . . . . . . . . . . . . . . . 20  |-  ( G ~QG  {
v  e.  X  | 
( v  .(+)  w )  =  w } )  =  ( G ~QG  { v  e.  X  |  ( v  .(+)  w )  =  w } )
786, 76, 77, 5orbsta2 15825 . . . . . . . . . . . . . . . . . . 19  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  w  e.  Y )  /\  X  e.  Fin )  ->  ( # `  X
)  =  ( (
# `  [ w ]  .~  )  x.  ( # `
 { v  e.  X  |  ( v 
.(+)  w )  =  w } ) ) )
7974, 45, 75, 78syl21anc 1212 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  w  e.  Y )  ->  ( # `
 X )  =  ( ( # `  [
w ]  .~  )  x.  ( # `  {
v  e.  X  | 
( v  .(+)  w )  =  w } ) ) )
8073, 79breqtrrd 4315 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  w  e.  Y )  ->  ( # `
 [ w ]  .~  )  ||  ( # `  X ) )
8120simprd 460 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  E. n  e.  NN0  ( # `  X )  =  ( P ^
n ) )
8281adantr 462 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  w  e.  Y )  ->  E. n  e.  NN0  ( # `  X
)  =  ( P ^ n ) )
83 breq2 4293 . . . . . . . . . . . . . . . . . . 19  |-  ( (
# `  X )  =  ( P ^
n )  ->  (
( # `  [ w ]  .~  )  ||  ( # `
 X )  <->  ( # `  [
w ]  .~  )  ||  ( P ^ n
) ) )
8483biimpcd 224 . . . . . . . . . . . . . . . . . 18  |-  ( (
# `  [ w ]  .~  )  ||  ( # `
 X )  -> 
( ( # `  X
)  =  ( P ^ n )  -> 
( # `  [ w ]  .~  )  ||  ( P ^ n ) ) )
8584reximdv 2825 . . . . . . . . . . . . . . . . 17  |-  ( (
# `  [ w ]  .~  )  ||  ( # `
 X )  -> 
( E. n  e. 
NN0  ( # `  X
)  =  ( P ^ n )  ->  E. n  e.  NN0  ( # `  [ w ]  .~  )  ||  ( P ^ n ) ) )
8680, 82, 85sylc 60 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  w  e.  Y )  ->  E. n  e.  NN0  ( # `  [
w ]  .~  )  ||  ( P ^ n
) )
87 pcprmpw2 13944 . . . . . . . . . . . . . . . . 17  |-  ( ( P  e.  Prime  /\  ( # `
 [ w ]  .~  )  e.  NN )  ->  ( E. n  e.  NN0  ( # `  [
w ]  .~  )  ||  ( P ^ n
)  <->  ( # `  [
w ]  .~  )  =  ( P ^
( P  pCnt  ( # `
 [ w ]  .~  ) ) ) ) )
8843, 58, 87syl2anc 656 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  w  e.  Y )  ->  ( E. n  e.  NN0  ( # `  [ w ]  .~  )  ||  ( P ^ n )  <->  ( # `  [
w ]  .~  )  =  ( P ^
( P  pCnt  ( # `
 [ w ]  .~  ) ) ) ) )
8986, 88mpbid 210 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  w  e.  Y )  ->  ( # `
 [ w ]  .~  )  =  ( P ^ ( P  pCnt  (
# `  [ w ]  .~  ) ) ) )
9089eqcomd 2446 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  w  e.  Y )  ->  ( P ^ ( P  pCnt  (
# `  [ w ]  .~  ) ) )  =  ( # `  [
w ]  .~  )
)
9123adantr 462 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  w  e.  Y )  ->  P  e.  ZZ )
9291zcnd 10744 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  w  e.  Y )  ->  P  e.  CC )
9392exp0d 11998 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  w  e.  Y )  ->  ( P ^ 0 )  =  1 )
94 hash1 12158 . . . . . . . . . . . . . . 15  |-  ( # `  1o )  =  1
9593, 94syl6eqr 2491 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  w  e.  Y )  ->  ( P ^ 0 )  =  ( # `  1o ) )
9690, 95eqeq12d 2455 . . . . . . . . . . . . 13  |-  ( (
ph  /\  w  e.  Y )  ->  (
( P ^ ( P  pCnt  ( # `  [
w ]  .~  )
) )  =  ( P ^ 0 )  <-> 
( # `  [ w ]  .~  )  =  (
# `  1o )
) )
97 df1o2 6928 . . . . . . . . . . . . . . 15  |-  1o  =  { (/) }
98 snfi 7386 . . . . . . . . . . . . . . 15  |-  { (/) }  e.  Fin
9997, 98eqeltri 2511 . . . . . . . . . . . . . 14  |-  1o  e.  Fin
100 hashen 12114 . . . . . . . . . . . . . 14  |-  ( ( [ w ]  .~  e.  Fin  /\  1o  e.  Fin )  ->  ( (
# `  [ w ]  .~  )  =  (
# `  1o )  <->  [ w ]  .~  ~~  1o ) )
10155, 99, 100sylancl 657 . . . . . . . . . . . . 13  |-  ( (
ph  /\  w  e.  Y )  ->  (
( # `  [ w ]  .~  )  =  (
# `  1o )  <->  [ w ]  .~  ~~  1o ) )
10296, 101bitrd 253 . . . . . . . . . . . 12  |-  ( (
ph  /\  w  e.  Y )  ->  (
( P ^ ( P  pCnt  ( # `  [
w ]  .~  )
) )  =  ( P ^ 0 )  <->  [ w ]  .~  ~~  1o ) )
103 en1b 7373 . . . . . . . . . . . 12  |-  ( [ w ]  .~  ~~  1o 
<->  [ w ]  .~  =  { U. [ w ]  .~  } )
104102, 103syl6bb 261 . . . . . . . . . . 11  |-  ( (
ph  /\  w  e.  Y )  ->  (
( P ^ ( P  pCnt  ( # `  [
w ]  .~  )
) )  =  ( P ^ 0 )  <->  [ w ]  .~  =  { U. [ w ]  .~  } ) )
10545adantr 462 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  w  e.  Y )  /\  (
h  e.  X  /\  [ w ]  .~  =  { U. [ w ]  .~  } ) )  ->  w  e.  Y )
1064ad2antrr 720 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  w  e.  Y )  /\  (
h  e.  X  /\  [ w ]  .~  =  { U. [ w ]  .~  } ) )  ->  .(+)  e.  ( G  GrpAct  Y ) )
1076gaf 15806 . . . . . . . . . . . . . . . . . . . 20  |-  (  .(+)  e.  ( G  GrpAct  Y )  ->  .(+)  : ( X  X.  Y ) --> Y )
108106, 107syl 16 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  w  e.  Y )  /\  (
h  e.  X  /\  [ w ]  .~  =  { U. [ w ]  .~  } ) )  ->  .(+)  : ( X  X.  Y ) --> Y )
109 simprl 750 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  w  e.  Y )  /\  (
h  e.  X  /\  [ w ]  .~  =  { U. [ w ]  .~  } ) )  ->  h  e.  X )
110108, 109, 105fovrnd 6234 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  w  e.  Y )  /\  (
h  e.  X  /\  [ w ]  .~  =  { U. [ w ]  .~  } ) )  -> 
( h  .(+)  w )  e.  Y )
111 eqid 2441 . . . . . . . . . . . . . . . . . . 19  |-  ( h 
.(+)  w )  =  ( h  .(+)  w )
112 oveq1 6097 . . . . . . . . . . . . . . . . . . . . 21  |-  ( k  =  h  ->  (
k  .(+)  w )  =  ( h  .(+)  w ) )
113112eqeq1d 2449 . . . . . . . . . . . . . . . . . . . 20  |-  ( k  =  h  ->  (
( k  .(+)  w )  =  ( h  .(+)  w )  <->  ( h  .(+)  w )  =  ( h 
.(+)  w ) ) )
114113rspcev 3070 . . . . . . . . . . . . . . . . . . 19  |-  ( ( h  e.  X  /\  ( h  .(+)  w )  =  ( h  .(+)  w ) )  ->  E. k  e.  X  ( k  .(+)  w )  =  ( h  .(+)  w )
)
115109, 111, 114sylancl 657 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  w  e.  Y )  /\  (
h  e.  X  /\  [ w ]  .~  =  { U. [ w ]  .~  } ) )  ->  E. k  e.  X  ( k  .(+)  w )  =  ( h  .(+)  w ) )
1165gaorb 15818 . . . . . . . . . . . . . . . . . 18  |-  ( w  .~  ( h  .(+)  w )  <->  ( w  e.  Y  /\  ( h 
.(+)  w )  e.  Y  /\  E. k  e.  X  ( k  .(+)  w )  =  ( h  .(+)  w ) ) )
117105, 110, 115, 116syl3anbrc 1167 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  w  e.  Y )  /\  (
h  e.  X  /\  [ w ]  .~  =  { U. [ w ]  .~  } ) )  ->  w  .~  ( h  .(+)  w ) )
118 ovex 6115 . . . . . . . . . . . . . . . . . 18  |-  ( h 
.(+)  w )  e.  _V
119118, 47elec 7136 . . . . . . . . . . . . . . . . 17  |-  ( ( h  .(+)  w )  e.  [ w ]  .~  <->  w  .~  ( h  .(+)  w ) )
120117, 119sylibr 212 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  w  e.  Y )  /\  (
h  e.  X  /\  [ w ]  .~  =  { U. [ w ]  .~  } ) )  -> 
( h  .(+)  w )  e.  [ w ]  .~  )
121 simprr 751 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  w  e.  Y )  /\  (
h  e.  X  /\  [ w ]  .~  =  { U. [ w ]  .~  } ) )  ->  [ w ]  .~  =  { U. [ w ]  .~  } )
122120, 121eleqtrd 2517 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  w  e.  Y )  /\  (
h  e.  X  /\  [ w ]  .~  =  { U. [ w ]  .~  } ) )  -> 
( h  .(+)  w )  e.  { U. [
w ]  .~  }
)
123118elsnc 3898 . . . . . . . . . . . . . . 15  |-  ( ( h  .(+)  w )  e.  { U. [ w ]  .~  }  <->  ( h  .(+) 
w )  =  U. [ w ]  .~  )
124122, 123sylib 196 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  w  e.  Y )  /\  (
h  e.  X  /\  [ w ]  .~  =  { U. [ w ]  .~  } ) )  -> 
( h  .(+)  w )  =  U. [ w ]  .~  )
12549adantr 462 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  w  e.  Y )  /\  (
h  e.  X  /\  [ w ]  .~  =  { U. [ w ]  .~  } ) )  ->  w  e.  [ w ]  .~  )
126125, 121eleqtrd 2517 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  w  e.  Y )  /\  (
h  e.  X  /\  [ w ]  .~  =  { U. [ w ]  .~  } ) )  ->  w  e.  { U. [
w ]  .~  }
)
12747elsnc 3898 . . . . . . . . . . . . . . 15  |-  ( w  e.  { U. [
w ]  .~  }  <->  w  =  U. [ w ]  .~  )
128126, 127sylib 196 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  w  e.  Y )  /\  (
h  e.  X  /\  [ w ]  .~  =  { U. [ w ]  .~  } ) )  ->  w  =  U. [ w ]  .~  )
129124, 128eqtr4d 2476 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  w  e.  Y )  /\  (
h  e.  X  /\  [ w ]  .~  =  { U. [ w ]  .~  } ) )  -> 
( h  .(+)  w )  =  w )
130129expr 612 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  w  e.  Y )  /\  h  e.  X )  ->  ( [ w ]  .~  =  { U. [ w ]  .~  }  ->  (
h  .(+)  w )  =  w ) )
131130ralrimdva 2804 . . . . . . . . . . 11  |-  ( (
ph  /\  w  e.  Y )  ->  ( [ w ]  .~  =  { U. [ w ]  .~  }  ->  A. h  e.  X  ( h  .(+) 
w )  =  w ) )
132104, 131sylbid 215 . . . . . . . . . 10  |-  ( (
ph  /\  w  e.  Y )  ->  (
( P ^ ( P  pCnt  ( # `  [
w ]  .~  )
) )  =  ( P ^ 0 )  ->  A. h  e.  X  ( h  .(+)  w )  =  w ) )
13361, 132syl5 32 . . . . . . . . 9  |-  ( (
ph  /\  w  e.  Y )  ->  (
( P  pCnt  ( # `
 [ w ]  .~  ) )  =  0  ->  A. h  e.  X  ( h  .(+)  w )  =  w ) )
13460, 133sylbird 235 . . . . . . . 8  |-  ( (
ph  /\  w  e.  Y )  ->  ( -.  P  ||  ( # `  [ w ]  .~  )  ->  A. h  e.  X  ( h  .(+)  w )  =  w ) )
135 oveq2 6098 . . . . . . . . . . . . 13  |-  ( u  =  w  ->  (
h  .(+)  u )  =  ( h  .(+)  w ) )
136 id 22 . . . . . . . . . . . . 13  |-  ( u  =  w  ->  u  =  w )
137135, 136eqeq12d 2455 . . . . . . . . . . . 12  |-  ( u  =  w  ->  (
( h  .(+)  u )  =  u  <->  ( h  .(+) 
w )  =  w ) )
138137ralbidv 2733 . . . . . . . . . . 11  |-  ( u  =  w  ->  ( A. h  e.  X  ( h  .(+)  u )  =  u  <->  A. h  e.  X  ( h  .(+) 
w )  =  w ) )
139 sylow2a.z . . . . . . . . . . 11  |-  Z  =  { u  e.  Y  |  A. h  e.  X  ( h  .(+)  u )  =  u }
140138, 139elrab2 3116 . . . . . . . . . 10  |-  ( w  e.  Z  <->  ( w  e.  Y  /\  A. h  e.  X  ( h  .(+) 
w )  =  w ) )
141140baib 891 . . . . . . . . 9  |-  ( w  e.  Y  ->  (
w  e.  Z  <->  A. h  e.  X  ( h  .(+) 
w )  =  w ) )
142141adantl 463 . . . . . . . 8  |-  ( (
ph  /\  w  e.  Y )  ->  (
w  e.  Z  <->  A. h  e.  X  ( h  .(+) 
w )  =  w ) )
143134, 142sylibrd 234 . . . . . . 7  |-  ( (
ph  /\  w  e.  Y )  ->  ( -.  P  ||  ( # `  [ w ]  .~  )  ->  w  e.  Z
) )
1446, 4, 14, 17, 1, 139, 5sylow2alem1 16109 . . . . . . . . . 10  |-  ( (
ph  /\  w  e.  Z )  ->  [ w ]  .~  =  { w } )
145 simpr 458 . . . . . . . . . . 11  |-  ( (
ph  /\  w  e.  Z )  ->  w  e.  Z )
146145snssd 4015 . . . . . . . . . 10  |-  ( (
ph  /\  w  e.  Z )  ->  { w }  C_  Z )
147144, 146eqsstrd 3387 . . . . . . . . 9  |-  ( (
ph  /\  w  e.  Z )  ->  [ w ]  .~  C_  Z )
148147ex 434 . . . . . . . 8  |-  ( ph  ->  ( w  e.  Z  ->  [ w ]  .~  C_  Z ) )
149148adantr 462 . . . . . . 7  |-  ( (
ph  /\  w  e.  Y )  ->  (
w  e.  Z  ->  [ w ]  .~  C_  Z ) )
150143, 149syld 44 . . . . . 6  |-  ( (
ph  /\  w  e.  Y )  ->  ( -.  P  ||  ( # `  [ w ]  .~  )  ->  [ w ]  .~  C_  Z ) )
151150con1d 124 . . . . 5  |-  ( (
ph  /\  w  e.  Y )  ->  ( -.  [ w ]  .~  C_  Z  ->  P  ||  ( # `
 [ w ]  .~  ) ) )
15235, 42, 151ectocld 7163 . . . 4  |-  ( (
ph  /\  z  e.  ( Y /.  .~  )
)  ->  ( -.  z  e.  ~P Z  ->  P  ||  ( # `  z ) ) )
153152impr 616 . . 3  |-  ( (
ph  /\  ( z  e.  ( Y /.  .~  )  /\  -.  z  e. 
~P Z ) )  ->  P  ||  ( # `
 z ) )
15434, 153sylan2b 472 . 2  |-  ( (
ph  /\  z  e.  ( ( Y /.  .~  )  \  ~P Z
) )  ->  P  ||  ( # `  z
) )
15513, 23, 33, 154fsumdvds 13572 1  |-  ( ph  ->  P  ||  sum_ z  e.  ( ( Y /.  .~  )  \  ~P Z
) ( # `  z
) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1364    e. wcel 1761    =/= wne 2604   A.wral 2713   E.wrex 2714   {crab 2717    \ cdif 3322    C_ wss 3325   (/)c0 3634   ~Pcpw 3857   {csn 3874   {cpr 3876   U.cuni 4088   class class class wbr 4289   {copab 4346    X. cxp 4834   -->wf 5411   ` cfv 5415  (class class class)co 6090   1oc1o 6909    Er wer 7094   [cec 7095   /.cqs 7096    ~~ cen 7303   Fincfn 7306   0cc0 9278   1c1 9279    x. cmul 9283   NNcn 10318   NN0cn0 10575   ZZcz 10642   ^cexp 11861   #chash 12099   sum_csu 13159    || cdivides 13531   Primecprime 13759    pCnt cpc 13899   Basecbs 14170   Grpcgrp 15406   ~QG cqg 15670    GrpAct cga 15800   pGrp cpgp 16023
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1713  ax-7 1733  ax-8 1763  ax-9 1765  ax-10 1780  ax-11 1785  ax-12 1797  ax-13 1948  ax-ext 2422  ax-rep 4400  ax-sep 4410  ax-nul 4418  ax-pow 4467  ax-pr 4528  ax-un 6371  ax-inf2 7843  ax-cnex 9334  ax-resscn 9335  ax-1cn 9336  ax-icn 9337  ax-addcl 9338  ax-addrcl 9339  ax-mulcl 9340  ax-mulrcl 9341  ax-mulcom 9342  ax-addass 9343  ax-mulass 9344  ax-distr 9345  ax-i2m1 9346  ax-1ne0 9347  ax-1rid 9348  ax-rnegex 9349  ax-rrecex 9350  ax-cnre 9351  ax-pre-lttri 9352  ax-pre-lttrn 9353  ax-pre-ltadd 9354  ax-pre-mulgt0 9355  ax-pre-sup 9356
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 961  df-3an 962  df-tru 1367  df-fal 1370  df-ex 1592  df-nf 1595  df-sb 1706  df-eu 2261  df-mo 2262  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-nel 2607  df-ral 2718  df-rex 2719  df-reu 2720  df-rmo 2721  df-rab 2722  df-v 2972  df-sbc 3184  df-csb 3286  df-dif 3328  df-un 3330  df-in 3332  df-ss 3339  df-pss 3341  df-nul 3635  df-if 3789  df-pw 3859  df-sn 3875  df-pr 3877  df-tp 3879  df-op 3881  df-uni 4089  df-int 4126  df-iun 4170  df-disj 4260  df-br 4290  df-opab 4348  df-mpt 4349  df-tr 4383  df-eprel 4628  df-id 4632  df-po 4637  df-so 4638  df-fr 4675  df-se 4676  df-we 4677  df-ord 4718  df-on 4719  df-lim 4720  df-suc 4721  df-xp 4842  df-rel 4843  df-cnv 4844  df-co 4845  df-dm 4846  df-rn 4847  df-res 4848  df-ima 4849  df-iota 5378  df-fun 5417  df-fn 5418  df-f 5419  df-f1 5420  df-fo 5421  df-f1o 5422  df-fv 5423  df-isom 5424  df-riota 6049  df-ov 6093  df-oprab 6094  df-mpt2 6095  df-om 6476  df-1st 6576  df-2nd 6577  df-recs 6828  df-rdg 6862  df-1o 6916  df-2o 6917  df-oadd 6920  df-omul 6921  df-er 7097  df-ec 7099  df-qs 7103  df-map 7212  df-en 7307  df-dom 7308  df-sdom 7309  df-fin 7310  df-sup 7687  df-oi 7720  df-card 8105  df-acn 8108  df-cda 8333  df-pnf 9416  df-mnf 9417  df-xr 9418  df-ltxr 9419  df-le 9420  df-sub 9593  df-neg 9594  df-div 9990  df-nn 10319  df-2 10376  df-3 10377  df-n0 10576  df-z 10643  df-uz 10858  df-q 10950  df-rp 10988  df-fz 11434  df-fzo 11545  df-fl 11638  df-mod 11705  df-seq 11803  df-exp 11862  df-fac 12048  df-bc 12075  df-hash 12100  df-cj 12584  df-re 12585  df-im 12586  df-sqr 12720  df-abs 12721  df-clim 12962  df-sum 13160  df-dvds 13532  df-gcd 13687  df-prm 13760  df-pc 13900  df-ndx 14173  df-slot 14174  df-base 14175  df-sets 14176  df-ress 14177  df-plusg 14247  df-0g 14376  df-mnd 15411  df-submnd 15461  df-grp 15538  df-minusg 15539  df-sbg 15540  df-mulg 15541  df-subg 15671  df-eqg 15673  df-ga 15801  df-od 16025  df-pgp 16027
This theorem is referenced by:  sylow2a  16111
  Copyright terms: Public domain W3C validator