MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sylow1lem2 Structured version   Unicode version

Theorem sylow1lem2 16098
Description: Lemma for sylow1 16102. The function  .(+) is a group action on  S. (Contributed by Mario Carneiro, 15-Jan-2015.)
Hypotheses
Ref Expression
sylow1.x  |-  X  =  ( Base `  G
)
sylow1.g  |-  ( ph  ->  G  e.  Grp )
sylow1.f  |-  ( ph  ->  X  e.  Fin )
sylow1.p  |-  ( ph  ->  P  e.  Prime )
sylow1.n  |-  ( ph  ->  N  e.  NN0 )
sylow1.d  |-  ( ph  ->  ( P ^ N
)  ||  ( # `  X
) )
sylow1lem.a  |-  .+  =  ( +g  `  G )
sylow1lem.s  |-  S  =  { s  e.  ~P X  |  ( # `  s
)  =  ( P ^ N ) }
sylow1lem.m  |-  .(+)  =  ( x  e.  X , 
y  e.  S  |->  ran  ( z  e.  y 
|->  ( x  .+  z
) ) )
Assertion
Ref Expression
sylow1lem2  |-  ( ph  -> 
.(+)  e.  ( G  GrpAct  S ) )
Distinct variable groups:    x, s,
y, z    x, S, y, z    N, s, x, y, z    X, s, x, y, z    .+ , s, x, y, z    x,  .(+) , y, z    G, s, x, y, z    P, s, x, y, z    ph, x, y, z
Allowed substitution hints:    ph( s)    .(+) ( s)    S( s)

Proof of Theorem sylow1lem2
Dummy variables  a 
b  c  u  w  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sylow1.g . . 3  |-  ( ph  ->  G  e.  Grp )
2 sylow1lem.s . . . 4  |-  S  =  { s  e.  ~P X  |  ( # `  s
)  =  ( P ^ N ) }
3 sylow1.x . . . . . . 7  |-  X  =  ( Base `  G
)
4 fvex 5701 . . . . . . 7  |-  ( Base `  G )  e.  _V
53, 4eqeltri 2513 . . . . . 6  |-  X  e. 
_V
65pwex 4475 . . . . 5  |-  ~P X  e.  _V
76rabex 4443 . . . 4  |-  { s  e.  ~P X  | 
( # `  s )  =  ( P ^ N ) }  e.  _V
82, 7eqeltri 2513 . . 3  |-  S  e. 
_V
91, 8jctir 538 . 2  |-  ( ph  ->  ( G  e.  Grp  /\  S  e.  _V )
)
101adantr 465 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( x  e.  X  /\  y  e.  S ) )  ->  G  e.  Grp )
11 simprl 755 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( x  e.  X  /\  y  e.  S ) )  ->  x  e.  X )
12 sylow1lem.a . . . . . . . . . . . . 13  |-  .+  =  ( +g  `  G )
13 eqid 2443 . . . . . . . . . . . . 13  |-  ( z  e.  X  |->  ( x 
.+  z ) )  =  ( z  e.  X  |->  ( x  .+  z ) )
143, 12, 13grplmulf1o 15600 . . . . . . . . . . . 12  |-  ( ( G  e.  Grp  /\  x  e.  X )  ->  ( z  e.  X  |->  ( x  .+  z
) ) : X -1-1-onto-> X
)
1510, 11, 14syl2anc 661 . . . . . . . . . . 11  |-  ( (
ph  /\  ( x  e.  X  /\  y  e.  S ) )  -> 
( z  e.  X  |->  ( x  .+  z
) ) : X -1-1-onto-> X
)
16 f1of1 5640 . . . . . . . . . . 11  |-  ( ( z  e.  X  |->  ( x  .+  z ) ) : X -1-1-onto-> X  -> 
( z  e.  X  |->  ( x  .+  z
) ) : X -1-1-> X )
1715, 16syl 16 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  X  /\  y  e.  S ) )  -> 
( z  e.  X  |->  ( x  .+  z
) ) : X -1-1-> X )
18 simprr 756 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( x  e.  X  /\  y  e.  S ) )  -> 
y  e.  S )
19 fveq2 5691 . . . . . . . . . . . . . . 15  |-  ( s  =  y  ->  ( # `
 s )  =  ( # `  y
) )
2019eqeq1d 2451 . . . . . . . . . . . . . 14  |-  ( s  =  y  ->  (
( # `  s )  =  ( P ^ N )  <->  ( # `  y
)  =  ( P ^ N ) ) )
2120, 2elrab2 3119 . . . . . . . . . . . . 13  |-  ( y  e.  S  <->  ( y  e.  ~P X  /\  ( # `
 y )  =  ( P ^ N
) ) )
2218, 21sylib 196 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( x  e.  X  /\  y  e.  S ) )  -> 
( y  e.  ~P X  /\  ( # `  y
)  =  ( P ^ N ) ) )
2322simpld 459 . . . . . . . . . . 11  |-  ( (
ph  /\  ( x  e.  X  /\  y  e.  S ) )  -> 
y  e.  ~P X
)
2423elpwid 3870 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  X  /\  y  e.  S ) )  -> 
y  C_  X )
25 f1ssres 5613 . . . . . . . . . 10  |-  ( ( ( z  e.  X  |->  ( x  .+  z
) ) : X -1-1-> X  /\  y  C_  X
)  ->  ( (
z  e.  X  |->  ( x  .+  z ) )  |`  y ) : y -1-1-> X )
2617, 24, 25syl2anc 661 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  X  /\  y  e.  S ) )  -> 
( ( z  e.  X  |->  ( x  .+  z ) )  |`  y ) : y
-1-1-> X )
27 resmpt 5156 . . . . . . . . . 10  |-  ( y 
C_  X  ->  (
( z  e.  X  |->  ( x  .+  z
) )  |`  y
)  =  ( z  e.  y  |->  ( x 
.+  z ) ) )
28 f1eq1 5601 . . . . . . . . . 10  |-  ( ( ( z  e.  X  |->  ( x  .+  z
) )  |`  y
)  =  ( z  e.  y  |->  ( x 
.+  z ) )  ->  ( ( ( z  e.  X  |->  ( x  .+  z ) )  |`  y ) : y -1-1-> X  <->  ( z  e.  y  |->  ( x 
.+  z ) ) : y -1-1-> X ) )
2924, 27, 283syl 20 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  X  /\  y  e.  S ) )  -> 
( ( ( z  e.  X  |->  ( x 
.+  z ) )  |`  y ) : y
-1-1-> X  <->  ( z  e.  y  |->  ( x  .+  z ) ) : y -1-1-> X ) )
3026, 29mpbid 210 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  X  /\  y  e.  S ) )  -> 
( z  e.  y 
|->  ( x  .+  z
) ) : y
-1-1-> X )
31 f1f 5606 . . . . . . . 8  |-  ( ( z  e.  y  |->  ( x  .+  z ) ) : y -1-1-> X  ->  ( z  e.  y 
|->  ( x  .+  z
) ) : y --> X )
32 frn 5565 . . . . . . . 8  |-  ( ( z  e.  y  |->  ( x  .+  z ) ) : y --> X  ->  ran  ( z  e.  y  |->  ( x 
.+  z ) ) 
C_  X )
3330, 31, 323syl 20 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  X  /\  y  e.  S ) )  ->  ran  ( z  e.  y 
|->  ( x  .+  z
) )  C_  X
)
345elpw2 4456 . . . . . . 7  |-  ( ran  ( z  e.  y 
|->  ( x  .+  z
) )  e.  ~P X 
<->  ran  ( z  e.  y  |->  ( x  .+  z ) )  C_  X )
3533, 34sylibr 212 . . . . . 6  |-  ( (
ph  /\  ( x  e.  X  /\  y  e.  S ) )  ->  ran  ( z  e.  y 
|->  ( x  .+  z
) )  e.  ~P X )
36 f1f1orn 5652 . . . . . . . . 9  |-  ( ( z  e.  y  |->  ( x  .+  z ) ) : y -1-1-> X  ->  ( z  e.  y 
|->  ( x  .+  z
) ) : y -1-1-onto-> ran  ( z  e.  y 
|->  ( x  .+  z
) ) )
37 vex 2975 . . . . . . . . . 10  |-  y  e. 
_V
3837f1oen 7330 . . . . . . . . 9  |-  ( ( z  e.  y  |->  ( x  .+  z ) ) : y -1-1-onto-> ran  (
z  e.  y  |->  ( x  .+  z ) )  ->  y  ~~  ran  ( z  e.  y 
|->  ( x  .+  z
) ) )
3930, 36, 383syl 20 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  X  /\  y  e.  S ) )  -> 
y  ~~  ran  ( z  e.  y  |->  ( x 
.+  z ) ) )
40 sylow1.f . . . . . . . . . . 11  |-  ( ph  ->  X  e.  Fin )
4140adantr 465 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  X  /\  y  e.  S ) )  ->  X  e.  Fin )
42 ssfi 7533 . . . . . . . . . 10  |-  ( ( X  e.  Fin  /\  y  C_  X )  -> 
y  e.  Fin )
4341, 24, 42syl2anc 661 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  X  /\  y  e.  S ) )  -> 
y  e.  Fin )
44 ssfi 7533 . . . . . . . . . 10  |-  ( ( X  e.  Fin  /\  ran  ( z  e.  y 
|->  ( x  .+  z
) )  C_  X
)  ->  ran  ( z  e.  y  |->  ( x 
.+  z ) )  e.  Fin )
4541, 33, 44syl2anc 661 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  X  /\  y  e.  S ) )  ->  ran  ( z  e.  y 
|->  ( x  .+  z
) )  e.  Fin )
46 hashen 12118 . . . . . . . . 9  |-  ( ( y  e.  Fin  /\  ran  ( z  e.  y 
|->  ( x  .+  z
) )  e.  Fin )  ->  ( ( # `  y )  =  (
# `  ran  ( z  e.  y  |->  ( x 
.+  z ) ) )  <->  y  ~~  ran  ( z  e.  y 
|->  ( x  .+  z
) ) ) )
4743, 45, 46syl2anc 661 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  X  /\  y  e.  S ) )  -> 
( ( # `  y
)  =  ( # `  ran  ( z  e.  y  |->  ( x  .+  z ) ) )  <-> 
y  ~~  ran  ( z  e.  y  |->  ( x 
.+  z ) ) ) )
4839, 47mpbird 232 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  X  /\  y  e.  S ) )  -> 
( # `  y )  =  ( # `  ran  ( z  e.  y 
|->  ( x  .+  z
) ) ) )
4922simprd 463 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  X  /\  y  e.  S ) )  -> 
( # `  y )  =  ( P ^ N ) )
5048, 49eqtr3d 2477 . . . . . 6  |-  ( (
ph  /\  ( x  e.  X  /\  y  e.  S ) )  -> 
( # `  ran  (
z  e.  y  |->  ( x  .+  z ) ) )  =  ( P ^ N ) )
51 fveq2 5691 . . . . . . . 8  |-  ( s  =  ran  ( z  e.  y  |->  ( x 
.+  z ) )  ->  ( # `  s
)  =  ( # `  ran  ( z  e.  y  |->  ( x  .+  z ) ) ) )
5251eqeq1d 2451 . . . . . . 7  |-  ( s  =  ran  ( z  e.  y  |->  ( x 
.+  z ) )  ->  ( ( # `  s )  =  ( P ^ N )  <-> 
( # `  ran  (
z  e.  y  |->  ( x  .+  z ) ) )  =  ( P ^ N ) ) )
5352, 2elrab2 3119 . . . . . 6  |-  ( ran  ( z  e.  y 
|->  ( x  .+  z
) )  e.  S  <->  ( ran  ( z  e.  y  |->  ( x  .+  z ) )  e. 
~P X  /\  ( # `
 ran  ( z  e.  y  |->  ( x 
.+  z ) ) )  =  ( P ^ N ) ) )
5435, 50, 53sylanbrc 664 . . . . 5  |-  ( (
ph  /\  ( x  e.  X  /\  y  e.  S ) )  ->  ran  ( z  e.  y 
|->  ( x  .+  z
) )  e.  S
)
5554ralrimivva 2808 . . . 4  |-  ( ph  ->  A. x  e.  X  A. y  e.  S  ran  ( z  e.  y 
|->  ( x  .+  z
) )  e.  S
)
56 sylow1lem.m . . . . 5  |-  .(+)  =  ( x  e.  X , 
y  e.  S  |->  ran  ( z  e.  y 
|->  ( x  .+  z
) ) )
5756fmpt2 6641 . . . 4  |-  ( A. x  e.  X  A. y  e.  S  ran  ( z  e.  y 
|->  ( x  .+  z
) )  e.  S  <->  .(+)  : ( X  X.  S ) --> S )
5855, 57sylib 196 . . 3  |-  ( ph  -> 
.(+)  : ( X  X.  S ) --> S )
591adantr 465 . . . . . . . 8  |-  ( (
ph  /\  a  e.  S )  ->  G  e.  Grp )
60 eqid 2443 . . . . . . . . 9  |-  ( 0g
`  G )  =  ( 0g `  G
)
613, 60grpidcl 15566 . . . . . . . 8  |-  ( G  e.  Grp  ->  ( 0g `  G )  e.  X )
6259, 61syl 16 . . . . . . 7  |-  ( (
ph  /\  a  e.  S )  ->  ( 0g `  G )  e.  X )
63 simpr 461 . . . . . . 7  |-  ( (
ph  /\  a  e.  S )  ->  a  e.  S )
64 simpr 461 . . . . . . . . . 10  |-  ( ( x  =  ( 0g
`  G )  /\  y  =  a )  ->  y  =  a )
65 simpl 457 . . . . . . . . . . 11  |-  ( ( x  =  ( 0g
`  G )  /\  y  =  a )  ->  x  =  ( 0g
`  G ) )
6665oveq1d 6106 . . . . . . . . . 10  |-  ( ( x  =  ( 0g
`  G )  /\  y  =  a )  ->  ( x  .+  z
)  =  ( ( 0g `  G ) 
.+  z ) )
6764, 66mpteq12dv 4370 . . . . . . . . 9  |-  ( ( x  =  ( 0g
`  G )  /\  y  =  a )  ->  ( z  e.  y 
|->  ( x  .+  z
) )  =  ( z  e.  a  |->  ( ( 0g `  G
)  .+  z )
) )
6867rneqd 5067 . . . . . . . 8  |-  ( ( x  =  ( 0g
`  G )  /\  y  =  a )  ->  ran  ( z  e.  y  |->  ( x  .+  z ) )  =  ran  ( z  e.  a  |->  ( ( 0g
`  G )  .+  z ) ) )
69 vex 2975 . . . . . . . . . 10  |-  a  e. 
_V
7069mptex 5948 . . . . . . . . 9  |-  ( z  e.  a  |->  ( ( 0g `  G ) 
.+  z ) )  e.  _V
7170rnex 6512 . . . . . . . 8  |-  ran  (
z  e.  a  |->  ( ( 0g `  G
)  .+  z )
)  e.  _V
7268, 56, 71ovmpt2a 6221 . . . . . . 7  |-  ( ( ( 0g `  G
)  e.  X  /\  a  e.  S )  ->  ( ( 0g `  G )  .(+)  a )  =  ran  ( z  e.  a  |->  ( ( 0g `  G ) 
.+  z ) ) )
7362, 63, 72syl2anc 661 . . . . . 6  |-  ( (
ph  /\  a  e.  S )  ->  (
( 0g `  G
)  .(+)  a )  =  ran  ( z  e.  a  |->  ( ( 0g
`  G )  .+  z ) ) )
74 ssrab2 3437 . . . . . . . . . . . . . . 15  |-  { s  e.  ~P X  | 
( # `  s )  =  ( P ^ N ) }  C_  ~P X
752, 74eqsstri 3386 . . . . . . . . . . . . . 14  |-  S  C_  ~P X
7675, 63sseldi 3354 . . . . . . . . . . . . 13  |-  ( (
ph  /\  a  e.  S )  ->  a  e.  ~P X )
7776elpwid 3870 . . . . . . . . . . . 12  |-  ( (
ph  /\  a  e.  S )  ->  a  C_  X )
7877sselda 3356 . . . . . . . . . . 11  |-  ( ( ( ph  /\  a  e.  S )  /\  z  e.  a )  ->  z  e.  X )
793, 12, 60grplid 15568 . . . . . . . . . . . 12  |-  ( ( G  e.  Grp  /\  z  e.  X )  ->  ( ( 0g `  G )  .+  z
)  =  z )
8059, 79sylan 471 . . . . . . . . . . 11  |-  ( ( ( ph  /\  a  e.  S )  /\  z  e.  X )  ->  (
( 0g `  G
)  .+  z )  =  z )
8178, 80syldan 470 . . . . . . . . . 10  |-  ( ( ( ph  /\  a  e.  S )  /\  z  e.  a )  ->  (
( 0g `  G
)  .+  z )  =  z )
8281mpteq2dva 4378 . . . . . . . . 9  |-  ( (
ph  /\  a  e.  S )  ->  (
z  e.  a  |->  ( ( 0g `  G
)  .+  z )
)  =  ( z  e.  a  |->  z ) )
83 mptresid 5160 . . . . . . . . 9  |-  ( z  e.  a  |->  z )  =  (  _I  |`  a
)
8482, 83syl6eq 2491 . . . . . . . 8  |-  ( (
ph  /\  a  e.  S )  ->  (
z  e.  a  |->  ( ( 0g `  G
)  .+  z )
)  =  (  _I  |`  a ) )
8584rneqd 5067 . . . . . . 7  |-  ( (
ph  /\  a  e.  S )  ->  ran  ( z  e.  a 
|->  ( ( 0g `  G )  .+  z
) )  =  ran  (  _I  |`  a ) )
86 rnresi 5182 . . . . . . 7  |-  ran  (  _I  |`  a )  =  a
8785, 86syl6eq 2491 . . . . . 6  |-  ( (
ph  /\  a  e.  S )  ->  ran  ( z  e.  a 
|->  ( ( 0g `  G )  .+  z
) )  =  a )
8873, 87eqtrd 2475 . . . . 5  |-  ( (
ph  /\  a  e.  S )  ->  (
( 0g `  G
)  .(+)  a )  =  a )
89 ovex 6116 . . . . . . . . . 10  |-  ( c 
.+  z )  e. 
_V
90 oveq2 6099 . . . . . . . . . 10  |-  ( w  =  ( c  .+  z )  ->  (
b  .+  w )  =  ( b  .+  ( c  .+  z
) ) )
9189, 90abrexco 5961 . . . . . . . . 9  |-  { u  |  E. w  e.  {
v  |  E. z  e.  a  v  =  ( c  .+  z
) } u  =  ( b  .+  w
) }  =  {
u  |  E. z  e.  a  u  =  ( b  .+  (
c  .+  z )
) }
92 simprr 756 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  a  e.  S )  /\  (
b  e.  X  /\  c  e.  X )
)  ->  c  e.  X )
9363adantr 465 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  a  e.  S )  /\  (
b  e.  X  /\  c  e.  X )
)  ->  a  e.  S )
94 simpr 461 . . . . . . . . . . . . . . . 16  |-  ( ( x  =  c  /\  y  =  a )  ->  y  =  a )
95 simpl 457 . . . . . . . . . . . . . . . . 17  |-  ( ( x  =  c  /\  y  =  a )  ->  x  =  c )
9695oveq1d 6106 . . . . . . . . . . . . . . . 16  |-  ( ( x  =  c  /\  y  =  a )  ->  ( x  .+  z
)  =  ( c 
.+  z ) )
9794, 96mpteq12dv 4370 . . . . . . . . . . . . . . 15  |-  ( ( x  =  c  /\  y  =  a )  ->  ( z  e.  y 
|->  ( x  .+  z
) )  =  ( z  e.  a  |->  ( c  .+  z ) ) )
9897rneqd 5067 . . . . . . . . . . . . . 14  |-  ( ( x  =  c  /\  y  =  a )  ->  ran  ( z  e.  y  |->  ( x  .+  z ) )  =  ran  ( z  e.  a  |->  ( c  .+  z ) ) )
9969mptex 5948 . . . . . . . . . . . . . . 15  |-  ( z  e.  a  |->  ( c 
.+  z ) )  e.  _V
10099rnex 6512 . . . . . . . . . . . . . 14  |-  ran  (
z  e.  a  |->  ( c  .+  z ) )  e.  _V
10198, 56, 100ovmpt2a 6221 . . . . . . . . . . . . 13  |-  ( ( c  e.  X  /\  a  e.  S )  ->  ( c  .(+)  a )  =  ran  ( z  e.  a  |->  ( c 
.+  z ) ) )
10292, 93, 101syl2anc 661 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  a  e.  S )  /\  (
b  e.  X  /\  c  e.  X )
)  ->  ( c  .(+)  a )  =  ran  ( z  e.  a 
|->  ( c  .+  z
) ) )
103 eqid 2443 . . . . . . . . . . . . 13  |-  ( z  e.  a  |->  ( c 
.+  z ) )  =  ( z  e.  a  |->  ( c  .+  z ) )
104103rnmpt 5085 . . . . . . . . . . . 12  |-  ran  (
z  e.  a  |->  ( c  .+  z ) )  =  { v  |  E. z  e.  a  v  =  ( c  .+  z ) }
105102, 104syl6eq 2491 . . . . . . . . . . 11  |-  ( ( ( ph  /\  a  e.  S )  /\  (
b  e.  X  /\  c  e.  X )
)  ->  ( c  .(+)  a )  =  {
v  |  E. z  e.  a  v  =  ( c  .+  z
) } )
106105rexeqdv 2924 . . . . . . . . . 10  |-  ( ( ( ph  /\  a  e.  S )  /\  (
b  e.  X  /\  c  e.  X )
)  ->  ( E. w  e.  ( c  .(+)  a ) u  =  ( b  .+  w
)  <->  E. w  e.  {
v  |  E. z  e.  a  v  =  ( c  .+  z
) } u  =  ( b  .+  w
) ) )
107106abbidv 2557 . . . . . . . . 9  |-  ( ( ( ph  /\  a  e.  S )  /\  (
b  e.  X  /\  c  e.  X )
)  ->  { u  |  E. w  e.  ( c  .(+)  a )
u  =  ( b 
.+  w ) }  =  { u  |  E. w  e.  {
v  |  E. z  e.  a  v  =  ( c  .+  z
) } u  =  ( b  .+  w
) } )
10859ad2antrr 725 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  a  e.  S )  /\  ( b  e.  X  /\  c  e.  X
) )  /\  z  e.  a )  ->  G  e.  Grp )
109 simprl 755 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  a  e.  S )  /\  (
b  e.  X  /\  c  e.  X )
)  ->  b  e.  X )
110109adantr 465 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  a  e.  S )  /\  ( b  e.  X  /\  c  e.  X
) )  /\  z  e.  a )  ->  b  e.  X )
11192adantr 465 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  a  e.  S )  /\  ( b  e.  X  /\  c  e.  X
) )  /\  z  e.  a )  ->  c  e.  X )
11278adantlr 714 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  a  e.  S )  /\  ( b  e.  X  /\  c  e.  X
) )  /\  z  e.  a )  ->  z  e.  X )
1133, 12grpass 15552 . . . . . . . . . . . . 13  |-  ( ( G  e.  Grp  /\  ( b  e.  X  /\  c  e.  X  /\  z  e.  X
) )  ->  (
( b  .+  c
)  .+  z )  =  ( b  .+  ( c  .+  z
) ) )
114108, 110, 111, 112, 113syl13anc 1220 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  a  e.  S )  /\  ( b  e.  X  /\  c  e.  X
) )  /\  z  e.  a )  ->  (
( b  .+  c
)  .+  z )  =  ( b  .+  ( c  .+  z
) ) )
115114eqeq2d 2454 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  a  e.  S )  /\  ( b  e.  X  /\  c  e.  X
) )  /\  z  e.  a )  ->  (
u  =  ( ( b  .+  c ) 
.+  z )  <->  u  =  ( b  .+  (
c  .+  z )
) ) )
116115rexbidva 2732 . . . . . . . . . 10  |-  ( ( ( ph  /\  a  e.  S )  /\  (
b  e.  X  /\  c  e.  X )
)  ->  ( E. z  e.  a  u  =  ( ( b 
.+  c )  .+  z )  <->  E. z  e.  a  u  =  ( b  .+  (
c  .+  z )
) ) )
117116abbidv 2557 . . . . . . . . 9  |-  ( ( ( ph  /\  a  e.  S )  /\  (
b  e.  X  /\  c  e.  X )
)  ->  { u  |  E. z  e.  a  u  =  ( ( b  .+  c ) 
.+  z ) }  =  { u  |  E. z  e.  a  u  =  ( b 
.+  ( c  .+  z ) ) } )
11891, 107, 1173eqtr4a 2501 . . . . . . . 8  |-  ( ( ( ph  /\  a  e.  S )  /\  (
b  e.  X  /\  c  e.  X )
)  ->  { u  |  E. w  e.  ( c  .(+)  a )
u  =  ( b 
.+  w ) }  =  { u  |  E. z  e.  a  u  =  ( ( b  .+  c ) 
.+  z ) } )
119 eqid 2443 . . . . . . . . 9  |-  ( w  e.  ( c  .(+)  a )  |->  ( b  .+  w ) )  =  ( w  e.  ( c  .(+)  a )  |->  ( b  .+  w
) )
120119rnmpt 5085 . . . . . . . 8  |-  ran  (
w  e.  ( c 
.(+)  a )  |->  ( b  .+  w ) )  =  { u  |  E. w  e.  ( c  .(+)  a )
u  =  ( b 
.+  w ) }
121 eqid 2443 . . . . . . . . 9  |-  ( z  e.  a  |->  ( ( b  .+  c ) 
.+  z ) )  =  ( z  e.  a  |->  ( ( b 
.+  c )  .+  z ) )
122121rnmpt 5085 . . . . . . . 8  |-  ran  (
z  e.  a  |->  ( ( b  .+  c
)  .+  z )
)  =  { u  |  E. z  e.  a  u  =  ( ( b  .+  c ) 
.+  z ) }
123118, 120, 1223eqtr4g 2500 . . . . . . 7  |-  ( ( ( ph  /\  a  e.  S )  /\  (
b  e.  X  /\  c  e.  X )
)  ->  ran  ( w  e.  ( c  .(+)  a )  |->  ( b  .+  w ) )  =  ran  ( z  e.  a  |->  ( ( b 
.+  c )  .+  z ) ) )
12458ad2antrr 725 . . . . . . . . 9  |-  ( ( ( ph  /\  a  e.  S )  /\  (
b  e.  X  /\  c  e.  X )
)  ->  .(+)  : ( X  X.  S ) --> S )
125124, 92, 93fovrnd 6235 . . . . . . . 8  |-  ( ( ( ph  /\  a  e.  S )  /\  (
b  e.  X  /\  c  e.  X )
)  ->  ( c  .(+)  a )  e.  S
)
126 simpr 461 . . . . . . . . . . . 12  |-  ( ( x  =  b  /\  y  =  ( c  .(+)  a ) )  -> 
y  =  ( c 
.(+)  a ) )
127 simpl 457 . . . . . . . . . . . . 13  |-  ( ( x  =  b  /\  y  =  ( c  .(+)  a ) )  ->  x  =  b )
128127oveq1d 6106 . . . . . . . . . . . 12  |-  ( ( x  =  b  /\  y  =  ( c  .(+)  a ) )  -> 
( x  .+  z
)  =  ( b 
.+  z ) )
129126, 128mpteq12dv 4370 . . . . . . . . . . 11  |-  ( ( x  =  b  /\  y  =  ( c  .(+)  a ) )  -> 
( z  e.  y 
|->  ( x  .+  z
) )  =  ( z  e.  ( c 
.(+)  a )  |->  ( b  .+  z ) ) )
130 oveq2 6099 . . . . . . . . . . . 12  |-  ( z  =  w  ->  (
b  .+  z )  =  ( b  .+  w ) )
131130cbvmptv 4383 . . . . . . . . . . 11  |-  ( z  e.  ( c  .(+)  a )  |->  ( b  .+  z ) )  =  ( w  e.  ( c  .(+)  a )  |->  ( b  .+  w
) )
132129, 131syl6eq 2491 . . . . . . . . . 10  |-  ( ( x  =  b  /\  y  =  ( c  .(+)  a ) )  -> 
( z  e.  y 
|->  ( x  .+  z
) )  =  ( w  e.  ( c 
.(+)  a )  |->  ( b  .+  w ) ) )
133132rneqd 5067 . . . . . . . . 9  |-  ( ( x  =  b  /\  y  =  ( c  .(+)  a ) )  ->  ran  ( z  e.  y 
|->  ( x  .+  z
) )  =  ran  ( w  e.  (
c  .(+)  a )  |->  ( b  .+  w ) ) )
134 ovex 6116 . . . . . . . . . . 11  |-  ( c 
.(+)  a )  e. 
_V
135134mptex 5948 . . . . . . . . . 10  |-  ( w  e.  ( c  .(+)  a )  |->  ( b  .+  w ) )  e. 
_V
136135rnex 6512 . . . . . . . . 9  |-  ran  (
w  e.  ( c 
.(+)  a )  |->  ( b  .+  w ) )  e.  _V
137133, 56, 136ovmpt2a 6221 . . . . . . . 8  |-  ( ( b  e.  X  /\  ( c  .(+)  a )  e.  S )  -> 
( b  .(+)  ( c 
.(+)  a ) )  =  ran  ( w  e.  ( c  .(+)  a )  |->  ( b  .+  w ) ) )
138109, 125, 137syl2anc 661 . . . . . . 7  |-  ( ( ( ph  /\  a  e.  S )  /\  (
b  e.  X  /\  c  e.  X )
)  ->  ( b  .(+)  ( c  .(+)  a ) )  =  ran  (
w  e.  ( c 
.(+)  a )  |->  ( b  .+  w ) ) )
1391ad2antrr 725 . . . . . . . . 9  |-  ( ( ( ph  /\  a  e.  S )  /\  (
b  e.  X  /\  c  e.  X )
)  ->  G  e.  Grp )
1403, 12grpcl 15551 . . . . . . . . 9  |-  ( ( G  e.  Grp  /\  b  e.  X  /\  c  e.  X )  ->  ( b  .+  c
)  e.  X )
141139, 109, 92, 140syl3anc 1218 . . . . . . . 8  |-  ( ( ( ph  /\  a  e.  S )  /\  (
b  e.  X  /\  c  e.  X )
)  ->  ( b  .+  c )  e.  X
)
142 simpr 461 . . . . . . . . . . 11  |-  ( ( x  =  ( b 
.+  c )  /\  y  =  a )  ->  y  =  a )
143 simpl 457 . . . . . . . . . . . 12  |-  ( ( x  =  ( b 
.+  c )  /\  y  =  a )  ->  x  =  ( b 
.+  c ) )
144143oveq1d 6106 . . . . . . . . . . 11  |-  ( ( x  =  ( b 
.+  c )  /\  y  =  a )  ->  ( x  .+  z
)  =  ( ( b  .+  c ) 
.+  z ) )
145142, 144mpteq12dv 4370 . . . . . . . . . 10  |-  ( ( x  =  ( b 
.+  c )  /\  y  =  a )  ->  ( z  e.  y 
|->  ( x  .+  z
) )  =  ( z  e.  a  |->  ( ( b  .+  c
)  .+  z )
) )
146145rneqd 5067 . . . . . . . . 9  |-  ( ( x  =  ( b 
.+  c )  /\  y  =  a )  ->  ran  ( z  e.  y  |->  ( x  .+  z ) )  =  ran  ( z  e.  a  |->  ( ( b 
.+  c )  .+  z ) ) )
14769mptex 5948 . . . . . . . . . 10  |-  ( z  e.  a  |->  ( ( b  .+  c ) 
.+  z ) )  e.  _V
148147rnex 6512 . . . . . . . . 9  |-  ran  (
z  e.  a  |->  ( ( b  .+  c
)  .+  z )
)  e.  _V
149146, 56, 148ovmpt2a 6221 . . . . . . . 8  |-  ( ( ( b  .+  c
)  e.  X  /\  a  e.  S )  ->  ( ( b  .+  c )  .(+)  a )  =  ran  ( z  e.  a  |->  ( ( b  .+  c ) 
.+  z ) ) )
150141, 93, 149syl2anc 661 . . . . . . 7  |-  ( ( ( ph  /\  a  e.  S )  /\  (
b  e.  X  /\  c  e.  X )
)  ->  ( (
b  .+  c )  .(+)  a )  =  ran  ( z  e.  a 
|->  ( ( b  .+  c )  .+  z
) ) )
151123, 138, 1503eqtr4rd 2486 . . . . . 6  |-  ( ( ( ph  /\  a  e.  S )  /\  (
b  e.  X  /\  c  e.  X )
)  ->  ( (
b  .+  c )  .(+)  a )  =  ( b  .(+)  ( c  .(+)  a ) ) )
152151ralrimivva 2808 . . . . 5  |-  ( (
ph  /\  a  e.  S )  ->  A. b  e.  X  A. c  e.  X  ( (
b  .+  c )  .(+)  a )  =  ( b  .(+)  ( c  .(+)  a ) ) )
15388, 152jca 532 . . . 4  |-  ( (
ph  /\  a  e.  S )  ->  (
( ( 0g `  G )  .(+)  a )  =  a  /\  A. b  e.  X  A. c  e.  X  (
( b  .+  c
)  .(+)  a )  =  ( b  .(+)  ( c 
.(+)  a ) ) ) )
154153ralrimiva 2799 . . 3  |-  ( ph  ->  A. a  e.  S  ( ( ( 0g
`  G )  .(+)  a )  =  a  /\  A. b  e.  X  A. c  e.  X  (
( b  .+  c
)  .(+)  a )  =  ( b  .(+)  ( c 
.(+)  a ) ) ) )
15558, 154jca 532 . 2  |-  ( ph  ->  (  .(+)  : ( X  X.  S ) --> S  /\  A. a  e.  S  ( ( ( 0g `  G ) 
.(+)  a )  =  a  /\  A. b  e.  X  A. c  e.  X  ( (
b  .+  c )  .(+)  a )  =  ( b  .(+)  ( c  .(+)  a ) ) ) ) )
1563, 12, 60isga 15809 . 2  |-  (  .(+)  e.  ( G  GrpAct  S )  <-> 
( ( G  e. 
Grp  /\  S  e.  _V )  /\  (  .(+)  : ( X  X.  S ) --> S  /\  A. a  e.  S  ( ( ( 0g `  G )  .(+)  a )  =  a  /\  A. b  e.  X  A. c  e.  X  (
( b  .+  c
)  .(+)  a )  =  ( b  .(+)  ( c 
.(+)  a ) ) ) ) ) )
1579, 155, 156sylanbrc 664 1  |-  ( ph  -> 
.(+)  e.  ( G  GrpAct  S ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1369    e. wcel 1756   {cab 2429   A.wral 2715   E.wrex 2716   {crab 2719   _Vcvv 2972    C_ wss 3328   ~Pcpw 3860   class class class wbr 4292    e. cmpt 4350    _I cid 4631    X. cxp 4838   ran crn 4841    |` cres 4842   -->wf 5414   -1-1->wf1 5415   -1-1-onto->wf1o 5417   ` cfv 5418  (class class class)co 6091    e. cmpt2 6093    ~~ cen 7307   Fincfn 7310   NN0cn0 10579   ^cexp 11865   #chash 12103    || cdivides 13535   Primecprime 13763   Basecbs 14174   +g cplusg 14238   0gc0g 14378   Grpcgrp 15410    GrpAct cga 15807
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4403  ax-sep 4413  ax-nul 4421  ax-pow 4470  ax-pr 4531  ax-un 6372  ax-cnex 9338  ax-resscn 9339  ax-1cn 9340  ax-icn 9341  ax-addcl 9342  ax-addrcl 9343  ax-mulcl 9344  ax-mulrcl 9345  ax-mulcom 9346  ax-addass 9347  ax-mulass 9348  ax-distr 9349  ax-i2m1 9350  ax-1ne0 9351  ax-1rid 9352  ax-rnegex 9353  ax-rrecex 9354  ax-cnre 9355  ax-pre-lttri 9356  ax-pre-lttrn 9357  ax-pre-ltadd 9358  ax-pre-mulgt0 9359
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2568  df-ne 2608  df-nel 2609  df-ral 2720  df-rex 2721  df-reu 2722  df-rmo 2723  df-rab 2724  df-v 2974  df-sbc 3187  df-csb 3289  df-dif 3331  df-un 3333  df-in 3335  df-ss 3342  df-pss 3344  df-nul 3638  df-if 3792  df-pw 3862  df-sn 3878  df-pr 3880  df-tp 3882  df-op 3884  df-uni 4092  df-int 4129  df-iun 4173  df-br 4293  df-opab 4351  df-mpt 4352  df-tr 4386  df-eprel 4632  df-id 4636  df-po 4641  df-so 4642  df-fr 4679  df-we 4681  df-ord 4722  df-on 4723  df-lim 4724  df-suc 4725  df-xp 4846  df-rel 4847  df-cnv 4848  df-co 4849  df-dm 4850  df-rn 4851  df-res 4852  df-ima 4853  df-iota 5381  df-fun 5420  df-fn 5421  df-f 5422  df-f1 5423  df-fo 5424  df-f1o 5425  df-fv 5426  df-riota 6052  df-ov 6094  df-oprab 6095  df-mpt2 6096  df-om 6477  df-1st 6577  df-2nd 6578  df-recs 6832  df-rdg 6866  df-er 7101  df-map 7216  df-en 7311  df-dom 7312  df-sdom 7313  df-fin 7314  df-card 8109  df-pnf 9420  df-mnf 9421  df-xr 9422  df-ltxr 9423  df-le 9424  df-sub 9597  df-neg 9598  df-nn 10323  df-n0 10580  df-z 10647  df-uz 10862  df-hash 12104  df-0g 14380  df-mnd 15415  df-grp 15545  df-minusg 15546  df-ga 15808
This theorem is referenced by:  sylow1lem3  16099  sylow1lem5  16101
  Copyright terms: Public domain W3C validator