MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sylow1 Structured version   Unicode version

Theorem sylow1 16082
Description: Sylow's first theorem. If  P ^ N is a prime power that divides the cardinality of  G, then  G has a supgroup with size  P ^ N. (Contributed by Mario Carneiro, 16-Jan-2015.)
Hypotheses
Ref Expression
sylow1.x  |-  X  =  ( Base `  G
)
sylow1.g  |-  ( ph  ->  G  e.  Grp )
sylow1.f  |-  ( ph  ->  X  e.  Fin )
sylow1.p  |-  ( ph  ->  P  e.  Prime )
sylow1.n  |-  ( ph  ->  N  e.  NN0 )
sylow1.d  |-  ( ph  ->  ( P ^ N
)  ||  ( # `  X
) )
Assertion
Ref Expression
sylow1  |-  ( ph  ->  E. g  e.  (SubGrp `  G ) ( # `  g )  =  ( P ^ N ) )
Distinct variable groups:    g, N    g, X    g, G    P, g    ph, g

Proof of Theorem sylow1
Dummy variables  a 
b  s  u  x  y  z  h  k  t  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sylow1.x . . 3  |-  X  =  ( Base `  G
)
2 sylow1.g . . 3  |-  ( ph  ->  G  e.  Grp )
3 sylow1.f . . 3  |-  ( ph  ->  X  e.  Fin )
4 sylow1.p . . 3  |-  ( ph  ->  P  e.  Prime )
5 sylow1.n . . 3  |-  ( ph  ->  N  e.  NN0 )
6 sylow1.d . . 3  |-  ( ph  ->  ( P ^ N
)  ||  ( # `  X
) )
7 eqid 2433 . . 3  |-  ( +g  `  G )  =  ( +g  `  G )
8 eqid 2433 . . 3  |-  { s  e.  ~P X  | 
( # `  s )  =  ( P ^ N ) }  =  { s  e.  ~P X  |  ( # `  s
)  =  ( P ^ N ) }
9 oveq2 6088 . . . . . . 7  |-  ( s  =  z  ->  (
u ( +g  `  G
) s )  =  ( u ( +g  `  G ) z ) )
109cbvmptv 4371 . . . . . 6  |-  ( s  e.  v  |->  ( u ( +g  `  G
) s ) )  =  ( z  e.  v  |->  ( u ( +g  `  G ) z ) )
11 oveq1 6087 . . . . . . 7  |-  ( u  =  x  ->  (
u ( +g  `  G
) z )  =  ( x ( +g  `  G ) z ) )
1211mpteq2dv 4367 . . . . . 6  |-  ( u  =  x  ->  (
z  e.  v  |->  ( u ( +g  `  G
) z ) )  =  ( z  e.  v  |->  ( x ( +g  `  G ) z ) ) )
1310, 12syl5eq 2477 . . . . 5  |-  ( u  =  x  ->  (
s  e.  v  |->  ( u ( +g  `  G
) s ) )  =  ( z  e.  v  |->  ( x ( +g  `  G ) z ) ) )
1413rneqd 5054 . . . 4  |-  ( u  =  x  ->  ran  ( s  e.  v 
|->  ( u ( +g  `  G ) s ) )  =  ran  (
z  e.  v  |->  ( x ( +g  `  G
) z ) ) )
15 mpteq1 4360 . . . . 5  |-  ( v  =  y  ->  (
z  e.  v  |->  ( x ( +g  `  G
) z ) )  =  ( z  e.  y  |->  ( x ( +g  `  G ) z ) ) )
1615rneqd 5054 . . . 4  |-  ( v  =  y  ->  ran  ( z  e.  v 
|->  ( x ( +g  `  G ) z ) )  =  ran  (
z  e.  y  |->  ( x ( +g  `  G
) z ) ) )
1714, 16cbvmpt2v 6155 . . 3  |-  ( u  e.  X ,  v  e.  { s  e. 
~P X  |  (
# `  s )  =  ( P ^ N ) }  |->  ran  ( s  e.  v 
|->  ( u ( +g  `  G ) s ) ) )  =  ( x  e.  X , 
y  e.  { s  e.  ~P X  | 
( # `  s )  =  ( P ^ N ) }  |->  ran  ( z  e.  y 
|->  ( x ( +g  `  G ) z ) ) )
18 preq12 3944 . . . . . 6  |-  ( ( a  =  x  /\  b  =  y )  ->  { a ,  b }  =  { x ,  y } )
1918sseq1d 3371 . . . . 5  |-  ( ( a  =  x  /\  b  =  y )  ->  ( { a ,  b }  C_  { s  e.  ~P X  | 
( # `  s )  =  ( P ^ N ) }  <->  { x ,  y }  C_  { s  e.  ~P X  |  ( # `  s
)  =  ( P ^ N ) } ) )
20 oveq2 6088 . . . . . . 7  |-  ( a  =  x  ->  (
k ( u  e.  X ,  v  e. 
{ s  e.  ~P X  |  ( # `  s
)  =  ( P ^ N ) } 
|->  ran  ( s  e.  v  |->  ( u ( +g  `  G ) s ) ) ) a )  =  ( k ( u  e.  X ,  v  e. 
{ s  e.  ~P X  |  ( # `  s
)  =  ( P ^ N ) } 
|->  ran  ( s  e.  v  |->  ( u ( +g  `  G ) s ) ) ) x ) )
21 id 22 . . . . . . 7  |-  ( b  =  y  ->  b  =  y )
2220, 21eqeqan12d 2448 . . . . . 6  |-  ( ( a  =  x  /\  b  =  y )  ->  ( ( k ( u  e.  X , 
v  e.  { s  e.  ~P X  | 
( # `  s )  =  ( P ^ N ) }  |->  ran  ( s  e.  v 
|->  ( u ( +g  `  G ) s ) ) ) a )  =  b  <->  ( k
( u  e.  X ,  v  e.  { s  e.  ~P X  | 
( # `  s )  =  ( P ^ N ) }  |->  ran  ( s  e.  v 
|->  ( u ( +g  `  G ) s ) ) ) x )  =  y ) )
2322rexbidv 2726 . . . . 5  |-  ( ( a  =  x  /\  b  =  y )  ->  ( E. k  e.  X  ( k ( u  e.  X , 
v  e.  { s  e.  ~P X  | 
( # `  s )  =  ( P ^ N ) }  |->  ran  ( s  e.  v 
|->  ( u ( +g  `  G ) s ) ) ) a )  =  b  <->  E. k  e.  X  ( k
( u  e.  X ,  v  e.  { s  e.  ~P X  | 
( # `  s )  =  ( P ^ N ) }  |->  ran  ( s  e.  v 
|->  ( u ( +g  `  G ) s ) ) ) x )  =  y ) )
2419, 23anbi12d 703 . . . 4  |-  ( ( a  =  x  /\  b  =  y )  ->  ( ( { a ,  b }  C_  { s  e.  ~P X  |  ( # `  s
)  =  ( P ^ N ) }  /\  E. k  e.  X  ( k ( u  e.  X , 
v  e.  { s  e.  ~P X  | 
( # `  s )  =  ( P ^ N ) }  |->  ran  ( s  e.  v 
|->  ( u ( +g  `  G ) s ) ) ) a )  =  b )  <->  ( {
x ,  y } 
C_  { s  e. 
~P X  |  (
# `  s )  =  ( P ^ N ) }  /\  E. k  e.  X  ( k ( u  e.  X ,  v  e. 
{ s  e.  ~P X  |  ( # `  s
)  =  ( P ^ N ) } 
|->  ran  ( s  e.  v  |->  ( u ( +g  `  G ) s ) ) ) x )  =  y ) ) )
2524cbvopabv 4349 . . 3  |-  { <. a ,  b >.  |  ( { a ,  b }  C_  { s  e.  ~P X  |  (
# `  s )  =  ( P ^ N ) }  /\  E. k  e.  X  ( k ( u  e.  X ,  v  e. 
{ s  e.  ~P X  |  ( # `  s
)  =  ( P ^ N ) } 
|->  ran  ( s  e.  v  |->  ( u ( +g  `  G ) s ) ) ) a )  =  b ) }  =  { <. x ,  y >.  |  ( { x ,  y }  C_  { s  e.  ~P X  |  ( # `  s
)  =  ( P ^ N ) }  /\  E. k  e.  X  ( k ( u  e.  X , 
v  e.  { s  e.  ~P X  | 
( # `  s )  =  ( P ^ N ) }  |->  ran  ( s  e.  v 
|->  ( u ( +g  `  G ) s ) ) ) x )  =  y ) }
261, 2, 3, 4, 5, 6, 7, 8, 17, 25sylow1lem3 16079 . 2  |-  ( ph  ->  E. h  e.  {
s  e.  ~P X  |  ( # `  s
)  =  ( P ^ N ) }  ( P  pCnt  ( # `
 [ h ] { <. a ,  b
>.  |  ( {
a ,  b } 
C_  { s  e. 
~P X  |  (
# `  s )  =  ( P ^ N ) }  /\  E. k  e.  X  ( k ( u  e.  X ,  v  e. 
{ s  e.  ~P X  |  ( # `  s
)  =  ( P ^ N ) } 
|->  ran  ( s  e.  v  |->  ( u ( +g  `  G ) s ) ) ) a )  =  b ) } ) )  <_  ( ( P 
pCnt  ( # `  X
) )  -  N
) )
272adantr 462 . . 3  |-  ( (
ph  /\  ( h  e.  { s  e.  ~P X  |  ( # `  s
)  =  ( P ^ N ) }  /\  ( P  pCnt  (
# `  [ h ] { <. a ,  b
>.  |  ( {
a ,  b } 
C_  { s  e. 
~P X  |  (
# `  s )  =  ( P ^ N ) }  /\  E. k  e.  X  ( k ( u  e.  X ,  v  e. 
{ s  e.  ~P X  |  ( # `  s
)  =  ( P ^ N ) } 
|->  ran  ( s  e.  v  |->  ( u ( +g  `  G ) s ) ) ) a )  =  b ) } ) )  <_  ( ( P 
pCnt  ( # `  X
) )  -  N
) ) )  ->  G  e.  Grp )
283adantr 462 . . 3  |-  ( (
ph  /\  ( h  e.  { s  e.  ~P X  |  ( # `  s
)  =  ( P ^ N ) }  /\  ( P  pCnt  (
# `  [ h ] { <. a ,  b
>.  |  ( {
a ,  b } 
C_  { s  e. 
~P X  |  (
# `  s )  =  ( P ^ N ) }  /\  E. k  e.  X  ( k ( u  e.  X ,  v  e. 
{ s  e.  ~P X  |  ( # `  s
)  =  ( P ^ N ) } 
|->  ran  ( s  e.  v  |->  ( u ( +g  `  G ) s ) ) ) a )  =  b ) } ) )  <_  ( ( P 
pCnt  ( # `  X
) )  -  N
) ) )  ->  X  e.  Fin )
294adantr 462 . . 3  |-  ( (
ph  /\  ( h  e.  { s  e.  ~P X  |  ( # `  s
)  =  ( P ^ N ) }  /\  ( P  pCnt  (
# `  [ h ] { <. a ,  b
>.  |  ( {
a ,  b } 
C_  { s  e. 
~P X  |  (
# `  s )  =  ( P ^ N ) }  /\  E. k  e.  X  ( k ( u  e.  X ,  v  e. 
{ s  e.  ~P X  |  ( # `  s
)  =  ( P ^ N ) } 
|->  ran  ( s  e.  v  |->  ( u ( +g  `  G ) s ) ) ) a )  =  b ) } ) )  <_  ( ( P 
pCnt  ( # `  X
) )  -  N
) ) )  ->  P  e.  Prime )
305adantr 462 . . 3  |-  ( (
ph  /\  ( h  e.  { s  e.  ~P X  |  ( # `  s
)  =  ( P ^ N ) }  /\  ( P  pCnt  (
# `  [ h ] { <. a ,  b
>.  |  ( {
a ,  b } 
C_  { s  e. 
~P X  |  (
# `  s )  =  ( P ^ N ) }  /\  E. k  e.  X  ( k ( u  e.  X ,  v  e. 
{ s  e.  ~P X  |  ( # `  s
)  =  ( P ^ N ) } 
|->  ran  ( s  e.  v  |->  ( u ( +g  `  G ) s ) ) ) a )  =  b ) } ) )  <_  ( ( P 
pCnt  ( # `  X
) )  -  N
) ) )  ->  N  e.  NN0 )
316adantr 462 . . 3  |-  ( (
ph  /\  ( h  e.  { s  e.  ~P X  |  ( # `  s
)  =  ( P ^ N ) }  /\  ( P  pCnt  (
# `  [ h ] { <. a ,  b
>.  |  ( {
a ,  b } 
C_  { s  e. 
~P X  |  (
# `  s )  =  ( P ^ N ) }  /\  E. k  e.  X  ( k ( u  e.  X ,  v  e. 
{ s  e.  ~P X  |  ( # `  s
)  =  ( P ^ N ) } 
|->  ran  ( s  e.  v  |->  ( u ( +g  `  G ) s ) ) ) a )  =  b ) } ) )  <_  ( ( P 
pCnt  ( # `  X
) )  -  N
) ) )  -> 
( P ^ N
)  ||  ( # `  X
) )
32 simprl 748 . . 3  |-  ( (
ph  /\  ( h  e.  { s  e.  ~P X  |  ( # `  s
)  =  ( P ^ N ) }  /\  ( P  pCnt  (
# `  [ h ] { <. a ,  b
>.  |  ( {
a ,  b } 
C_  { s  e. 
~P X  |  (
# `  s )  =  ( P ^ N ) }  /\  E. k  e.  X  ( k ( u  e.  X ,  v  e. 
{ s  e.  ~P X  |  ( # `  s
)  =  ( P ^ N ) } 
|->  ran  ( s  e.  v  |->  ( u ( +g  `  G ) s ) ) ) a )  =  b ) } ) )  <_  ( ( P 
pCnt  ( # `  X
) )  -  N
) ) )  ->  h  e.  { s  e.  ~P X  |  (
# `  s )  =  ( P ^ N ) } )
33 eqid 2433 . . 3  |-  { t  e.  X  |  ( t ( u  e.  X ,  v  e. 
{ s  e.  ~P X  |  ( # `  s
)  =  ( P ^ N ) } 
|->  ran  ( s  e.  v  |->  ( u ( +g  `  G ) s ) ) ) h )  =  h }  =  { t  e.  X  |  ( t ( u  e.  X ,  v  e. 
{ s  e.  ~P X  |  ( # `  s
)  =  ( P ^ N ) } 
|->  ran  ( s  e.  v  |->  ( u ( +g  `  G ) s ) ) ) h )  =  h }
34 simprr 749 . . 3  |-  ( (
ph  /\  ( h  e.  { s  e.  ~P X  |  ( # `  s
)  =  ( P ^ N ) }  /\  ( P  pCnt  (
# `  [ h ] { <. a ,  b
>.  |  ( {
a ,  b } 
C_  { s  e. 
~P X  |  (
# `  s )  =  ( P ^ N ) }  /\  E. k  e.  X  ( k ( u  e.  X ,  v  e. 
{ s  e.  ~P X  |  ( # `  s
)  =  ( P ^ N ) } 
|->  ran  ( s  e.  v  |->  ( u ( +g  `  G ) s ) ) ) a )  =  b ) } ) )  <_  ( ( P 
pCnt  ( # `  X
) )  -  N
) ) )  -> 
( P  pCnt  ( # `
 [ h ] { <. a ,  b
>.  |  ( {
a ,  b } 
C_  { s  e. 
~P X  |  (
# `  s )  =  ( P ^ N ) }  /\  E. k  e.  X  ( k ( u  e.  X ,  v  e. 
{ s  e.  ~P X  |  ( # `  s
)  =  ( P ^ N ) } 
|->  ran  ( s  e.  v  |->  ( u ( +g  `  G ) s ) ) ) a )  =  b ) } ) )  <_  ( ( P 
pCnt  ( # `  X
) )  -  N
) )
351, 27, 28, 29, 30, 31, 7, 8, 17, 25, 32, 33, 34sylow1lem5 16081 . 2  |-  ( (
ph  /\  ( h  e.  { s  e.  ~P X  |  ( # `  s
)  =  ( P ^ N ) }  /\  ( P  pCnt  (
# `  [ h ] { <. a ,  b
>.  |  ( {
a ,  b } 
C_  { s  e. 
~P X  |  (
# `  s )  =  ( P ^ N ) }  /\  E. k  e.  X  ( k ( u  e.  X ,  v  e. 
{ s  e.  ~P X  |  ( # `  s
)  =  ( P ^ N ) } 
|->  ran  ( s  e.  v  |->  ( u ( +g  `  G ) s ) ) ) a )  =  b ) } ) )  <_  ( ( P 
pCnt  ( # `  X
) )  -  N
) ) )  ->  E. g  e.  (SubGrp `  G ) ( # `  g )  =  ( P ^ N ) )
3626, 35rexlimddv 2835 1  |-  ( ph  ->  E. g  e.  (SubGrp `  G ) ( # `  g )  =  ( P ^ N ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1362    e. wcel 1755   E.wrex 2706   {crab 2709    C_ wss 3316   ~Pcpw 3848   {cpr 3867   class class class wbr 4280   {copab 4337    e. cmpt 4338   ran crn 4828   ` cfv 5406  (class class class)co 6080    e. cmpt2 6082   [cec 7087   Fincfn 7298    <_ cle 9407    - cmin 9583   NN0cn0 10567   ^cexp 11849   #chash 12087    || cdivides 13518   Primecprime 13746    pCnt cpc 13886   Basecbs 14157   +g cplusg 14221   Grpcgrp 15393  SubGrpcsubg 15655
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1594  ax-4 1605  ax-5 1669  ax-6 1707  ax-7 1727  ax-8 1757  ax-9 1759  ax-10 1774  ax-11 1779  ax-12 1791  ax-13 1942  ax-ext 2414  ax-rep 4391  ax-sep 4401  ax-nul 4409  ax-pow 4458  ax-pr 4519  ax-un 6361  ax-inf2 7835  ax-cnex 9326  ax-resscn 9327  ax-1cn 9328  ax-icn 9329  ax-addcl 9330  ax-addrcl 9331  ax-mulcl 9332  ax-mulrcl 9333  ax-mulcom 9334  ax-addass 9335  ax-mulass 9336  ax-distr 9337  ax-i2m1 9338  ax-1ne0 9339  ax-1rid 9340  ax-rnegex 9341  ax-rrecex 9342  ax-cnre 9343  ax-pre-lttri 9344  ax-pre-lttrn 9345  ax-pre-ltadd 9346  ax-pre-mulgt0 9347  ax-pre-sup 9348
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 959  df-3an 960  df-tru 1365  df-fal 1368  df-ex 1590  df-nf 1593  df-sb 1700  df-eu 2258  df-mo 2259  df-clab 2420  df-cleq 2426  df-clel 2429  df-nfc 2558  df-ne 2598  df-nel 2599  df-ral 2710  df-rex 2711  df-reu 2712  df-rmo 2713  df-rab 2714  df-v 2964  df-sbc 3176  df-csb 3277  df-dif 3319  df-un 3321  df-in 3323  df-ss 3330  df-pss 3332  df-nul 3626  df-if 3780  df-pw 3850  df-sn 3866  df-pr 3868  df-tp 3870  df-op 3872  df-uni 4080  df-int 4117  df-iun 4161  df-disj 4251  df-br 4281  df-opab 4339  df-mpt 4340  df-tr 4374  df-eprel 4619  df-id 4623  df-po 4628  df-so 4629  df-fr 4666  df-se 4667  df-we 4668  df-ord 4709  df-on 4710  df-lim 4711  df-suc 4712  df-xp 4833  df-rel 4834  df-cnv 4835  df-co 4836  df-dm 4837  df-rn 4838  df-res 4839  df-ima 4840  df-iota 5369  df-fun 5408  df-fn 5409  df-f 5410  df-f1 5411  df-fo 5412  df-f1o 5413  df-fv 5414  df-isom 5415  df-riota 6039  df-ov 6083  df-oprab 6084  df-mpt2 6085  df-om 6466  df-1st 6566  df-2nd 6567  df-recs 6818  df-rdg 6852  df-1o 6908  df-2o 6909  df-oadd 6912  df-er 7089  df-ec 7091  df-qs 7095  df-map 7204  df-en 7299  df-dom 7300  df-sdom 7301  df-fin 7302  df-sup 7679  df-oi 7712  df-card 8097  df-cda 8325  df-pnf 9408  df-mnf 9409  df-xr 9410  df-ltxr 9411  df-le 9412  df-sub 9585  df-neg 9586  df-div 9982  df-nn 10311  df-2 10368  df-3 10369  df-n0 10568  df-z 10635  df-uz 10850  df-q 10942  df-rp 10980  df-fz 11425  df-fzo 11533  df-fl 11626  df-mod 11693  df-seq 11791  df-exp 11850  df-fac 12036  df-bc 12063  df-hash 12088  df-cj 12572  df-re 12573  df-im 12574  df-sqr 12708  df-abs 12709  df-clim 12950  df-sum 13148  df-dvds 13519  df-gcd 13674  df-prm 13747  df-pc 13887  df-ndx 14160  df-slot 14161  df-base 14162  df-sets 14163  df-ress 14164  df-plusg 14234  df-0g 14363  df-mnd 15398  df-grp 15525  df-minusg 15526  df-subg 15658  df-eqg 15660  df-ga 15788
This theorem is referenced by:  odcau  16083  slwhash  16103
  Copyright terms: Public domain W3C validator