MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sylow1 Unicode version

Theorem sylow1 14749
Description: Sylow's first theorem. If  P ^ N is a prime power that divides the cardinality of  G, then  G has a supgroup with size  P ^ N. (Contributed by Mario Carneiro, 16-Jan-2015.)
Hypotheses
Ref Expression
sylow1.x  |-  X  =  ( Base `  G
)
sylow1.g  |-  ( ph  ->  G  e.  Grp )
sylow1.f  |-  ( ph  ->  X  e.  Fin )
sylow1.p  |-  ( ph  ->  P  e.  Prime )
sylow1.n  |-  ( ph  ->  N  e.  NN0 )
sylow1.d  |-  ( ph  ->  ( P ^ N
)  ||  ( # `  X
) )
Assertion
Ref Expression
sylow1  |-  ( ph  ->  E. g  e.  (SubGrp `  G ) ( # `  g )  =  ( P ^ N ) )
Distinct variable groups:    g, N    g, X    g, G    P, g    ph, g

Proof of Theorem sylow1
StepHypRef Expression
1 sylow1.x . . 3  |-  X  =  ( Base `  G
)
2 sylow1.g . . 3  |-  ( ph  ->  G  e.  Grp )
3 sylow1.f . . 3  |-  ( ph  ->  X  e.  Fin )
4 sylow1.p . . 3  |-  ( ph  ->  P  e.  Prime )
5 sylow1.n . . 3  |-  ( ph  ->  N  e.  NN0 )
6 sylow1.d . . 3  |-  ( ph  ->  ( P ^ N
)  ||  ( # `  X
) )
7 eqid 2253 . . 3  |-  ( +g  `  G )  =  ( +g  `  G )
8 eqid 2253 . . 3  |-  { s  e.  ~P X  | 
( # `  s )  =  ( P ^ N ) }  =  { s  e.  ~P X  |  ( # `  s
)  =  ( P ^ N ) }
9 oveq2 5718 . . . . . . 7  |-  ( s  =  z  ->  (
u ( +g  `  G
) s )  =  ( u ( +g  `  G ) z ) )
109cbvmptv 4008 . . . . . 6  |-  ( s  e.  v  |->  ( u ( +g  `  G
) s ) )  =  ( z  e.  v  |->  ( u ( +g  `  G ) z ) )
11 oveq1 5717 . . . . . . 7  |-  ( u  =  x  ->  (
u ( +g  `  G
) z )  =  ( x ( +g  `  G ) z ) )
1211mpteq2dv 4004 . . . . . 6  |-  ( u  =  x  ->  (
z  e.  v  |->  ( u ( +g  `  G
) z ) )  =  ( z  e.  v  |->  ( x ( +g  `  G ) z ) ) )
1310, 12syl5eq 2297 . . . . 5  |-  ( u  =  x  ->  (
s  e.  v  |->  ( u ( +g  `  G
) s ) )  =  ( z  e.  v  |->  ( x ( +g  `  G ) z ) ) )
1413rneqd 4813 . . . 4  |-  ( u  =  x  ->  ran  (  s  e.  v  |->  ( u ( +g  `  G ) s ) )  =  ran  ( 
z  e.  v  |->  ( x ( +g  `  G
) z ) ) )
15 mpteq1 3997 . . . . 5  |-  ( v  =  y  ->  (
z  e.  v  |->  ( x ( +g  `  G
) z ) )  =  ( z  e.  y  |->  ( x ( +g  `  G ) z ) ) )
1615rneqd 4813 . . . 4  |-  ( v  =  y  ->  ran  (  z  e.  v  |->  ( x ( +g  `  G ) z ) )  =  ran  ( 
z  e.  y  |->  ( x ( +g  `  G
) z ) ) )
1714, 16cbvmpt2v 5778 . . 3  |-  ( u  e.  X ,  v  e.  { s  e. 
~P X  |  (
# `  s )  =  ( P ^ N ) }  |->  ran  (  s  e.  v 
|->  ( u ( +g  `  G ) s ) ) )  =  ( x  e.  X , 
y  e.  { s  e.  ~P X  | 
( # `  s )  =  ( P ^ N ) }  |->  ran  (  z  e.  y 
|->  ( x ( +g  `  G ) z ) ) )
18 preq12 3612 . . . . . 6  |-  ( ( a  =  x  /\  b  =  y )  ->  { a ,  b }  =  { x ,  y } )
1918sseq1d 3126 . . . . 5  |-  ( ( a  =  x  /\  b  =  y )  ->  ( { a ,  b }  C_  { s  e.  ~P X  | 
( # `  s )  =  ( P ^ N ) }  <->  { x ,  y }  C_  { s  e.  ~P X  |  ( # `  s
)  =  ( P ^ N ) } ) )
20 oveq2 5718 . . . . . . 7  |-  ( a  =  x  ->  (
k ( u  e.  X ,  v  e. 
{ s  e.  ~P X  |  ( # `  s
)  =  ( P ^ N ) } 
|->  ran  (  s  e.  v  |->  ( u ( +g  `  G ) s ) ) ) a )  =  ( k ( u  e.  X ,  v  e. 
{ s  e.  ~P X  |  ( # `  s
)  =  ( P ^ N ) } 
|->  ran  (  s  e.  v  |->  ( u ( +g  `  G ) s ) ) ) x ) )
21 id 21 . . . . . . 7  |-  ( b  =  y  ->  b  =  y )
2220, 21eqeqan12d 2268 . . . . . 6  |-  ( ( a  =  x  /\  b  =  y )  ->  ( ( k ( u  e.  X , 
v  e.  { s  e.  ~P X  | 
( # `  s )  =  ( P ^ N ) }  |->  ran  (  s  e.  v 
|->  ( u ( +g  `  G ) s ) ) ) a )  =  b  <->  ( k
( u  e.  X ,  v  e.  { s  e.  ~P X  | 
( # `  s )  =  ( P ^ N ) }  |->  ran  (  s  e.  v 
|->  ( u ( +g  `  G ) s ) ) ) x )  =  y ) )
2322rexbidv 2528 . . . . 5  |-  ( ( a  =  x  /\  b  =  y )  ->  ( E. k  e.  X  ( k ( u  e.  X , 
v  e.  { s  e.  ~P X  | 
( # `  s )  =  ( P ^ N ) }  |->  ran  (  s  e.  v 
|->  ( u ( +g  `  G ) s ) ) ) a )  =  b  <->  E. k  e.  X  ( k
( u  e.  X ,  v  e.  { s  e.  ~P X  | 
( # `  s )  =  ( P ^ N ) }  |->  ran  (  s  e.  v 
|->  ( u ( +g  `  G ) s ) ) ) x )  =  y ) )
2419, 23anbi12d 694 . . . 4  |-  ( ( a  =  x  /\  b  =  y )  ->  ( ( { a ,  b }  C_  { s  e.  ~P X  |  ( # `  s
)  =  ( P ^ N ) }  /\  E. k  e.  X  ( k ( u  e.  X , 
v  e.  { s  e.  ~P X  | 
( # `  s )  =  ( P ^ N ) }  |->  ran  (  s  e.  v 
|->  ( u ( +g  `  G ) s ) ) ) a )  =  b )  <->  ( {
x ,  y } 
C_  { s  e. 
~P X  |  (
# `  s )  =  ( P ^ N ) }  /\  E. k  e.  X  ( k ( u  e.  X ,  v  e. 
{ s  e.  ~P X  |  ( # `  s
)  =  ( P ^ N ) } 
|->  ran  (  s  e.  v  |->  ( u ( +g  `  G ) s ) ) ) x )  =  y ) ) )
2524cbvopabv 3985 . . 3  |-  { <. a ,  b >.  |  ( { a ,  b }  C_  { s  e.  ~P X  |  (
# `  s )  =  ( P ^ N ) }  /\  E. k  e.  X  ( k ( u  e.  X ,  v  e. 
{ s  e.  ~P X  |  ( # `  s
)  =  ( P ^ N ) } 
|->  ran  (  s  e.  v  |->  ( u ( +g  `  G ) s ) ) ) a )  =  b ) }  =  { <. x ,  y >.  |  ( { x ,  y }  C_  { s  e.  ~P X  |  ( # `  s
)  =  ( P ^ N ) }  /\  E. k  e.  X  ( k ( u  e.  X , 
v  e.  { s  e.  ~P X  | 
( # `  s )  =  ( P ^ N ) }  |->  ran  (  s  e.  v 
|->  ( u ( +g  `  G ) s ) ) ) x )  =  y ) }
261, 2, 3, 4, 5, 6, 7, 8, 17, 25sylow1lem3 14746 . 2  |-  ( ph  ->  E. h  e.  {
s  e.  ~P X  |  ( # `  s
)  =  ( P ^ N ) }  ( P  pCnt  ( # `
 [ h ] { <. a ,  b
>.  |  ( {
a ,  b } 
C_  { s  e. 
~P X  |  (
# `  s )  =  ( P ^ N ) }  /\  E. k  e.  X  ( k ( u  e.  X ,  v  e. 
{ s  e.  ~P X  |  ( # `  s
)  =  ( P ^ N ) } 
|->  ran  (  s  e.  v  |->  ( u ( +g  `  G ) s ) ) ) a )  =  b ) } ) )  <_  ( ( P 
pCnt  ( # `  X
) )  -  N
) )
272adantr 453 . . . . 5  |-  ( (
ph  /\  ( h  e.  { s  e.  ~P X  |  ( # `  s
)  =  ( P ^ N ) }  /\  ( P  pCnt  (
# `  [ h ] { <. a ,  b
>.  |  ( {
a ,  b } 
C_  { s  e. 
~P X  |  (
# `  s )  =  ( P ^ N ) }  /\  E. k  e.  X  ( k ( u  e.  X ,  v  e. 
{ s  e.  ~P X  |  ( # `  s
)  =  ( P ^ N ) } 
|->  ran  (  s  e.  v  |->  ( u ( +g  `  G ) s ) ) ) a )  =  b ) } ) )  <_  ( ( P 
pCnt  ( # `  X
) )  -  N
) ) )  ->  G  e.  Grp )
283adantr 453 . . . . 5  |-  ( (
ph  /\  ( h  e.  { s  e.  ~P X  |  ( # `  s
)  =  ( P ^ N ) }  /\  ( P  pCnt  (
# `  [ h ] { <. a ,  b
>.  |  ( {
a ,  b } 
C_  { s  e. 
~P X  |  (
# `  s )  =  ( P ^ N ) }  /\  E. k  e.  X  ( k ( u  e.  X ,  v  e. 
{ s  e.  ~P X  |  ( # `  s
)  =  ( P ^ N ) } 
|->  ran  (  s  e.  v  |->  ( u ( +g  `  G ) s ) ) ) a )  =  b ) } ) )  <_  ( ( P 
pCnt  ( # `  X
) )  -  N
) ) )  ->  X  e.  Fin )
294adantr 453 . . . . 5  |-  ( (
ph  /\  ( h  e.  { s  e.  ~P X  |  ( # `  s
)  =  ( P ^ N ) }  /\  ( P  pCnt  (
# `  [ h ] { <. a ,  b
>.  |  ( {
a ,  b } 
C_  { s  e. 
~P X  |  (
# `  s )  =  ( P ^ N ) }  /\  E. k  e.  X  ( k ( u  e.  X ,  v  e. 
{ s  e.  ~P X  |  ( # `  s
)  =  ( P ^ N ) } 
|->  ran  (  s  e.  v  |->  ( u ( +g  `  G ) s ) ) ) a )  =  b ) } ) )  <_  ( ( P 
pCnt  ( # `  X
) )  -  N
) ) )  ->  P  e.  Prime )
305adantr 453 . . . . 5  |-  ( (
ph  /\  ( h  e.  { s  e.  ~P X  |  ( # `  s
)  =  ( P ^ N ) }  /\  ( P  pCnt  (
# `  [ h ] { <. a ,  b
>.  |  ( {
a ,  b } 
C_  { s  e. 
~P X  |  (
# `  s )  =  ( P ^ N ) }  /\  E. k  e.  X  ( k ( u  e.  X ,  v  e. 
{ s  e.  ~P X  |  ( # `  s
)  =  ( P ^ N ) } 
|->  ran  (  s  e.  v  |->  ( u ( +g  `  G ) s ) ) ) a )  =  b ) } ) )  <_  ( ( P 
pCnt  ( # `  X
) )  -  N
) ) )  ->  N  e.  NN0 )
316adantr 453 . . . . 5  |-  ( (
ph  /\  ( h  e.  { s  e.  ~P X  |  ( # `  s
)  =  ( P ^ N ) }  /\  ( P  pCnt  (
# `  [ h ] { <. a ,  b
>.  |  ( {
a ,  b } 
C_  { s  e. 
~P X  |  (
# `  s )  =  ( P ^ N ) }  /\  E. k  e.  X  ( k ( u  e.  X ,  v  e. 
{ s  e.  ~P X  |  ( # `  s
)  =  ( P ^ N ) } 
|->  ran  (  s  e.  v  |->  ( u ( +g  `  G ) s ) ) ) a )  =  b ) } ) )  <_  ( ( P 
pCnt  ( # `  X
) )  -  N
) ) )  -> 
( P ^ N
)  ||  ( # `  X
) )
32 simprl 735 . . . . 5  |-  ( (
ph  /\  ( h  e.  { s  e.  ~P X  |  ( # `  s
)  =  ( P ^ N ) }  /\  ( P  pCnt  (
# `  [ h ] { <. a ,  b
>.  |  ( {
a ,  b } 
C_  { s  e. 
~P X  |  (
# `  s )  =  ( P ^ N ) }  /\  E. k  e.  X  ( k ( u  e.  X ,  v  e. 
{ s  e.  ~P X  |  ( # `  s
)  =  ( P ^ N ) } 
|->  ran  (  s  e.  v  |->  ( u ( +g  `  G ) s ) ) ) a )  =  b ) } ) )  <_  ( ( P 
pCnt  ( # `  X
) )  -  N
) ) )  ->  h  e.  { s  e.  ~P X  |  (
# `  s )  =  ( P ^ N ) } )
33 eqid 2253 . . . . 5  |-  { t  e.  X  |  ( t ( u  e.  X ,  v  e. 
{ s  e.  ~P X  |  ( # `  s
)  =  ( P ^ N ) } 
|->  ran  (  s  e.  v  |->  ( u ( +g  `  G ) s ) ) ) h )  =  h }  =  { t  e.  X  |  ( t ( u  e.  X ,  v  e. 
{ s  e.  ~P X  |  ( # `  s
)  =  ( P ^ N ) } 
|->  ran  (  s  e.  v  |->  ( u ( +g  `  G ) s ) ) ) h )  =  h }
34 simprr 736 . . . . 5  |-  ( (
ph  /\  ( h  e.  { s  e.  ~P X  |  ( # `  s
)  =  ( P ^ N ) }  /\  ( P  pCnt  (
# `  [ h ] { <. a ,  b
>.  |  ( {
a ,  b } 
C_  { s  e. 
~P X  |  (
# `  s )  =  ( P ^ N ) }  /\  E. k  e.  X  ( k ( u  e.  X ,  v  e. 
{ s  e.  ~P X  |  ( # `  s
)  =  ( P ^ N ) } 
|->  ran  (  s  e.  v  |->  ( u ( +g  `  G ) s ) ) ) a )  =  b ) } ) )  <_  ( ( P 
pCnt  ( # `  X
) )  -  N
) ) )  -> 
( P  pCnt  ( # `
 [ h ] { <. a ,  b
>.  |  ( {
a ,  b } 
C_  { s  e. 
~P X  |  (
# `  s )  =  ( P ^ N ) }  /\  E. k  e.  X  ( k ( u  e.  X ,  v  e. 
{ s  e.  ~P X  |  ( # `  s
)  =  ( P ^ N ) } 
|->  ran  (  s  e.  v  |->  ( u ( +g  `  G ) s ) ) ) a )  =  b ) } ) )  <_  ( ( P 
pCnt  ( # `  X
) )  -  N
) )
351, 27, 28, 29, 30, 31, 7, 8, 17, 25, 32, 33, 34sylow1lem5 14748 . . . 4  |-  ( (
ph  /\  ( h  e.  { s  e.  ~P X  |  ( # `  s
)  =  ( P ^ N ) }  /\  ( P  pCnt  (
# `  [ h ] { <. a ,  b
>.  |  ( {
a ,  b } 
C_  { s  e. 
~P X  |  (
# `  s )  =  ( P ^ N ) }  /\  E. k  e.  X  ( k ( u  e.  X ,  v  e. 
{ s  e.  ~P X  |  ( # `  s
)  =  ( P ^ N ) } 
|->  ran  (  s  e.  v  |->  ( u ( +g  `  G ) s ) ) ) a )  =  b ) } ) )  <_  ( ( P 
pCnt  ( # `  X
) )  -  N
) ) )  ->  E. g  e.  (SubGrp `  G ) ( # `  g )  =  ( P ^ N ) )
3635expr 601 . . 3  |-  ( (
ph  /\  h  e.  { s  e.  ~P X  |  ( # `  s
)  =  ( P ^ N ) } )  ->  ( ( P  pCnt  ( # `  [
h ] { <. a ,  b >.  |  ( { a ,  b }  C_  { s  e.  ~P X  |  (
# `  s )  =  ( P ^ N ) }  /\  E. k  e.  X  ( k ( u  e.  X ,  v  e. 
{ s  e.  ~P X  |  ( # `  s
)  =  ( P ^ N ) } 
|->  ran  (  s  e.  v  |->  ( u ( +g  `  G ) s ) ) ) a )  =  b ) } ) )  <_  ( ( P 
pCnt  ( # `  X
) )  -  N
)  ->  E. g  e.  (SubGrp `  G )
( # `  g )  =  ( P ^ N ) ) )
3736rexlimdva 2629 . 2  |-  ( ph  ->  ( E. h  e. 
{ s  e.  ~P X  |  ( # `  s
)  =  ( P ^ N ) }  ( P  pCnt  ( # `
 [ h ] { <. a ,  b
>.  |  ( {
a ,  b } 
C_  { s  e. 
~P X  |  (
# `  s )  =  ( P ^ N ) }  /\  E. k  e.  X  ( k ( u  e.  X ,  v  e. 
{ s  e.  ~P X  |  ( # `  s
)  =  ( P ^ N ) } 
|->  ran  (  s  e.  v  |->  ( u ( +g  `  G ) s ) ) ) a )  =  b ) } ) )  <_  ( ( P 
pCnt  ( # `  X
) )  -  N
)  ->  E. g  e.  (SubGrp `  G )
( # `  g )  =  ( P ^ N ) ) )
3826, 37mpd 16 1  |-  ( ph  ->  E. g  e.  (SubGrp `  G ) ( # `  g )  =  ( P ^ N ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    /\ wa 360    = wceq 1619    e. wcel 1621   E.wrex 2510   {crab 2512    C_ wss 3078   ~Pcpw 3530   {cpr 3545   class class class wbr 3920   {copab 3973    e. cmpt 3974   ran crn 4581   ` cfv 4592  (class class class)co 5710    e. cmpt2 5712   [cec 6544   Fincfn 6749    <_ cle 8748    - cmin 8917   NN0cn0 9844   ^cexp 10982   #chash 11215    || cdivides 12405   Primecprime 12632    pCnt cpc 12763   Basecbs 13022   +g cplusg 13082   Grpcgrp 14197  SubGrpcsubg 14450
This theorem is referenced by:  odcau  14750  slwhash  14770
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234  ax-rep 4028  ax-sep 4038  ax-nul 4046  ax-pow 4082  ax-pr 4108  ax-un 4403  ax-inf2 7226  ax-cnex 8673  ax-resscn 8674  ax-1cn 8675  ax-icn 8676  ax-addcl 8677  ax-addrcl 8678  ax-mulcl 8679  ax-mulrcl 8680  ax-mulcom 8681  ax-addass 8682  ax-mulass 8683  ax-distr 8684  ax-i2m1 8685  ax-1ne0 8686  ax-1rid 8687  ax-rnegex 8688  ax-rrecex 8689  ax-cnre 8690  ax-pre-lttri 8691  ax-pre-lttrn 8692  ax-pre-ltadd 8693  ax-pre-mulgt0 8694  ax-pre-sup 8695
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-eu 2118  df-mo 2119  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-ne 2414  df-nel 2415  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2516  df-v 2729  df-sbc 2922  df-csb 3010  df-dif 3081  df-un 3083  df-in 3085  df-ss 3089  df-pss 3091  df-nul 3363  df-if 3471  df-pw 3532  df-sn 3550  df-pr 3551  df-tp 3552  df-op 3553  df-uni 3728  df-int 3761  df-iun 3805  df-disj 3892  df-br 3921  df-opab 3975  df-mpt 3976  df-tr 4011  df-eprel 4198  df-id 4202  df-po 4207  df-so 4208  df-fr 4245  df-se 4246  df-we 4247  df-ord 4288  df-on 4289  df-lim 4290  df-suc 4291  df-om 4548  df-xp 4594  df-rel 4595  df-cnv 4596  df-co 4597  df-dm 4598  df-rn 4599  df-res 4600  df-ima 4601  df-fun 4602  df-fn 4603  df-f 4604  df-f1 4605  df-fo 4606  df-f1o 4607  df-fv 4608  df-isom 4609  df-ov 5713  df-oprab 5714  df-mpt2 5715  df-1st 5974  df-2nd 5975  df-iota 6143  df-riota 6190  df-recs 6274  df-rdg 6309  df-1o 6365  df-2o 6366  df-oadd 6369  df-er 6546  df-ec 6548  df-qs 6552  df-map 6660  df-en 6750  df-dom 6751  df-sdom 6752  df-fin 6753  df-sup 7078  df-oi 7109  df-card 7456  df-cda 7678  df-pnf 8749  df-mnf 8750  df-xr 8751  df-ltxr 8752  df-le 8753  df-sub 8919  df-neg 8920  df-div 9304  df-n 9627  df-2 9684  df-3 9685  df-n0 9845  df-z 9904  df-uz 10110  df-q 10196  df-rp 10234  df-fz 10661  df-fzo 10749  df-fl 10803  df-mod 10852  df-seq 10925  df-exp 10983  df-fac 11167  df-bc 11194  df-hash 11216  df-cj 11461  df-re 11462  df-im 11463  df-sqr 11597  df-abs 11598  df-clim 11839  df-sum 12036  df-divides 12406  df-gcd 12560  df-prime 12633  df-pc 12764  df-ndx 13025  df-slot 13026  df-base 13027  df-sets 13028  df-ress 13029  df-plusg 13095  df-0g 13278  df-mnd 14202  df-grp 14324  df-minusg 14325  df-subg 14453  df-eqg 14455  df-ga 14579
  Copyright terms: Public domain W3C validator