Users' Mathboxes Mathbox for Stanislas Polu < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  syldbl2 Structured version   Unicode version

Theorem syldbl2 36581
Description: Stacked hypotheseis implies goal. (Contributed by Stanislas Polu, 9-Mar-2020.)
Hypothesis
Ref Expression
syldbl2.1  |-  ( (
ph  /\  ps )  ->  ( ps  ->  th )
)
Assertion
Ref Expression
syldbl2  |-  ( (
ph  /\  ps )  ->  th )

Proof of Theorem syldbl2
StepHypRef Expression
1 syldbl2.1 . . 3  |-  ( (
ph  /\  ps )  ->  ( ps  ->  th )
)
21com12 32 . 2  |-  ( ps 
->  ( ( ph  /\  ps )  ->  th )
)
32anabsi7 826 1  |-  ( (
ph  /\  ps )  ->  th )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 370
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 188  df-an 372
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator