MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  syl7bi Structured version   Unicode version

Theorem syl7bi 230
Description: A mixed syllogism inference from a doubly nested implication and a biconditional. (Contributed by NM, 14-May-1993.)
Hypotheses
Ref Expression
syl7bi.1  |-  ( ph  <->  ps )
syl7bi.2  |-  ( ch 
->  ( th  ->  ( ps  ->  ta ) ) )
Assertion
Ref Expression
syl7bi  |-  ( ch 
->  ( th  ->  ( ph  ->  ta ) ) )

Proof of Theorem syl7bi
StepHypRef Expression
1 syl7bi.1 . . 3  |-  ( ph  <->  ps )
21biimpi 194 . 2  |-  ( ph  ->  ps )
3 syl7bi.2 . 2  |-  ( ch 
->  ( th  ->  ( ps  ->  ta ) ) )
42, 3syl7 68 1  |-  ( ch 
->  ( th  ->  ( ph  ->  ta ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 185
This theorem is referenced by:  rspct  3207  zfpair  4684  gruen  9189  axpre-sup  9545  nn0lt2  10924  fzofzim  11836  ndvdssub  13923  alexsubALT  20302  clwlkisclwwlklem2a  24477  erclwwlktr  24507  erclwwlkntr  24519  dfon2lem8  28815  prtlem15  30236  prtlem18  30238
  Copyright terms: Public domain W3C validator