MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  syl5eleq Structured version   Unicode version

Theorem syl5eleq 2529
Description: A membership and equality inference. (Contributed by NM, 4-Jan-2006.)
Hypotheses
Ref Expression
syl5eleq.1  |-  A  e.  B
syl5eleq.2  |-  ( ph  ->  B  =  C )
Assertion
Ref Expression
syl5eleq  |-  ( ph  ->  A  e.  C )

Proof of Theorem syl5eleq
StepHypRef Expression
1 syl5eleq.1 . . 3  |-  A  e.  B
21a1i 11 . 2  |-  ( ph  ->  A  e.  B )
3 syl5eleq.2 . 2  |-  ( ph  ->  B  =  C )
42, 3eleqtrd 2519 1  |-  ( ph  ->  A  e.  C )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1369    e. wcel 1756
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-12 1792  ax-ext 2423
This theorem depends on definitions:  df-bi 185  df-an 371  df-ex 1587  df-cleq 2436  df-clel 2439
This theorem is referenced by:  syl5eleqr  2530  opth1  4565  opth  4566  eqelsuc  4800  tfrlem11  6847  oalimcl  6999  omlimcl  7017  frgp0  16257  txdis  19205  ordtconlem1  26354  rankeq1o  28209
  Copyright terms: Public domain W3C validator