MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  syl5breq Structured version   Visualization version   Unicode version

Theorem syl5breq 4438
Description: A chained equality inference for a binary relation. (Contributed by NM, 11-Oct-1999.)
Hypotheses
Ref Expression
syl5breq.1  |-  A R B
syl5breq.2  |-  ( ph  ->  B  =  C )
Assertion
Ref Expression
syl5breq  |-  ( ph  ->  A R C )

Proof of Theorem syl5breq
StepHypRef Expression
1 syl5breq.1 . . 3  |-  A R B
21a1i 11 . 2  |-  ( ph  ->  A R B )
3 syl5breq.2 . 2  |-  ( ph  ->  B  =  C )
42, 3breqtrd 4427 1  |-  ( ph  ->  A R C )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1444   class class class wbr 4402
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1669  ax-4 1682  ax-5 1758  ax-6 1805  ax-7 1851  ax-10 1915  ax-11 1920  ax-12 1933  ax-13 2091  ax-ext 2431
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3an 987  df-tru 1447  df-ex 1664  df-nf 1668  df-sb 1798  df-clab 2438  df-cleq 2444  df-clel 2447  df-nfc 2581  df-rab 2746  df-v 3047  df-dif 3407  df-un 3409  df-in 3411  df-ss 3418  df-nul 3732  df-if 3882  df-sn 3969  df-pr 3971  df-op 3975  df-br 4403
This theorem is referenced by:  syl5breqr  4439  phplem3  7753  xlemul1a  11574  phicl2  14716  sinq12ge0  23463  siilem1  26492  nmbdfnlbi  27702  nmcfnlbi  27705  unierri  27757  leoprf2  27780  leoprf  27781  ballotlemic  29339  ballotlem1c  29340  ballotlemicOLD  29377  ballotlem1cOLD  29378  sumnnodd  37710
  Copyright terms: Public domain W3C validator