Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  syl312anc Structured version   Unicode version

Theorem syl312anc 1249
 Description: Syllogism combined with contraction. (Contributed by NM, 11-Jul-2012.)
Hypotheses
Ref Expression
sylXanc.1
sylXanc.2
sylXanc.3
sylXanc.4
sylXanc.5
sylXanc.6
syl312anc.7
Assertion
Ref Expression
syl312anc

Proof of Theorem syl312anc
StepHypRef Expression
1 sylXanc.1 . 2
2 sylXanc.2 . 2
3 sylXanc.3 . 2
4 sylXanc.4 . 2
5 sylXanc.5 . . 3
6 sylXanc.6 . . 3
75, 6jca 532 . 2
8 syl312anc.7 . 2
91, 2, 3, 4, 7, 8syl311anc 1242 1
 Colors of variables: wff setvar class Syntax hints:   wi 4   wa 369   w3a 973 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8 This theorem depends on definitions:  df-bi 185  df-an 371  df-3an 975 This theorem is referenced by:  pythagtriplem19  14212  cdleme27cl  35162  cdlemefs27cl  35209  cdleme32fvcl  35236  cdlemg16ALTN  35454  cdlemg27a  35488  cdlemg31c  35495  cdlemg39  35512  cdlemk11ta  35725  cdlemk19ylem  35726  cdlemk11tc  35741  cdlemk45  35743  dihmeetlem12N  36115  dihjatc  36214
 Copyright terms: Public domain W3C validator