![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > syl2anr | Structured version Unicode version |
Description: A double syllogism inference. (Contributed by NM, 17-Sep-2013.) |
Ref | Expression |
---|---|
syl2an.1 |
![]() ![]() ![]() ![]() ![]() ![]() |
syl2an.2 |
![]() ![]() ![]() ![]() ![]() ![]() |
syl2an.3 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
syl2anr |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl2an.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() | |
2 | syl2an.2 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() | |
3 | syl2an.3 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 1, 2, 3 | syl2an 477 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
5 | 4 | ancoms 453 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Copyright terms: Public domain | W3C validator |