![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > syl2ani | Structured version Visualization version Unicode version |
Description: A syllogism inference. (Contributed by NM, 3-Aug-1999.) |
Ref | Expression |
---|---|
syl2ani.1 |
![]() ![]() ![]() ![]() ![]() ![]() |
syl2ani.2 |
![]() ![]() ![]() ![]() ![]() ![]() |
syl2ani.3 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
syl2ani |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl2ani.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() | |
2 | syl2ani.2 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() | |
3 | syl2ani.3 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 2, 3 | sylan2i 665 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
5 | 1, 4 | sylani 664 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 190 df-an 377 |
This theorem is referenced by: 2mo 2391 frxp 6933 mapen 7762 fin1a2lem9 8864 coprmproddvdslem 14728 psss 16509 mgmidmo 16551 aannenlem1 23333 funtransport 30847 cgrxfr 30871 btwnxfr 30872 bj-cbv3tb 31357 |
Copyright terms: Public domain | W3C validator |