Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  syl223anc Structured version   Unicode version

Theorem syl223anc 1245
 Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.)
Hypotheses
Ref Expression
sylXanc.1
sylXanc.2
sylXanc.3
sylXanc.4
sylXanc.5
sylXanc.6
sylXanc.7
syl223anc.8
Assertion
Ref Expression
syl223anc

Proof of Theorem syl223anc
StepHypRef Expression
1 sylXanc.1 . 2
2 sylXanc.2 . 2
3 sylXanc.3 . . 3
4 sylXanc.4 . . 3
53, 4jca 532 . 2
6 sylXanc.5 . 2
7 sylXanc.6 . 2
8 sylXanc.7 . 2
9 syl223anc.8 . 2
101, 2, 5, 6, 7, 8, 9syl213anc 1238 1
 Colors of variables: wff setvar class Syntax hints:   wi 4   wa 369   w3a 965 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8 This theorem depends on definitions:  df-bi 185  df-an 371  df-3an 967 This theorem is referenced by:  cdleme17d1  34252  cdlemednpq  34262  cdleme19d  34269  cdleme20aN  34272  cdleme20c  34274  cdleme20f  34277  cdleme20g  34278  cdleme20j  34281  cdleme20l1  34283  cdleme20l2  34284  cdlemky  34889  cdlemkyyN  34925
 Copyright terms: Public domain W3C validator