![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > syl212anc | Structured version Unicode version |
Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
Ref | Expression |
---|---|
sylXanc.1 |
![]() ![]() ![]() ![]() ![]() ![]() |
sylXanc.2 |
![]() ![]() ![]() ![]() ![]() ![]() |
sylXanc.3 |
![]() ![]() ![]() ![]() ![]() ![]() |
sylXanc.4 |
![]() ![]() ![]() ![]() ![]() ![]() |
sylXanc.5 |
![]() ![]() ![]() ![]() ![]() ![]() |
syl212anc.6 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
syl212anc |
![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylXanc.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() | |
2 | sylXanc.2 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() | |
3 | sylXanc.3 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() | |
4 | sylXanc.4 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() | |
5 | sylXanc.5 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() | |
6 | 4, 5 | jca 532 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
7 | syl212anc.6 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
8 | 1, 2, 3, 6, 7 | syl211anc 1225 |
1
![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 185 df-an 371 df-3an 967 |
This theorem is referenced by: rmob 3394 pntrmax 22947 paddasslem4 33806 4atexlemu 34047 4atexlemv 34048 cdleme20aN 34292 cdleme20g 34298 cdlemg9a 34615 cdlemg12a 34626 cdlemg17dALTN 34647 cdlemg18b 34662 cdlemg18c 34663 |
Copyright terms: Public domain | W3C validator |