Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sxbrsigalem5 Structured version   Unicode version

Theorem sxbrsigalem5 26840
Description: First direction for sxbrsiga 26842. (Contributed by Thierry Arnoux, 22-Sep-2017.) (Revised by Thierry Arnoux, 11-Oct-2017.)
Hypotheses
Ref Expression
sxbrsiga.0  |-  J  =  ( topGen `  ran  (,) )
dya2ioc.1  |-  I  =  ( x  e.  ZZ ,  n  e.  ZZ  |->  ( ( x  / 
( 2 ^ n
) ) [,) (
( x  +  1 )  /  ( 2 ^ n ) ) ) )
dya2ioc.2  |-  R  =  ( u  e.  ran  I ,  v  e.  ran  I  |->  ( u  X.  v ) )
Assertion
Ref Expression
sxbrsigalem5  |-  (sigaGen `  ( J  tX  J ) ) 
C_  (𝔅 ×s 𝔅 )
Distinct variable groups:    x, n    x, I    v, u, I, x    u, n, v    R, n, x    x, J, u, v
Allowed substitution hints:    R( v, u)    I( n)    J( n)

Proof of Theorem sxbrsigalem5
Dummy variables  e 
f  g are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sxbrsiga.0 . . . . 5  |-  J  =  ( topGen `  ran  (,) )
2 dya2ioc.1 . . . . 5  |-  I  =  ( x  e.  ZZ ,  n  e.  ZZ  |->  ( ( x  / 
( 2 ^ n
) ) [,) (
( x  +  1 )  /  ( 2 ^ n ) ) ) )
3 dya2ioc.2 . . . . 5  |-  R  =  ( u  e.  ran  I ,  v  e.  ran  I  |->  ( u  X.  v ) )
41, 2, 3dya2iocucvr 26836 . . . 4  |-  U. ran  R  =  ( RR  X.  RR )
5 br2base 26821 . . . 4  |-  U. ran  ( e  e. 𝔅 ,  f  e. 𝔅 
|->  ( e  X.  f
) )  =  ( RR  X.  RR )
64, 5eqtr4i 2483 . . 3  |-  U. ran  R  =  U. ran  (
e  e. 𝔅 ,  f  e. 𝔅 
|->  ( e  X.  f
) )
7 brsigarn 26736 . . . . . . 7  |- 𝔅  e.  (sigAlgebra `  RR )
87elexi 3081 . . . . . 6  |- 𝔅  e.  _V
98, 8mpt2ex 6753 . . . . 5  |-  ( e  e. 𝔅 ,  f  e. 𝔅 
|->  ( e  X.  f
) )  e.  _V
109rnex 6615 . . . 4  |-  ran  (
e  e. 𝔅 ,  f  e. 𝔅 
|->  ( e  X.  f
) )  e.  _V
111, 2dya2icobrsiga 26828 . . . . . . . . . 10  |-  ran  I  C_ 𝔅
1211sseli 3453 . . . . . . . . 9  |-  ( u  e.  ran  I  ->  u  e. 𝔅 )
1311sseli 3453 . . . . . . . . 9  |-  ( v  e.  ran  I  -> 
v  e. 𝔅 )
1412, 13anim12i 566 . . . . . . . 8  |-  ( ( u  e.  ran  I  /\  v  e.  ran  I )  ->  (
u  e. 𝔅  /\  v  e. 𝔅 ) )
1514anim1i 568 . . . . . . 7  |-  ( ( ( u  e.  ran  I  /\  v  e.  ran  I )  /\  g  =  ( u  X.  v ) )  -> 
( ( u  e. 𝔅  /\  v  e. 𝔅 )  /\  g  =  ( u  X.  v ) ) )
1615ssoprab2i 6282 . . . . . 6  |-  { <. <.
u ,  v >. ,  g >.  |  ( ( u  e.  ran  I  /\  v  e.  ran  I )  /\  g  =  ( u  X.  v ) ) } 
C_  { <. <. u ,  v >. ,  g
>.  |  ( (
u  e. 𝔅  /\  v  e. 𝔅 )  /\  g  =  ( u  X.  v
) ) }
17 df-mpt2 6198 . . . . . . 7  |-  ( u  e.  ran  I ,  v  e.  ran  I  |->  ( u  X.  v
) )  =  { <. <. u ,  v
>. ,  g >.  |  ( ( u  e. 
ran  I  /\  v  e.  ran  I )  /\  g  =  ( u  X.  v ) ) }
183, 17eqtri 2480 . . . . . 6  |-  R  =  { <. <. u ,  v
>. ,  g >.  |  ( ( u  e. 
ran  I  /\  v  e.  ran  I )  /\  g  =  ( u  X.  v ) ) }
19 xpeq1 4955 . . . . . . . 8  |-  ( e  =  u  ->  (
e  X.  f )  =  ( u  X.  f ) )
20 xpeq2 4956 . . . . . . . 8  |-  ( f  =  v  ->  (
u  X.  f )  =  ( u  X.  v ) )
2119, 20cbvmpt2v 6268 . . . . . . 7  |-  ( e  e. 𝔅 ,  f  e. 𝔅 
|->  ( e  X.  f
) )  =  ( u  e. 𝔅 ,  v  e. 𝔅 
|->  ( u  X.  v
) )
22 df-mpt2 6198 . . . . . . 7  |-  ( u  e. 𝔅 ,  v  e. 𝔅 
|->  ( u  X.  v
) )  =  { <. <. u ,  v
>. ,  g >.  |  ( ( u  e. 𝔅  /\  v  e. 𝔅 )  /\  g  =  ( u  X.  v ) ) }
2321, 22eqtri 2480 . . . . . 6  |-  ( e  e. 𝔅 ,  f  e. 𝔅 
|->  ( e  X.  f
) )  =  { <. <. u ,  v
>. ,  g >.  |  ( ( u  e. 𝔅  /\  v  e. 𝔅 )  /\  g  =  ( u  X.  v ) ) }
2416, 18, 233sstr4i 3496 . . . . 5  |-  R  C_  ( e  e. 𝔅 ,  f  e. 𝔅 
|->  ( e  X.  f
) )
25 rnss 5169 . . . . 5  |-  ( R 
C_  ( e  e. 𝔅 , 
f  e. 𝔅 
|->  ( e  X.  f
) )  ->  ran  R 
C_  ran  ( e  e. 𝔅 ,  f  e. 𝔅 
|->  ( e  X.  f
) ) )
2624, 25ax-mp 5 . . . 4  |-  ran  R  C_ 
ran  ( e  e. 𝔅 , 
f  e. 𝔅 
|->  ( e  X.  f
) )
27 sssigagen2 26727 . . . 4  |-  ( ( ran  ( e  e. 𝔅 , 
f  e. 𝔅 
|->  ( e  X.  f
) )  e.  _V  /\ 
ran  R  C_  ran  (
e  e. 𝔅 ,  f  e. 𝔅 
|->  ( e  X.  f
) ) )  ->  ran  R  C_  (sigaGen `  ran  ( e  e. 𝔅 ,  f  e. 𝔅 
|->  ( e  X.  f
) ) ) )
2810, 26, 27mp2an 672 . . 3  |-  ran  R  C_  (sigaGen `  ran  ( e  e. 𝔅 ,  f  e. 𝔅 
|->  ( e  X.  f
) ) )
29 sigagenss2 26731 . . 3  |-  ( ( U. ran  R  = 
U. ran  ( e  e. 𝔅 ,  f  e. 𝔅 
|->  ( e  X.  f
) )  /\  ran  R 
C_  (sigaGen `  ran  ( e  e. 𝔅 ,  f  e. 𝔅 
|->  ( e  X.  f
) ) )  /\  ran  ( e  e. 𝔅 ,  f  e. 𝔅 
|->  ( e  X.  f
) )  e.  _V )  ->  (sigaGen `  ran  R ) 
C_  (sigaGen `  ran  ( e  e. 𝔅 ,  f  e. 𝔅 
|->  ( e  X.  f
) ) ) )
306, 28, 10, 29mp3an 1315 . 2  |-  (sigaGen `  ran  R )  C_  (sigaGen `  ran  ( e  e. 𝔅 ,  f  e. 𝔅 
|->  ( e  X.  f
) ) )
311, 2, 3sxbrsigalem4 26839 . 2  |-  (sigaGen `  ( J  tX  J ) )  =  (sigaGen `  ran  R )
32 eqid 2451 . . . 4  |-  ran  (
e  e. 𝔅 ,  f  e. 𝔅 
|->  ( e  X.  f
) )  =  ran  ( e  e. 𝔅 ,  f  e. 𝔅 
|->  ( e  X.  f
) )
3332sxval 26742 . . 3  |-  ( (𝔅  e.  (sigAlgebra `
 RR )  /\ 𝔅  e.  (sigAlgebra `  RR ) )  -> 
(𝔅 ×s 𝔅 )  =  (sigaGen `  ran  ( e  e. 𝔅 ,  f  e. 𝔅 
|->  ( e  X.  f
) ) ) )
347, 7, 33mp2an 672 . 2  |-  (𝔅 ×s 𝔅 )  =  (sigaGen `  ran  ( e  e. 𝔅 ,  f  e. 𝔅 
|->  ( e  X.  f
) ) )
3530, 31, 343sstr4i 3496 1  |-  (sigaGen `  ( J  tX  J ) ) 
C_  (𝔅 ×s 𝔅 )
Colors of variables: wff setvar class
Syntax hints:    /\ wa 369    = wceq 1370    e. wcel 1758   _Vcvv 3071    C_ wss 3429   U.cuni 4192    X. cxp 4939   ran crn 4942   ` cfv 5519  (class class class)co 6193   {coprab 6194    |-> cmpt2 6195   RRcr 9385   1c1 9387    + caddc 9389    / cdiv 10097   2c2 10475   ZZcz 10750   (,)cioo 11404   [,)cico 11406   ^cexp 11975   topGenctg 14487    tX ctx 19258  sigAlgebracsiga 26688  sigaGencsigagen 26719  𝔅cbrsiga 26733   ×s csx 26740
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1952  ax-ext 2430  ax-rep 4504  ax-sep 4514  ax-nul 4522  ax-pow 4571  ax-pr 4632  ax-un 6475  ax-inf2 7951  ax-ac2 8736  ax-cnex 9442  ax-resscn 9443  ax-1cn 9444  ax-icn 9445  ax-addcl 9446  ax-addrcl 9447  ax-mulcl 9448  ax-mulrcl 9449  ax-mulcom 9450  ax-addass 9451  ax-mulass 9452  ax-distr 9453  ax-i2m1 9454  ax-1ne0 9455  ax-1rid 9456  ax-rnegex 9457  ax-rrecex 9458  ax-cnre 9459  ax-pre-lttri 9460  ax-pre-lttrn 9461  ax-pre-ltadd 9462  ax-pre-mulgt0 9463  ax-pre-sup 9464  ax-addf 9465  ax-mulf 9466
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-fal 1376  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2264  df-mo 2265  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2601  df-ne 2646  df-nel 2647  df-ral 2800  df-rex 2801  df-reu 2802  df-rmo 2803  df-rab 2804  df-v 3073  df-sbc 3288  df-csb 3390  df-dif 3432  df-un 3434  df-in 3436  df-ss 3443  df-pss 3445  df-nul 3739  df-if 3893  df-pw 3963  df-sn 3979  df-pr 3981  df-tp 3983  df-op 3985  df-uni 4193  df-int 4230  df-iun 4274  df-iin 4275  df-br 4394  df-opab 4452  df-mpt 4453  df-tr 4487  df-eprel 4733  df-id 4737  df-po 4742  df-so 4743  df-fr 4780  df-se 4781  df-we 4782  df-ord 4823  df-on 4824  df-lim 4825  df-suc 4826  df-xp 4947  df-rel 4948  df-cnv 4949  df-co 4950  df-dm 4951  df-rn 4952  df-res 4953  df-ima 4954  df-iota 5482  df-fun 5521  df-fn 5522  df-f 5523  df-f1 5524  df-fo 5525  df-f1o 5526  df-fv 5527  df-isom 5528  df-riota 6154  df-ov 6196  df-oprab 6197  df-mpt2 6198  df-of 6423  df-om 6580  df-1st 6680  df-2nd 6681  df-supp 6794  df-recs 6935  df-rdg 6969  df-1o 7023  df-2o 7024  df-oadd 7027  df-omul 7028  df-er 7204  df-map 7319  df-pm 7320  df-ixp 7367  df-en 7414  df-dom 7415  df-sdom 7416  df-fin 7417  df-fsupp 7725  df-fi 7765  df-sup 7795  df-oi 7828  df-card 8213  df-acn 8216  df-ac 8390  df-cda 8441  df-pnf 9524  df-mnf 9525  df-xr 9526  df-ltxr 9527  df-le 9528  df-sub 9701  df-neg 9702  df-div 10098  df-nn 10427  df-2 10484  df-3 10485  df-4 10486  df-5 10487  df-6 10488  df-7 10489  df-8 10490  df-9 10491  df-10 10492  df-n0 10684  df-z 10751  df-dec 10860  df-uz 10966  df-q 11058  df-rp 11096  df-xneg 11193  df-xadd 11194  df-xmul 11195  df-ioo 11408  df-ioc 11409  df-ico 11410  df-icc 11411  df-fz 11548  df-fzo 11659  df-fl 11752  df-mod 11819  df-seq 11917  df-exp 11976  df-fac 12162  df-bc 12189  df-hash 12214  df-shft 12667  df-cj 12699  df-re 12700  df-im 12701  df-sqr 12835  df-abs 12836  df-limsup 13060  df-clim 13077  df-rlim 13078  df-sum 13275  df-ef 13464  df-sin 13466  df-cos 13467  df-pi 13469  df-struct 14287  df-ndx 14288  df-slot 14289  df-base 14290  df-sets 14291  df-ress 14292  df-plusg 14362  df-mulr 14363  df-starv 14364  df-sca 14365  df-vsca 14366  df-ip 14367  df-tset 14368  df-ple 14369  df-ds 14371  df-unif 14372  df-hom 14373  df-cco 14374  df-rest 14472  df-topn 14473  df-0g 14491  df-gsum 14492  df-topgen 14493  df-pt 14494  df-prds 14497  df-xrs 14551  df-qtop 14556  df-imas 14557  df-xps 14559  df-mre 14635  df-mrc 14636  df-acs 14638  df-mnd 15526  df-submnd 15576  df-mulg 15659  df-cntz 15946  df-cmn 16392  df-psmet 17927  df-xmet 17928  df-met 17929  df-bl 17930  df-mopn 17931  df-fbas 17932  df-fg 17933  df-cnfld 17937  df-refld 18153  df-top 18628  df-bases 18630  df-topon 18631  df-topsp 18632  df-cld 18748  df-ntr 18749  df-cls 18750  df-nei 18827  df-lp 18865  df-perf 18866  df-cn 18956  df-cnp 18957  df-haus 19044  df-cmp 19115  df-tx 19260  df-hmeo 19453  df-fil 19544  df-fm 19636  df-flim 19637  df-flf 19638  df-fcls 19639  df-xms 20020  df-ms 20021  df-tms 20022  df-cncf 20579  df-cfil 20891  df-cmet 20893  df-cms 20971  df-limc 21467  df-dv 21468  df-log 22134  df-cxp 22135  df-logb 26588  df-siga 26689  df-sigagen 26720  df-brsiga 26734  df-sx 26741
This theorem is referenced by:  sxbrsigalem6  26841
  Copyright terms: Public domain W3C validator