MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  swrdcl Structured version   Unicode version

Theorem swrdcl 12620
Description: Closure of the subword extractor. (Contributed by Stefan O'Rear, 16-Aug-2015.) (Revised by Mario Carneiro, 26-Feb-2016.)
Assertion
Ref Expression
swrdcl  |-  ( S  e. Word  A  ->  ( S substr  <. F ,  L >. )  e. Word  A )

Proof of Theorem swrdcl
Dummy variables  s 
b  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq1 2513 . 2  |-  ( ( S substr  <. F ,  L >. )  =  (/)  ->  (
( S substr  <. F ,  L >. )  e. Word  A  <->  (/)  e. Word  A ) )
2 n0 3776 . . . 4  |-  ( ( S substr  <. F ,  L >. )  =/=  (/)  <->  E. x  x  e.  ( S substr  <. F ,  L >. ) )
3 df-substr 12520 . . . . . . 7  |- substr  =  ( s  e.  _V , 
b  e.  ( ZZ 
X.  ZZ )  |->  if ( ( ( 1st `  b )..^ ( 2nd `  b ) )  C_  dom  s ,  ( x  e.  ( 0..^ ( ( 2nd `  b
)  -  ( 1st `  b ) ) ) 
|->  ( s `  (
x  +  ( 1st `  b ) ) ) ) ,  (/) ) )
43elmpt2cl2 6500 . . . . . 6  |-  ( x  e.  ( S substr  <. F ,  L >. )  ->  <. F ,  L >.  e.  ( ZZ 
X.  ZZ ) )
5 opelxp 5015 . . . . . 6  |-  ( <. F ,  L >.  e.  ( ZZ  X.  ZZ ) 
<->  ( F  e.  ZZ  /\  L  e.  ZZ ) )
64, 5sylib 196 . . . . 5  |-  ( x  e.  ( S substr  <. F ,  L >. )  ->  ( F  e.  ZZ  /\  L  e.  ZZ ) )
76exlimiv 1707 . . . 4  |-  ( E. x  x  e.  ( S substr  <. F ,  L >. )  ->  ( F  e.  ZZ  /\  L  e.  ZZ ) )
82, 7sylbi 195 . . 3  |-  ( ( S substr  <. F ,  L >. )  =/=  (/)  ->  ( F  e.  ZZ  /\  L  e.  ZZ ) )
9 swrdval 12618 . . . . 5  |-  ( ( S  e. Word  A  /\  F  e.  ZZ  /\  L  e.  ZZ )  ->  ( S substr  <. F ,  L >. )  =  if ( ( F..^ L ) 
C_  dom  S , 
( x  e.  ( 0..^ ( L  -  F ) )  |->  ( S `  ( x  +  F ) ) ) ,  (/) ) )
10 wrdf 12527 . . . . . . . . . . 11  |-  ( S  e. Word  A  ->  S : ( 0..^ (
# `  S )
) --> A )
11103ad2ant1 1016 . . . . . . . . . 10  |-  ( ( S  e. Word  A  /\  F  e.  ZZ  /\  L  e.  ZZ )  ->  S : ( 0..^ (
# `  S )
) --> A )
1211ad2antrr 725 . . . . . . . . 9  |-  ( ( ( ( S  e. Word  A  /\  F  e.  ZZ  /\  L  e.  ZZ )  /\  ( F..^ L
)  C_  dom  S )  /\  x  e.  ( 0..^ ( L  -  F ) ) )  ->  S : ( 0..^ ( # `  S
) ) --> A )
13 simplr 754 . . . . . . . . . . 11  |-  ( ( ( ( S  e. Word  A  /\  F  e.  ZZ  /\  L  e.  ZZ )  /\  ( F..^ L
)  C_  dom  S )  /\  x  e.  ( 0..^ ( L  -  F ) ) )  ->  ( F..^ L
)  C_  dom  S )
14 simpr 461 . . . . . . . . . . . 12  |-  ( ( ( ( S  e. Word  A  /\  F  e.  ZZ  /\  L  e.  ZZ )  /\  ( F..^ L
)  C_  dom  S )  /\  x  e.  ( 0..^ ( L  -  F ) ) )  ->  x  e.  ( 0..^ ( L  -  F ) ) )
15 simpll3 1036 . . . . . . . . . . . 12  |-  ( ( ( ( S  e. Word  A  /\  F  e.  ZZ  /\  L  e.  ZZ )  /\  ( F..^ L
)  C_  dom  S )  /\  x  e.  ( 0..^ ( L  -  F ) ) )  ->  L  e.  ZZ )
16 simpll2 1035 . . . . . . . . . . . 12  |-  ( ( ( ( S  e. Word  A  /\  F  e.  ZZ  /\  L  e.  ZZ )  /\  ( F..^ L
)  C_  dom  S )  /\  x  e.  ( 0..^ ( L  -  F ) ) )  ->  F  e.  ZZ )
17 fzoaddel2 11848 . . . . . . . . . . . 12  |-  ( ( x  e.  ( 0..^ ( L  -  F
) )  /\  L  e.  ZZ  /\  F  e.  ZZ )  ->  (
x  +  F )  e.  ( F..^ L
) )
1814, 15, 16, 17syl3anc 1227 . . . . . . . . . . 11  |-  ( ( ( ( S  e. Word  A  /\  F  e.  ZZ  /\  L  e.  ZZ )  /\  ( F..^ L
)  C_  dom  S )  /\  x  e.  ( 0..^ ( L  -  F ) ) )  ->  ( x  +  F )  e.  ( F..^ L ) )
1913, 18sseldd 3487 . . . . . . . . . 10  |-  ( ( ( ( S  e. Word  A  /\  F  e.  ZZ  /\  L  e.  ZZ )  /\  ( F..^ L
)  C_  dom  S )  /\  x  e.  ( 0..^ ( L  -  F ) ) )  ->  ( x  +  F )  e.  dom  S )
20 fdm 5721 . . . . . . . . . . 11  |-  ( S : ( 0..^ (
# `  S )
) --> A  ->  dom  S  =  ( 0..^ (
# `  S )
) )
2112, 20syl 16 . . . . . . . . . 10  |-  ( ( ( ( S  e. Word  A  /\  F  e.  ZZ  /\  L  e.  ZZ )  /\  ( F..^ L
)  C_  dom  S )  /\  x  e.  ( 0..^ ( L  -  F ) ) )  ->  dom  S  =  ( 0..^ ( # `  S
) ) )
2219, 21eleqtrd 2531 . . . . . . . . 9  |-  ( ( ( ( S  e. Word  A  /\  F  e.  ZZ  /\  L  e.  ZZ )  /\  ( F..^ L
)  C_  dom  S )  /\  x  e.  ( 0..^ ( L  -  F ) ) )  ->  ( x  +  F )  e.  ( 0..^ ( # `  S
) ) )
2312, 22ffvelrnd 6013 . . . . . . . 8  |-  ( ( ( ( S  e. Word  A  /\  F  e.  ZZ  /\  L  e.  ZZ )  /\  ( F..^ L
)  C_  dom  S )  /\  x  e.  ( 0..^ ( L  -  F ) ) )  ->  ( S `  ( x  +  F
) )  e.  A
)
24 eqid 2441 . . . . . . . 8  |-  ( x  e.  ( 0..^ ( L  -  F ) )  |->  ( S `  ( x  +  F
) ) )  =  ( x  e.  ( 0..^ ( L  -  F ) )  |->  ( S `  ( x  +  F ) ) )
2523, 24fmptd 6036 . . . . . . 7  |-  ( ( ( S  e. Word  A  /\  F  e.  ZZ  /\  L  e.  ZZ )  /\  ( F..^ L
)  C_  dom  S )  ->  ( x  e.  ( 0..^ ( L  -  F ) ) 
|->  ( S `  (
x  +  F ) ) ) : ( 0..^ ( L  -  F ) ) --> A )
26 iswrdi 12526 . . . . . . 7  |-  ( ( x  e.  ( 0..^ ( L  -  F
) )  |->  ( S `
 ( x  +  F ) ) ) : ( 0..^ ( L  -  F ) ) --> A  ->  (
x  e.  ( 0..^ ( L  -  F
) )  |->  ( S `
 ( x  +  F ) ) )  e. Word  A )
2725, 26syl 16 . . . . . 6  |-  ( ( ( S  e. Word  A  /\  F  e.  ZZ  /\  L  e.  ZZ )  /\  ( F..^ L
)  C_  dom  S )  ->  ( x  e.  ( 0..^ ( L  -  F ) ) 
|->  ( S `  (
x  +  F ) ) )  e. Word  A
)
28 wrd0 12539 . . . . . . 7  |-  (/)  e. Word  A
2928a1i 11 . . . . . 6  |-  ( ( ( S  e. Word  A  /\  F  e.  ZZ  /\  L  e.  ZZ )  /\  -.  ( F..^ L )  C_  dom  S )  ->  (/)  e. Word  A
)
3027, 29ifclda 3954 . . . . 5  |-  ( ( S  e. Word  A  /\  F  e.  ZZ  /\  L  e.  ZZ )  ->  if ( ( F..^ L
)  C_  dom  S , 
( x  e.  ( 0..^ ( L  -  F ) )  |->  ( S `  ( x  +  F ) ) ) ,  (/) )  e. Word  A )
319, 30eqeltrd 2529 . . . 4  |-  ( ( S  e. Word  A  /\  F  e.  ZZ  /\  L  e.  ZZ )  ->  ( S substr  <. F ,  L >. )  e. Word  A )
32313expb 1196 . . 3  |-  ( ( S  e. Word  A  /\  ( F  e.  ZZ  /\  L  e.  ZZ ) )  ->  ( S substr  <. F ,  L >. )  e. Word  A )
338, 32sylan2 474 . 2  |-  ( ( S  e. Word  A  /\  ( S substr  <. F ,  L >. )  =/=  (/) )  -> 
( S substr  <. F ,  L >. )  e. Word  A
)
3428a1i 11 . 2  |-  ( S  e. Word  A  ->  (/)  e. Word  A
)
351, 33, 34pm2.61ne 2756 1  |-  ( S  e. Word  A  ->  ( S substr  <. F ,  L >. )  e. Word  A )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 369    /\ w3a 972    = wceq 1381   E.wex 1597    e. wcel 1802    =/= wne 2636   _Vcvv 3093    C_ wss 3458   (/)c0 3767   ifcif 3922   <.cop 4016    |-> cmpt 4491    X. cxp 4983   dom cdm 4985   -->wf 5570   ` cfv 5574  (class class class)co 6277   1stc1st 6779   2ndc2nd 6780   0cc0 9490    + caddc 9493    - cmin 9805   ZZcz 10865  ..^cfzo 11798   #chash 12379  Word cword 12508   substr csubstr 12512
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1603  ax-4 1616  ax-5 1689  ax-6 1732  ax-7 1774  ax-8 1804  ax-9 1806  ax-10 1821  ax-11 1826  ax-12 1838  ax-13 1983  ax-ext 2419  ax-rep 4544  ax-sep 4554  ax-nul 4562  ax-pow 4611  ax-pr 4672  ax-un 6573  ax-cnex 9546  ax-resscn 9547  ax-1cn 9548  ax-icn 9549  ax-addcl 9550  ax-addrcl 9551  ax-mulcl 9552  ax-mulrcl 9553  ax-mulcom 9554  ax-addass 9555  ax-mulass 9556  ax-distr 9557  ax-i2m1 9558  ax-1ne0 9559  ax-1rid 9560  ax-rnegex 9561  ax-rrecex 9562  ax-cnre 9563  ax-pre-lttri 9564  ax-pre-lttrn 9565  ax-pre-ltadd 9566  ax-pre-mulgt0 9567
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 973  df-3an 974  df-tru 1384  df-ex 1598  df-nf 1602  df-sb 1725  df-eu 2270  df-mo 2271  df-clab 2427  df-cleq 2433  df-clel 2436  df-nfc 2591  df-ne 2638  df-nel 2639  df-ral 2796  df-rex 2797  df-reu 2798  df-rmo 2799  df-rab 2800  df-v 3095  df-sbc 3312  df-csb 3418  df-dif 3461  df-un 3463  df-in 3465  df-ss 3472  df-pss 3474  df-nul 3768  df-if 3923  df-pw 3995  df-sn 4011  df-pr 4013  df-tp 4015  df-op 4017  df-uni 4231  df-int 4268  df-iun 4313  df-br 4434  df-opab 4492  df-mpt 4493  df-tr 4527  df-eprel 4777  df-id 4781  df-po 4786  df-so 4787  df-fr 4824  df-we 4826  df-ord 4867  df-on 4868  df-lim 4869  df-suc 4870  df-xp 4991  df-rel 4992  df-cnv 4993  df-co 4994  df-dm 4995  df-rn 4996  df-res 4997  df-ima 4998  df-iota 5537  df-fun 5576  df-fn 5577  df-f 5578  df-f1 5579  df-fo 5580  df-f1o 5581  df-fv 5582  df-riota 6238  df-ov 6280  df-oprab 6281  df-mpt2 6282  df-om 6682  df-1st 6781  df-2nd 6782  df-recs 7040  df-rdg 7074  df-1o 7128  df-oadd 7132  df-er 7309  df-en 7515  df-dom 7516  df-sdom 7517  df-fin 7518  df-card 8318  df-cda 8546  df-pnf 9628  df-mnf 9629  df-xr 9630  df-ltxr 9631  df-le 9632  df-sub 9807  df-neg 9808  df-nn 10538  df-2 10595  df-n0 10797  df-z 10866  df-uz 11086  df-fz 11677  df-fzo 11799  df-hash 12380  df-word 12516  df-substr 12520
This theorem is referenced by:  swrdid  12626  swrdf  12627  addlenswrd  12636  swrd0fvlsw  12644  swrdeq  12645  swrdsymbeq  12646  swrdspsleq  12647  swrds1  12650  ccatswrd  12655  swrdccat2  12657  swrdswrd  12659  lenrevcctswrd  12666  wrdind  12676  wrd2ind  12677  swrdccatin12  12690  swrdccat  12692  swrdccat3a  12693  swrdccat3blem  12694  splcl  12702  spllen  12704  splfv1  12705  splfv2a  12706  splval2  12707  cshwcl  12743  cshwlen  12744  cshwidxmod  12748  gsumspl  15881  psgnunilem5  16388  psgnunilem2  16389  efgsres  16625  efgredleme  16630  efgredlemc  16632  efgcpbllemb  16642  frgpuplem  16659  wwlknred  24588  wwlkextwrd  24593  wwlkm1edg  24600  clwlkisclwwlk  24654  clwwlkf  24659  wwlksubclwwlk  24669  clwlkfclwwlk  24709  extwwlkfablem2  24943  wrdsplex  28361  signsvtn0  28393  signstfveq0  28400
  Copyright terms: Public domain W3C validator