MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  swrdcl Structured version   Unicode version

Theorem swrdcl 12655
Description: Closure of the subword extractor. (Contributed by Stefan O'Rear, 16-Aug-2015.) (Revised by Mario Carneiro, 26-Feb-2016.)
Assertion
Ref Expression
swrdcl  |-  ( S  e. Word  A  ->  ( S substr  <. F ,  L >. )  e. Word  A )

Proof of Theorem swrdcl
Dummy variables  s 
b  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq1 2529 . 2  |-  ( ( S substr  <. F ,  L >. )  =  (/)  ->  (
( S substr  <. F ,  L >. )  e. Word  A  <->  (/)  e. Word  A ) )
2 n0 3803 . . . 4  |-  ( ( S substr  <. F ,  L >. )  =/=  (/)  <->  E. x  x  e.  ( S substr  <. F ,  L >. ) )
3 df-substr 12550 . . . . . . 7  |- substr  =  ( s  e.  _V , 
b  e.  ( ZZ 
X.  ZZ )  |->  if ( ( ( 1st `  b )..^ ( 2nd `  b ) )  C_  dom  s ,  ( x  e.  ( 0..^ ( ( 2nd `  b
)  -  ( 1st `  b ) ) ) 
|->  ( s `  (
x  +  ( 1st `  b ) ) ) ) ,  (/) ) )
43elmpt2cl2 6518 . . . . . 6  |-  ( x  e.  ( S substr  <. F ,  L >. )  ->  <. F ,  L >.  e.  ( ZZ 
X.  ZZ ) )
5 opelxp 5038 . . . . . 6  |-  ( <. F ,  L >.  e.  ( ZZ  X.  ZZ ) 
<->  ( F  e.  ZZ  /\  L  e.  ZZ ) )
64, 5sylib 196 . . . . 5  |-  ( x  e.  ( S substr  <. F ,  L >. )  ->  ( F  e.  ZZ  /\  L  e.  ZZ ) )
76exlimiv 1723 . . . 4  |-  ( E. x  x  e.  ( S substr  <. F ,  L >. )  ->  ( F  e.  ZZ  /\  L  e.  ZZ ) )
82, 7sylbi 195 . . 3  |-  ( ( S substr  <. F ,  L >. )  =/=  (/)  ->  ( F  e.  ZZ  /\  L  e.  ZZ ) )
9 swrdval 12653 . . . . 5  |-  ( ( S  e. Word  A  /\  F  e.  ZZ  /\  L  e.  ZZ )  ->  ( S substr  <. F ,  L >. )  =  if ( ( F..^ L ) 
C_  dom  S , 
( x  e.  ( 0..^ ( L  -  F ) )  |->  ( S `  ( x  +  F ) ) ) ,  (/) ) )
10 wrdf 12558 . . . . . . . . . . 11  |-  ( S  e. Word  A  ->  S : ( 0..^ (
# `  S )
) --> A )
11103ad2ant1 1017 . . . . . . . . . 10  |-  ( ( S  e. Word  A  /\  F  e.  ZZ  /\  L  e.  ZZ )  ->  S : ( 0..^ (
# `  S )
) --> A )
1211ad2antrr 725 . . . . . . . . 9  |-  ( ( ( ( S  e. Word  A  /\  F  e.  ZZ  /\  L  e.  ZZ )  /\  ( F..^ L
)  C_  dom  S )  /\  x  e.  ( 0..^ ( L  -  F ) ) )  ->  S : ( 0..^ ( # `  S
) ) --> A )
13 simplr 755 . . . . . . . . . . 11  |-  ( ( ( ( S  e. Word  A  /\  F  e.  ZZ  /\  L  e.  ZZ )  /\  ( F..^ L
)  C_  dom  S )  /\  x  e.  ( 0..^ ( L  -  F ) ) )  ->  ( F..^ L
)  C_  dom  S )
14 simpr 461 . . . . . . . . . . . 12  |-  ( ( ( ( S  e. Word  A  /\  F  e.  ZZ  /\  L  e.  ZZ )  /\  ( F..^ L
)  C_  dom  S )  /\  x  e.  ( 0..^ ( L  -  F ) ) )  ->  x  e.  ( 0..^ ( L  -  F ) ) )
15 simpll3 1037 . . . . . . . . . . . 12  |-  ( ( ( ( S  e. Word  A  /\  F  e.  ZZ  /\  L  e.  ZZ )  /\  ( F..^ L
)  C_  dom  S )  /\  x  e.  ( 0..^ ( L  -  F ) ) )  ->  L  e.  ZZ )
16 simpll2 1036 . . . . . . . . . . . 12  |-  ( ( ( ( S  e. Word  A  /\  F  e.  ZZ  /\  L  e.  ZZ )  /\  ( F..^ L
)  C_  dom  S )  /\  x  e.  ( 0..^ ( L  -  F ) ) )  ->  F  e.  ZZ )
17 fzoaddel2 11875 . . . . . . . . . . . 12  |-  ( ( x  e.  ( 0..^ ( L  -  F
) )  /\  L  e.  ZZ  /\  F  e.  ZZ )  ->  (
x  +  F )  e.  ( F..^ L
) )
1814, 15, 16, 17syl3anc 1228 . . . . . . . . . . 11  |-  ( ( ( ( S  e. Word  A  /\  F  e.  ZZ  /\  L  e.  ZZ )  /\  ( F..^ L
)  C_  dom  S )  /\  x  e.  ( 0..^ ( L  -  F ) ) )  ->  ( x  +  F )  e.  ( F..^ L ) )
1913, 18sseldd 3500 . . . . . . . . . 10  |-  ( ( ( ( S  e. Word  A  /\  F  e.  ZZ  /\  L  e.  ZZ )  /\  ( F..^ L
)  C_  dom  S )  /\  x  e.  ( 0..^ ( L  -  F ) ) )  ->  ( x  +  F )  e.  dom  S )
20 fdm 5741 . . . . . . . . . . 11  |-  ( S : ( 0..^ (
# `  S )
) --> A  ->  dom  S  =  ( 0..^ (
# `  S )
) )
2112, 20syl 16 . . . . . . . . . 10  |-  ( ( ( ( S  e. Word  A  /\  F  e.  ZZ  /\  L  e.  ZZ )  /\  ( F..^ L
)  C_  dom  S )  /\  x  e.  ( 0..^ ( L  -  F ) ) )  ->  dom  S  =  ( 0..^ ( # `  S
) ) )
2219, 21eleqtrd 2547 . . . . . . . . 9  |-  ( ( ( ( S  e. Word  A  /\  F  e.  ZZ  /\  L  e.  ZZ )  /\  ( F..^ L
)  C_  dom  S )  /\  x  e.  ( 0..^ ( L  -  F ) ) )  ->  ( x  +  F )  e.  ( 0..^ ( # `  S
) ) )
2312, 22ffvelrnd 6033 . . . . . . . 8  |-  ( ( ( ( S  e. Word  A  /\  F  e.  ZZ  /\  L  e.  ZZ )  /\  ( F..^ L
)  C_  dom  S )  /\  x  e.  ( 0..^ ( L  -  F ) ) )  ->  ( S `  ( x  +  F
) )  e.  A
)
24 eqid 2457 . . . . . . . 8  |-  ( x  e.  ( 0..^ ( L  -  F ) )  |->  ( S `  ( x  +  F
) ) )  =  ( x  e.  ( 0..^ ( L  -  F ) )  |->  ( S `  ( x  +  F ) ) )
2523, 24fmptd 6056 . . . . . . 7  |-  ( ( ( S  e. Word  A  /\  F  e.  ZZ  /\  L  e.  ZZ )  /\  ( F..^ L
)  C_  dom  S )  ->  ( x  e.  ( 0..^ ( L  -  F ) ) 
|->  ( S `  (
x  +  F ) ) ) : ( 0..^ ( L  -  F ) ) --> A )
26 iswrdi 12557 . . . . . . 7  |-  ( ( x  e.  ( 0..^ ( L  -  F
) )  |->  ( S `
 ( x  +  F ) ) ) : ( 0..^ ( L  -  F ) ) --> A  ->  (
x  e.  ( 0..^ ( L  -  F
) )  |->  ( S `
 ( x  +  F ) ) )  e. Word  A )
2725, 26syl 16 . . . . . 6  |-  ( ( ( S  e. Word  A  /\  F  e.  ZZ  /\  L  e.  ZZ )  /\  ( F..^ L
)  C_  dom  S )  ->  ( x  e.  ( 0..^ ( L  -  F ) ) 
|->  ( S `  (
x  +  F ) ) )  e. Word  A
)
28 wrd0 12573 . . . . . . 7  |-  (/)  e. Word  A
2928a1i 11 . . . . . 6  |-  ( ( ( S  e. Word  A  /\  F  e.  ZZ  /\  L  e.  ZZ )  /\  -.  ( F..^ L )  C_  dom  S )  ->  (/)  e. Word  A
)
3027, 29ifclda 3976 . . . . 5  |-  ( ( S  e. Word  A  /\  F  e.  ZZ  /\  L  e.  ZZ )  ->  if ( ( F..^ L
)  C_  dom  S , 
( x  e.  ( 0..^ ( L  -  F ) )  |->  ( S `  ( x  +  F ) ) ) ,  (/) )  e. Word  A )
319, 30eqeltrd 2545 . . . 4  |-  ( ( S  e. Word  A  /\  F  e.  ZZ  /\  L  e.  ZZ )  ->  ( S substr  <. F ,  L >. )  e. Word  A )
32313expb 1197 . . 3  |-  ( ( S  e. Word  A  /\  ( F  e.  ZZ  /\  L  e.  ZZ ) )  ->  ( S substr  <. F ,  L >. )  e. Word  A )
338, 32sylan2 474 . 2  |-  ( ( S  e. Word  A  /\  ( S substr  <. F ,  L >. )  =/=  (/) )  -> 
( S substr  <. F ,  L >. )  e. Word  A
)
3428a1i 11 . 2  |-  ( S  e. Word  A  ->  (/)  e. Word  A
)
351, 33, 34pm2.61ne 2772 1  |-  ( S  e. Word  A  ->  ( S substr  <. F ,  L >. )  e. Word  A )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 369    /\ w3a 973    = wceq 1395   E.wex 1613    e. wcel 1819    =/= wne 2652   _Vcvv 3109    C_ wss 3471   (/)c0 3793   ifcif 3944   <.cop 4038    |-> cmpt 4515    X. cxp 5006   dom cdm 5008   -->wf 5590   ` cfv 5594  (class class class)co 6296   1stc1st 6797   2ndc2nd 6798   0cc0 9509    + caddc 9512    - cmin 9824   ZZcz 10885  ..^cfzo 11821   #chash 12408  Word cword 12538   substr csubstr 12542
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-8 1821  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-rep 4568  ax-sep 4578  ax-nul 4586  ax-pow 4634  ax-pr 4695  ax-un 6591  ax-cnex 9565  ax-resscn 9566  ax-1cn 9567  ax-icn 9568  ax-addcl 9569  ax-addrcl 9570  ax-mulcl 9571  ax-mulrcl 9572  ax-mulcom 9573  ax-addass 9574  ax-mulass 9575  ax-distr 9576  ax-i2m1 9577  ax-1ne0 9578  ax-1rid 9579  ax-rnegex 9580  ax-rrecex 9581  ax-cnre 9582  ax-pre-lttri 9583  ax-pre-lttrn 9584  ax-pre-ltadd 9585  ax-pre-mulgt0 9586
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-nel 2655  df-ral 2812  df-rex 2813  df-reu 2814  df-rmo 2815  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-pss 3487  df-nul 3794  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-tp 4037  df-op 4039  df-uni 4252  df-int 4289  df-iun 4334  df-br 4457  df-opab 4516  df-mpt 4517  df-tr 4551  df-eprel 4800  df-id 4804  df-po 4809  df-so 4810  df-fr 4847  df-we 4849  df-ord 4890  df-on 4891  df-lim 4892  df-suc 4893  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-rn 5019  df-res 5020  df-ima 5021  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-riota 6258  df-ov 6299  df-oprab 6300  df-mpt2 6301  df-om 6700  df-1st 6799  df-2nd 6800  df-recs 7060  df-rdg 7094  df-1o 7148  df-oadd 7152  df-er 7329  df-en 7536  df-dom 7537  df-sdom 7538  df-fin 7539  df-card 8337  df-cda 8565  df-pnf 9647  df-mnf 9648  df-xr 9649  df-ltxr 9650  df-le 9651  df-sub 9826  df-neg 9827  df-nn 10557  df-2 10615  df-n0 10817  df-z 10886  df-uz 11107  df-fz 11698  df-fzo 11822  df-hash 12409  df-word 12546  df-substr 12550
This theorem is referenced by:  swrdf  12661  addlenswrd  12674  swrd0fvlsw  12679  swrdeq  12680  swrdsymbeq  12681  swrdspsleq  12686  swrds1  12688  ccatswrd  12693  swrdccat2  12695  swrdswrd  12697  lenrevcctswrd  12704  wrdind  12714  wrd2ind  12715  swrdccatin12  12728  swrdccat  12730  swrdccat3a  12731  swrdccat3blem  12732  splcl  12740  spllen  12742  splfv1  12743  splfv2a  12744  splval2  12745  cshwcl  12781  cshwlen  12782  cshwidxmod  12786  gsumspl  16139  psgnunilem5  16646  psgnunilem2  16647  efgsres  16883  efgredleme  16888  efgredlemc  16890  efgcpbllemb  16900  frgpuplem  16917  wwlknred  24850  wwlkextwrd  24855  wwlkm1edg  24862  clwlkisclwwlk  24916  clwwlkf  24921  wwlksubclwwlk  24931  clwlkfclwwlk  24971  extwwlkfablem2  25205  wrdsplex  28692  signsvtn0  28724  signstfveq0  28731  pfxcl  32503  ccatpfx  32527  pfxswrd  32531  lenrevpfxcctswrd  32537  pfxccatin12  32543
  Copyright terms: Public domain W3C validator