MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  swrdccatin12lem3 Structured version   Unicode version

Theorem swrdccatin12lem3 12365
Description: Lemma 3 for swrdccatin12 12366. (Contributed by AV, 30-Mar-2018.) (Revised by AV, 27-May-2018.)
Hypothesis
Ref Expression
swrdccatin12.l  |-  L  =  ( # `  A
)
Assertion
Ref Expression
swrdccatin12lem3  |-  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  ( M  e.  ( 0 ... L
)  /\  N  e.  ( L ... ( L  +  ( # `  B
) ) ) ) )  ->  ( ( K  e.  ( 0..^ ( N  -  M
) )  /\  K  e.  ( 0..^ ( L  -  M ) ) )  ->  ( (
( A concat  B ) substr  <. M ,  N >. ) `
 K )  =  ( ( A substr  <. M ,  L >. ) `  K
) ) )

Proof of Theorem swrdccatin12lem3
StepHypRef Expression
1 simpll 746 . . . . 5  |-  ( ( ( ( A  e. Word  V  /\  B  e. Word  V
)  /\  ( M  e.  ( 0 ... L
)  /\  N  e.  ( L ... ( L  +  ( # `  B
) ) ) ) )  /\  ( K  e.  ( 0..^ ( N  -  M ) )  /\  K  e.  ( 0..^ ( L  -  M ) ) ) )  ->  ( A  e. Word  V  /\  B  e. Word  V ) )
2 elfzo0 11571 . . . . . . . . 9  |-  ( K  e.  ( 0..^ ( L  -  M ) )  <->  ( K  e. 
NN0  /\  ( L  -  M )  e.  NN  /\  K  <  ( L  -  M ) ) )
3 swrdccatin12.l . . . . . . . . . . . . 13  |-  L  =  ( # `  A
)
4 lencl 12233 . . . . . . . . . . . . 13  |-  ( A  e. Word  V  ->  ( # `
 A )  e. 
NN0 )
5 elfz2nn0 11467 . . . . . . . . . . . . . . . . . 18  |-  ( M  e.  ( 0 ... L )  <->  ( M  e.  NN0  /\  L  e. 
NN0  /\  M  <_  L ) )
6 nn0addcl 10603 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( K  e.  NN0  /\  M  e.  NN0 )  -> 
( K  +  M
)  e.  NN0 )
76ex 434 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( K  e.  NN0  ->  ( M  e.  NN0  ->  ( K  +  M )  e. 
NN0 ) )
873ad2ant1 1002 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( K  e.  NN0  /\  ( L  -  M
)  e.  NN  /\  K  <  ( L  -  M ) )  -> 
( M  e.  NN0  ->  ( K  +  M
)  e.  NN0 )
)
98com12 31 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( M  e.  NN0  ->  ( ( K  e.  NN0  /\  ( L  -  M
)  e.  NN  /\  K  <  ( L  -  M ) )  -> 
( K  +  M
)  e.  NN0 )
)
1093ad2ant1 1002 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( M  e.  NN0  /\  L  e.  NN0  /\  M  <_  L )  ->  (
( K  e.  NN0  /\  ( L  -  M
)  e.  NN  /\  K  <  ( L  -  M ) )  -> 
( K  +  M
)  e.  NN0 )
)
1110imp 429 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( M  e.  NN0  /\  L  e.  NN0  /\  M  <_  L )  /\  ( K  e.  NN0  /\  ( L  -  M
)  e.  NN  /\  K  <  ( L  -  M ) ) )  ->  ( K  +  M )  e.  NN0 )
12 elnnz 10644 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( L  -  M )  e.  NN  <->  ( ( L  -  M )  e.  ZZ  /\  0  < 
( L  -  M
) ) )
13 nn0re 10576 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( M  e.  NN0  ->  M  e.  RR )
14 nn0re 10576 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( L  e.  NN0  ->  L  e.  RR )
15 posdif 9820 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( M  e.  RR  /\  L  e.  RR )  ->  ( M  <  L  <->  0  <  ( L  -  M ) ) )
1613, 14, 15syl2an 474 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( M  e.  NN0  /\  L  e.  NN0 )  -> 
( M  <  L  <->  0  <  ( L  -  M ) ) )
17 elnn0z 10647 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( M  e.  NN0  <->  ( M  e.  ZZ  /\  0  <_  M ) )
18 0red 9375 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  |-  ( ( M  e.  ZZ  /\  L  e.  NN0 )  -> 
0  e.  RR )
19 zre 10638 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  |-  ( M  e.  ZZ  ->  M  e.  RR )
2019adantr 462 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  |-  ( ( M  e.  ZZ  /\  L  e.  NN0 )  ->  M  e.  RR )
2114adantl 463 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  |-  ( ( M  e.  ZZ  /\  L  e.  NN0 )  ->  L  e.  RR )
22 lelttr 9453 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  |-  ( ( 0  e.  RR  /\  M  e.  RR  /\  L  e.  RR )  ->  (
( 0  <_  M  /\  M  <  L )  ->  0  <  L
) )
2318, 20, 21, 22syl3anc 1211 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  |-  ( ( M  e.  ZZ  /\  L  e.  NN0 )  -> 
( ( 0  <_  M  /\  M  <  L
)  ->  0  <  L ) )
24 nn0z 10657 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  |-  ( L  e.  NN0  ->  L  e.  ZZ )
2524anim1i 563 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  |-  ( ( L  e.  NN0  /\  0  <  L )  -> 
( L  e.  ZZ  /\  0  <  L ) )
26 elnnz 10644 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  |-  ( L  e.  NN  <->  ( L  e.  ZZ  /\  0  < 
L ) )
2725, 26sylibr 212 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  |-  ( ( L  e.  NN0  /\  0  <  L )  ->  L  e.  NN )
2827ex 434 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  |-  ( L  e.  NN0  ->  ( 0  <  L  ->  L  e.  NN ) )
2928adantl 463 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  |-  ( ( M  e.  ZZ  /\  L  e.  NN0 )  -> 
( 0  <  L  ->  L  e.  NN ) )
3023, 29syld 44 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  |-  ( ( M  e.  ZZ  /\  L  e.  NN0 )  -> 
( ( 0  <_  M  /\  M  <  L
)  ->  L  e.  NN ) )
3130exp3a 436 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( ( M  e.  ZZ  /\  L  e.  NN0 )  -> 
( 0  <_  M  ->  ( M  <  L  ->  L  e.  NN ) ) )
3231impancom 438 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( ( M  e.  ZZ  /\  0  <_  M )  -> 
( L  e.  NN0  ->  ( M  <  L  ->  L  e.  NN ) ) )
3317, 32sylbi 195 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( M  e.  NN0  ->  ( L  e.  NN0  ->  ( M  <  L  ->  L  e.  NN ) ) )
3433imp 429 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( M  e.  NN0  /\  L  e.  NN0 )  -> 
( M  <  L  ->  L  e.  NN ) )
3516, 34sylbird 235 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( M  e.  NN0  /\  L  e.  NN0 )  -> 
( 0  <  ( L  -  M )  ->  L  e.  NN ) )
3635com12 31 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( 0  <  ( L  -  M )  ->  (
( M  e.  NN0  /\  L  e.  NN0 )  ->  L  e.  NN ) )
3736adantl 463 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( L  -  M
)  e.  ZZ  /\  0  <  ( L  -  M ) )  -> 
( ( M  e. 
NN0  /\  L  e.  NN0 )  ->  L  e.  NN ) )
3812, 37sylbi 195 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( L  -  M )  e.  NN  ->  (
( M  e.  NN0  /\  L  e.  NN0 )  ->  L  e.  NN ) )
39383ad2ant2 1003 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( K  e.  NN0  /\  ( L  -  M
)  e.  NN  /\  K  <  ( L  -  M ) )  -> 
( ( M  e. 
NN0  /\  L  e.  NN0 )  ->  L  e.  NN ) )
4039com12 31 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( M  e.  NN0  /\  L  e.  NN0 )  -> 
( ( K  e. 
NN0  /\  ( L  -  M )  e.  NN  /\  K  <  ( L  -  M ) )  ->  L  e.  NN ) )
41403adant3 1001 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( M  e.  NN0  /\  L  e.  NN0  /\  M  <_  L )  ->  (
( K  e.  NN0  /\  ( L  -  M
)  e.  NN  /\  K  <  ( L  -  M ) )  ->  L  e.  NN )
)
4241imp 429 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( M  e.  NN0  /\  L  e.  NN0  /\  M  <_  L )  /\  ( K  e.  NN0  /\  ( L  -  M
)  e.  NN  /\  K  <  ( L  -  M ) ) )  ->  L  e.  NN )
43 nn0re 10576 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( K  e.  NN0  ->  K  e.  RR )
4443adantr 462 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( K  e.  NN0  /\  ( M  e.  NN0  /\  L  e.  NN0  /\  M  <_  L ) )  ->  K  e.  RR )
45133ad2ant1 1002 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( M  e.  NN0  /\  L  e.  NN0  /\  M  <_  L )  ->  M  e.  RR )
4645adantl 463 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( K  e.  NN0  /\  ( M  e.  NN0  /\  L  e.  NN0  /\  M  <_  L ) )  ->  M  e.  RR )
47143ad2ant2 1003 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( M  e.  NN0  /\  L  e.  NN0  /\  M  <_  L )  ->  L  e.  RR )
4847adantl 463 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( K  e.  NN0  /\  ( M  e.  NN0  /\  L  e.  NN0  /\  M  <_  L ) )  ->  L  e.  RR )
4944, 46, 48ltaddsubd 9927 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( K  e.  NN0  /\  ( M  e.  NN0  /\  L  e.  NN0  /\  M  <_  L ) )  ->  ( ( K  +  M )  < 
L  <->  K  <  ( L  -  M ) ) )
5049exbiri 617 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( K  e.  NN0  ->  ( ( M  e.  NN0  /\  L  e.  NN0  /\  M  <_  L )  ->  ( K  <  ( L  -  M )  ->  ( K  +  M )  <  L ) ) )
5150com23 78 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( K  e.  NN0  ->  ( K  <  ( L  -  M )  ->  (
( M  e.  NN0  /\  L  e.  NN0  /\  M  <_  L )  -> 
( K  +  M
)  <  L )
) )
5251imp 429 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( K  e.  NN0  /\  K  <  ( L  -  M ) )  -> 
( ( M  e. 
NN0  /\  L  e.  NN0 
/\  M  <_  L
)  ->  ( K  +  M )  <  L
) )
53523adant2 1000 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( K  e.  NN0  /\  ( L  -  M
)  e.  NN  /\  K  <  ( L  -  M ) )  -> 
( ( M  e. 
NN0  /\  L  e.  NN0 
/\  M  <_  L
)  ->  ( K  +  M )  <  L
) )
5453impcom 430 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( M  e.  NN0  /\  L  e.  NN0  /\  M  <_  L )  /\  ( K  e.  NN0  /\  ( L  -  M
)  e.  NN  /\  K  <  ( L  -  M ) ) )  ->  ( K  +  M )  <  L
)
5511, 42, 543jca 1161 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( M  e.  NN0  /\  L  e.  NN0  /\  M  <_  L )  /\  ( K  e.  NN0  /\  ( L  -  M
)  e.  NN  /\  K  <  ( L  -  M ) ) )  ->  ( ( K  +  M )  e. 
NN0  /\  L  e.  NN  /\  ( K  +  M )  <  L
) )
5655ex 434 . . . . . . . . . . . . . . . . . . 19  |-  ( ( M  e.  NN0  /\  L  e.  NN0  /\  M  <_  L )  ->  (
( K  e.  NN0  /\  ( L  -  M
)  e.  NN  /\  K  <  ( L  -  M ) )  -> 
( ( K  +  M )  e.  NN0  /\  L  e.  NN  /\  ( K  +  M
)  <  L )
) )
5756a1d 25 . . . . . . . . . . . . . . . . . 18  |-  ( ( M  e.  NN0  /\  L  e.  NN0  /\  M  <_  L )  ->  ( N  e.  ( L ... ( L  +  (
# `  B )
) )  ->  (
( K  e.  NN0  /\  ( L  -  M
)  e.  NN  /\  K  <  ( L  -  M ) )  -> 
( ( K  +  M )  e.  NN0  /\  L  e.  NN  /\  ( K  +  M
)  <  L )
) ) )
585, 57sylbi 195 . . . . . . . . . . . . . . . . 17  |-  ( M  e.  ( 0 ... L )  ->  ( N  e.  ( L ... ( L  +  (
# `  B )
) )  ->  (
( K  e.  NN0  /\  ( L  -  M
)  e.  NN  /\  K  <  ( L  -  M ) )  -> 
( ( K  +  M )  e.  NN0  /\  L  e.  NN  /\  ( K  +  M
)  <  L )
) ) )
5958imp 429 . . . . . . . . . . . . . . . 16  |-  ( ( M  e.  ( 0 ... L )  /\  N  e.  ( L ... ( L  +  (
# `  B )
) ) )  -> 
( ( K  e. 
NN0  /\  ( L  -  M )  e.  NN  /\  K  <  ( L  -  M ) )  ->  ( ( K  +  M )  e. 
NN0  /\  L  e.  NN  /\  ( K  +  M )  <  L
) ) )
6059a1ii 27 . . . . . . . . . . . . . . 15  |-  ( (
# `  A )  =  L  ->  ( L  e.  NN0  ->  ( ( M  e.  ( 0 ... L )  /\  N  e.  ( L ... ( L  +  (
# `  B )
) ) )  -> 
( ( K  e. 
NN0  /\  ( L  -  M )  e.  NN  /\  K  <  ( L  -  M ) )  ->  ( ( K  +  M )  e. 
NN0  /\  L  e.  NN  /\  ( K  +  M )  <  L
) ) ) ) )
61 eleq1 2493 . . . . . . . . . . . . . . 15  |-  ( (
# `  A )  =  L  ->  ( (
# `  A )  e.  NN0  <->  L  e.  NN0 ) )
62 eleq1 2493 . . . . . . . . . . . . . . . . . 18  |-  ( (
# `  A )  =  L  ->  ( (
# `  A )  e.  NN  <->  L  e.  NN ) )
63 breq2 4284 . . . . . . . . . . . . . . . . . 18  |-  ( (
# `  A )  =  L  ->  ( ( K  +  M )  <  ( # `  A
)  <->  ( K  +  M )  <  L
) )
6462, 633anbi23d 1285 . . . . . . . . . . . . . . . . 17  |-  ( (
# `  A )  =  L  ->  ( ( ( K  +  M
)  e.  NN0  /\  ( # `  A )  e.  NN  /\  ( K  +  M )  <  ( # `  A
) )  <->  ( ( K  +  M )  e.  NN0  /\  L  e.  NN  /\  ( K  +  M )  < 
L ) ) )
6564imbi2d 316 . . . . . . . . . . . . . . . 16  |-  ( (
# `  A )  =  L  ->  ( ( ( K  e.  NN0  /\  ( L  -  M
)  e.  NN  /\  K  <  ( L  -  M ) )  -> 
( ( K  +  M )  e.  NN0  /\  ( # `  A
)  e.  NN  /\  ( K  +  M
)  <  ( # `  A
) ) )  <->  ( ( K  e.  NN0  /\  ( L  -  M )  e.  NN  /\  K  < 
( L  -  M
) )  ->  (
( K  +  M
)  e.  NN0  /\  L  e.  NN  /\  ( K  +  M )  <  L ) ) ) )
6665imbi2d 316 . . . . . . . . . . . . . . 15  |-  ( (
# `  A )  =  L  ->  ( ( ( M  e.  ( 0 ... L )  /\  N  e.  ( L ... ( L  +  ( # `  B
) ) ) )  ->  ( ( K  e.  NN0  /\  ( L  -  M )  e.  NN  /\  K  < 
( L  -  M
) )  ->  (
( K  +  M
)  e.  NN0  /\  ( # `  A )  e.  NN  /\  ( K  +  M )  <  ( # `  A
) ) ) )  <-> 
( ( M  e.  ( 0 ... L
)  /\  N  e.  ( L ... ( L  +  ( # `  B
) ) ) )  ->  ( ( K  e.  NN0  /\  ( L  -  M )  e.  NN  /\  K  < 
( L  -  M
) )  ->  (
( K  +  M
)  e.  NN0  /\  L  e.  NN  /\  ( K  +  M )  <  L ) ) ) ) )
6760, 61, 663imtr4d 268 . . . . . . . . . . . . . 14  |-  ( (
# `  A )  =  L  ->  ( (
# `  A )  e.  NN0  ->  ( ( M  e.  ( 0 ... L )  /\  N  e.  ( L ... ( L  +  (
# `  B )
) ) )  -> 
( ( K  e. 
NN0  /\  ( L  -  M )  e.  NN  /\  K  <  ( L  -  M ) )  ->  ( ( K  +  M )  e. 
NN0  /\  ( # `  A
)  e.  NN  /\  ( K  +  M
)  <  ( # `  A
) ) ) ) ) )
6867eqcoms 2436 . . . . . . . . . . . . 13  |-  ( L  =  ( # `  A
)  ->  ( ( # `
 A )  e. 
NN0  ->  ( ( M  e.  ( 0 ... L )  /\  N  e.  ( L ... ( L  +  ( # `  B
) ) ) )  ->  ( ( K  e.  NN0  /\  ( L  -  M )  e.  NN  /\  K  < 
( L  -  M
) )  ->  (
( K  +  M
)  e.  NN0  /\  ( # `  A )  e.  NN  /\  ( K  +  M )  <  ( # `  A
) ) ) ) ) )
693, 4, 68mpsyl 63 . . . . . . . . . . . 12  |-  ( A  e. Word  V  ->  (
( M  e.  ( 0 ... L )  /\  N  e.  ( L ... ( L  +  ( # `  B
) ) ) )  ->  ( ( K  e.  NN0  /\  ( L  -  M )  e.  NN  /\  K  < 
( L  -  M
) )  ->  (
( K  +  M
)  e.  NN0  /\  ( # `  A )  e.  NN  /\  ( K  +  M )  <  ( # `  A
) ) ) ) )
7069adantr 462 . . . . . . . . . . 11  |-  ( ( A  e. Word  V  /\  B  e. Word  V )  ->  ( ( M  e.  ( 0 ... L
)  /\  N  e.  ( L ... ( L  +  ( # `  B
) ) ) )  ->  ( ( K  e.  NN0  /\  ( L  -  M )  e.  NN  /\  K  < 
( L  -  M
) )  ->  (
( K  +  M
)  e.  NN0  /\  ( # `  A )  e.  NN  /\  ( K  +  M )  <  ( # `  A
) ) ) ) )
7170imp 429 . . . . . . . . . 10  |-  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  ( M  e.  ( 0 ... L
)  /\  N  e.  ( L ... ( L  +  ( # `  B
) ) ) ) )  ->  ( ( K  e.  NN0  /\  ( L  -  M )  e.  NN  /\  K  < 
( L  -  M
) )  ->  (
( K  +  M
)  e.  NN0  /\  ( # `  A )  e.  NN  /\  ( K  +  M )  <  ( # `  A
) ) ) )
7271com12 31 . . . . . . . . 9  |-  ( ( K  e.  NN0  /\  ( L  -  M
)  e.  NN  /\  K  <  ( L  -  M ) )  -> 
( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  ( M  e.  ( 0 ... L )  /\  N  e.  ( L ... ( L  +  (
# `  B )
) ) ) )  ->  ( ( K  +  M )  e. 
NN0  /\  ( # `  A
)  e.  NN  /\  ( K  +  M
)  <  ( # `  A
) ) ) )
732, 72sylbi 195 . . . . . . . 8  |-  ( K  e.  ( 0..^ ( L  -  M ) )  ->  ( (
( A  e. Word  V  /\  B  e. Word  V )  /\  ( M  e.  ( 0 ... L
)  /\  N  e.  ( L ... ( L  +  ( # `  B
) ) ) ) )  ->  ( ( K  +  M )  e.  NN0  /\  ( # `  A )  e.  NN  /\  ( K  +  M
)  <  ( # `  A
) ) ) )
7473adantl 463 . . . . . . 7  |-  ( ( K  e.  ( 0..^ ( N  -  M
) )  /\  K  e.  ( 0..^ ( L  -  M ) ) )  ->  ( (
( A  e. Word  V  /\  B  e. Word  V )  /\  ( M  e.  ( 0 ... L
)  /\  N  e.  ( L ... ( L  +  ( # `  B
) ) ) ) )  ->  ( ( K  +  M )  e.  NN0  /\  ( # `  A )  e.  NN  /\  ( K  +  M
)  <  ( # `  A
) ) ) )
7574impcom 430 . . . . . 6  |-  ( ( ( ( A  e. Word  V  /\  B  e. Word  V
)  /\  ( M  e.  ( 0 ... L
)  /\  N  e.  ( L ... ( L  +  ( # `  B
) ) ) ) )  /\  ( K  e.  ( 0..^ ( N  -  M ) )  /\  K  e.  ( 0..^ ( L  -  M ) ) ) )  ->  (
( K  +  M
)  e.  NN0  /\  ( # `  A )  e.  NN  /\  ( K  +  M )  <  ( # `  A
) ) )
76 elfzo0 11571 . . . . . 6  |-  ( ( K  +  M )  e.  ( 0..^ (
# `  A )
)  <->  ( ( K  +  M )  e. 
NN0  /\  ( # `  A
)  e.  NN  /\  ( K  +  M
)  <  ( # `  A
) ) )
7775, 76sylibr 212 . . . . 5  |-  ( ( ( ( A  e. Word  V  /\  B  e. Word  V
)  /\  ( M  e.  ( 0 ... L
)  /\  N  e.  ( L ... ( L  +  ( # `  B
) ) ) ) )  /\  ( K  e.  ( 0..^ ( N  -  M ) )  /\  K  e.  ( 0..^ ( L  -  M ) ) ) )  ->  ( K  +  M )  e.  ( 0..^ ( # `  A ) ) )
78 df-3an 960 . . . . 5  |-  ( ( A  e. Word  V  /\  B  e. Word  V  /\  ( K  +  M )  e.  ( 0..^ ( # `  A ) ) )  <-> 
( ( A  e. Word  V  /\  B  e. Word  V
)  /\  ( K  +  M )  e.  ( 0..^ ( # `  A
) ) ) )
791, 77, 78sylanbrc 657 . . . 4  |-  ( ( ( ( A  e. Word  V  /\  B  e. Word  V
)  /\  ( M  e.  ( 0 ... L
)  /\  N  e.  ( L ... ( L  +  ( # `  B
) ) ) ) )  /\  ( K  e.  ( 0..^ ( N  -  M ) )  /\  K  e.  ( 0..^ ( L  -  M ) ) ) )  ->  ( A  e. Word  V  /\  B  e. Word  V  /\  ( K  +  M )  e.  ( 0..^ ( # `  A ) ) ) )
80 ccatval1 12260 . . . 4  |-  ( ( A  e. Word  V  /\  B  e. Word  V  /\  ( K  +  M )  e.  ( 0..^ ( # `  A ) ) )  ->  ( ( A concat  B ) `  ( K  +  M )
)  =  ( A `
 ( K  +  M ) ) )
8179, 80syl 16 . . 3  |-  ( ( ( ( A  e. Word  V  /\  B  e. Word  V
)  /\  ( M  e.  ( 0 ... L
)  /\  N  e.  ( L ... ( L  +  ( # `  B
) ) ) ) )  /\  ( K  e.  ( 0..^ ( N  -  M ) )  /\  K  e.  ( 0..^ ( L  -  M ) ) ) )  ->  (
( A concat  B ) `  ( K  +  M
) )  =  ( A `  ( K  +  M ) ) )
823swrdccatin12lem2c 12363 . . . . 5  |-  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  ( M  e.  ( 0 ... L
)  /\  N  e.  ( L ... ( L  +  ( # `  B
) ) ) ) )  ->  ( ( A concat  B )  e. Word  V  /\  M  e.  (
0 ... N )  /\  N  e.  ( 0 ... ( # `  ( A concat  B ) ) ) ) )
8382adantr 462 . . . 4  |-  ( ( ( ( A  e. Word  V  /\  B  e. Word  V
)  /\  ( M  e.  ( 0 ... L
)  /\  N  e.  ( L ... ( L  +  ( # `  B
) ) ) ) )  /\  ( K  e.  ( 0..^ ( N  -  M ) )  /\  K  e.  ( 0..^ ( L  -  M ) ) ) )  ->  (
( A concat  B )  e. Word  V  /\  M  e.  ( 0 ... N
)  /\  N  e.  ( 0 ... ( # `
 ( A concat  B
) ) ) ) )
84 simprl 748 . . . 4  |-  ( ( ( ( A  e. Word  V  /\  B  e. Word  V
)  /\  ( M  e.  ( 0 ... L
)  /\  N  e.  ( L ... ( L  +  ( # `  B
) ) ) ) )  /\  ( K  e.  ( 0..^ ( N  -  M ) )  /\  K  e.  ( 0..^ ( L  -  M ) ) ) )  ->  K  e.  ( 0..^ ( N  -  M ) ) )
85 swrdfv 12304 . . . 4  |-  ( ( ( ( A concat  B
)  e. Word  V  /\  M  e.  ( 0 ... N )  /\  N  e.  ( 0 ... ( # `  ( A concat  B ) ) ) )  /\  K  e.  ( 0..^ ( N  -  M ) ) )  ->  ( (
( A concat  B ) substr  <. M ,  N >. ) `
 K )  =  ( ( A concat  B
) `  ( K  +  M ) ) )
8683, 84, 85syl2anc 654 . . 3  |-  ( ( ( ( A  e. Word  V  /\  B  e. Word  V
)  /\  ( M  e.  ( 0 ... L
)  /\  N  e.  ( L ... ( L  +  ( # `  B
) ) ) ) )  /\  ( K  e.  ( 0..^ ( N  -  M ) )  /\  K  e.  ( 0..^ ( L  -  M ) ) ) )  ->  (
( ( A concat  B
) substr  <. M ,  N >. ) `  K )  =  ( ( A concat  B ) `  ( K  +  M )
) )
87 simpll 746 . . . . 5  |-  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  ( M  e.  ( 0 ... L
)  /\  N  e.  ( L ... ( L  +  ( # `  B
) ) ) ) )  ->  A  e. Word  V )
8887adantr 462 . . . 4  |-  ( ( ( ( A  e. Word  V  /\  B  e. Word  V
)  /\  ( M  e.  ( 0 ... L
)  /\  N  e.  ( L ... ( L  +  ( # `  B
) ) ) ) )  /\  ( K  e.  ( 0..^ ( N  -  M ) )  /\  K  e.  ( 0..^ ( L  -  M ) ) ) )  ->  A  e. Word  V )
89 simprl 748 . . . . 5  |-  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  ( M  e.  ( 0 ... L
)  /\  N  e.  ( L ... ( L  +  ( # `  B
) ) ) ) )  ->  M  e.  ( 0 ... L
) )
9089adantr 462 . . . 4  |-  ( ( ( ( A  e. Word  V  /\  B  e. Word  V
)  /\  ( M  e.  ( 0 ... L
)  /\  N  e.  ( L ... ( L  +  ( # `  B
) ) ) ) )  /\  ( K  e.  ( 0..^ ( N  -  M ) )  /\  K  e.  ( 0..^ ( L  -  M ) ) ) )  ->  M  e.  ( 0 ... L
) )
913eleq1i 2496 . . . . . . 7  |-  ( L  e.  NN0  <->  ( # `  A
)  e.  NN0 )
92 elnn0uz 10886 . . . . . . . . 9  |-  ( L  e.  NN0  <->  L  e.  ( ZZ>=
`  0 ) )
93 eluzfz2 11446 . . . . . . . . 9  |-  ( L  e.  ( ZZ>= `  0
)  ->  L  e.  ( 0 ... L
) )
9492, 93sylbi 195 . . . . . . . 8  |-  ( L  e.  NN0  ->  L  e.  ( 0 ... L
) )
953eqcomi 2437 . . . . . . . . 9  |-  ( # `  A )  =  L
9695oveq2i 6091 . . . . . . . 8  |-  ( 0 ... ( # `  A
) )  =  ( 0 ... L )
9794, 96syl6eleqr 2524 . . . . . . 7  |-  ( L  e.  NN0  ->  L  e.  ( 0 ... ( # `
 A ) ) )
9891, 97sylbir 213 . . . . . 6  |-  ( (
# `  A )  e.  NN0  ->  L  e.  ( 0 ... ( # `
 A ) ) )
994, 98syl 16 . . . . 5  |-  ( A  e. Word  V  ->  L  e.  ( 0 ... ( # `
 A ) ) )
10099ad3antrrr 722 . . . 4  |-  ( ( ( ( A  e. Word  V  /\  B  e. Word  V
)  /\  ( M  e.  ( 0 ... L
)  /\  N  e.  ( L ... ( L  +  ( # `  B
) ) ) ) )  /\  ( K  e.  ( 0..^ ( N  -  M ) )  /\  K  e.  ( 0..^ ( L  -  M ) ) ) )  ->  L  e.  ( 0 ... ( # `
 A ) ) )
101 simprr 749 . . . 4  |-  ( ( ( ( A  e. Word  V  /\  B  e. Word  V
)  /\  ( M  e.  ( 0 ... L
)  /\  N  e.  ( L ... ( L  +  ( # `  B
) ) ) ) )  /\  ( K  e.  ( 0..^ ( N  -  M ) )  /\  K  e.  ( 0..^ ( L  -  M ) ) ) )  ->  K  e.  ( 0..^ ( L  -  M ) ) )
102 swrdfv 12304 . . . 4  |-  ( ( ( A  e. Word  V  /\  M  e.  (
0 ... L )  /\  L  e.  ( 0 ... ( # `  A
) ) )  /\  K  e.  ( 0..^ ( L  -  M
) ) )  -> 
( ( A substr  <. M ,  L >. ) `  K
)  =  ( A `
 ( K  +  M ) ) )
10388, 90, 100, 101, 102syl31anc 1214 . . 3  |-  ( ( ( ( A  e. Word  V  /\  B  e. Word  V
)  /\  ( M  e.  ( 0 ... L
)  /\  N  e.  ( L ... ( L  +  ( # `  B
) ) ) ) )  /\  ( K  e.  ( 0..^ ( N  -  M ) )  /\  K  e.  ( 0..^ ( L  -  M ) ) ) )  ->  (
( A substr  <. M ,  L >. ) `  K
)  =  ( A `
 ( K  +  M ) ) )
10481, 86, 1033eqtr4d 2475 . 2  |-  ( ( ( ( A  e. Word  V  /\  B  e. Word  V
)  /\  ( M  e.  ( 0 ... L
)  /\  N  e.  ( L ... ( L  +  ( # `  B
) ) ) ) )  /\  ( K  e.  ( 0..^ ( N  -  M ) )  /\  K  e.  ( 0..^ ( L  -  M ) ) ) )  ->  (
( ( A concat  B
) substr  <. M ,  N >. ) `  K )  =  ( ( A substr  <. M ,  L >. ) `
 K ) )
105104ex 434 1  |-  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  ( M  e.  ( 0 ... L
)  /\  N  e.  ( L ... ( L  +  ( # `  B
) ) ) ) )  ->  ( ( K  e.  ( 0..^ ( N  -  M
) )  /\  K  e.  ( 0..^ ( L  -  M ) ) )  ->  ( (
( A concat  B ) substr  <. M ,  N >. ) `
 K )  =  ( ( A substr  <. M ,  L >. ) `  K
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 958    = wceq 1362    e. wcel 1755   <.cop 3871   class class class wbr 4280   ` cfv 5406  (class class class)co 6080   RRcr 9269   0cc0 9270    + caddc 9273    < clt 9406    <_ cle 9407    - cmin 9583   NNcn 10310   NN0cn0 10567   ZZcz 10634   ZZ>=cuz 10849   ...cfz 11424  ..^cfzo 11532   #chash 12087  Word cword 12205   concat cconcat 12207   substr csubstr 12209
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1594  ax-4 1605  ax-5 1669  ax-6 1707  ax-7 1727  ax-8 1757  ax-9 1759  ax-10 1774  ax-11 1779  ax-12 1791  ax-13 1942  ax-ext 2414  ax-rep 4391  ax-sep 4401  ax-nul 4409  ax-pow 4458  ax-pr 4519  ax-un 6361  ax-cnex 9326  ax-resscn 9327  ax-1cn 9328  ax-icn 9329  ax-addcl 9330  ax-addrcl 9331  ax-mulcl 9332  ax-mulrcl 9333  ax-mulcom 9334  ax-addass 9335  ax-mulass 9336  ax-distr 9337  ax-i2m1 9338  ax-1ne0 9339  ax-1rid 9340  ax-rnegex 9341  ax-rrecex 9342  ax-cnre 9343  ax-pre-lttri 9344  ax-pre-lttrn 9345  ax-pre-ltadd 9346  ax-pre-mulgt0 9347
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 959  df-3an 960  df-tru 1365  df-ex 1590  df-nf 1593  df-sb 1700  df-eu 2258  df-mo 2259  df-clab 2420  df-cleq 2426  df-clel 2429  df-nfc 2558  df-ne 2598  df-nel 2599  df-ral 2710  df-rex 2711  df-reu 2712  df-rab 2714  df-v 2964  df-sbc 3176  df-csb 3277  df-dif 3319  df-un 3321  df-in 3323  df-ss 3330  df-pss 3332  df-nul 3626  df-if 3780  df-pw 3850  df-sn 3866  df-pr 3868  df-tp 3870  df-op 3872  df-uni 4080  df-int 4117  df-iun 4161  df-br 4281  df-opab 4339  df-mpt 4340  df-tr 4374  df-eprel 4619  df-id 4623  df-po 4628  df-so 4629  df-fr 4666  df-we 4668  df-ord 4709  df-on 4710  df-lim 4711  df-suc 4712  df-xp 4833  df-rel 4834  df-cnv 4835  df-co 4836  df-dm 4837  df-rn 4838  df-res 4839  df-ima 4840  df-iota 5369  df-fun 5408  df-fn 5409  df-f 5410  df-f1 5411  df-fo 5412  df-f1o 5413  df-fv 5414  df-riota 6039  df-ov 6083  df-oprab 6084  df-mpt2 6085  df-om 6466  df-1st 6566  df-2nd 6567  df-recs 6818  df-rdg 6852  df-1o 6908  df-oadd 6912  df-er 7089  df-en 7299  df-dom 7300  df-sdom 7301  df-fin 7302  df-card 8097  df-pnf 9408  df-mnf 9409  df-xr 9410  df-ltxr 9411  df-le 9412  df-sub 9585  df-neg 9586  df-nn 10311  df-n0 10568  df-z 10635  df-uz 10850  df-fz 11425  df-fzo 11533  df-hash 12088  df-word 12213  df-concat 12215  df-substr 12217
This theorem is referenced by:  swrdccatin12  12366
  Copyright terms: Public domain W3C validator