MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  swrdccat2 Structured version   Unicode version

Theorem swrdccat2 12348
Description: Recover the right half of a concatenated word. (Contributed by Mario Carneiro, 27-Sep-2015.)
Assertion
Ref Expression
swrdccat2  |-  ( ( S  e. Word  B  /\  T  e. Word  B )  ->  ( ( S concat  T
) substr  <. ( # `  S
) ,  ( (
# `  S )  +  ( # `  T
) ) >. )  =  T )

Proof of Theorem swrdccat2
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 ccatcl 12270 . . . 4  |-  ( ( S  e. Word  B  /\  T  e. Word  B )  ->  ( S concat  T )  e. Word  B )
2 swrdcl 12311 . . . 4  |-  ( ( S concat  T )  e. Word  B  ->  ( ( S concat  T ) substr  <. ( # `  S ) ,  ( ( # `  S
)  +  ( # `  T ) ) >.
)  e. Word  B )
3 wrdf 12236 . . . 4  |-  ( ( ( S concat  T ) substr  <. ( # `  S
) ,  ( (
# `  S )  +  ( # `  T
) ) >. )  e. Word  B  ->  ( ( S concat  T ) substr  <. ( # `
 S ) ,  ( ( # `  S
)  +  ( # `  T ) ) >.
) : ( 0..^ ( # `  (
( S concat  T ) substr  <.
( # `  S ) ,  ( ( # `  S )  +  (
# `  T )
) >. ) ) ) --> B )
4 ffn 5556 . . . 4  |-  ( ( ( S concat  T ) substr  <. ( # `  S
) ,  ( (
# `  S )  +  ( # `  T
) ) >. ) : ( 0..^ (
# `  ( ( S concat  T ) substr  <. ( # `
 S ) ,  ( ( # `  S
)  +  ( # `  T ) ) >.
) ) ) --> B  ->  ( ( S concat  T ) substr  <. ( # `  S ) ,  ( ( # `  S
)  +  ( # `  T ) ) >.
)  Fn  ( 0..^ ( # `  (
( S concat  T ) substr  <.
( # `  S ) ,  ( ( # `  S )  +  (
# `  T )
) >. ) ) ) )
51, 2, 3, 44syl 21 . . 3  |-  ( ( S  e. Word  B  /\  T  e. Word  B )  ->  ( ( S concat  T
) substr  <. ( # `  S
) ,  ( (
# `  S )  +  ( # `  T
) ) >. )  Fn  ( 0..^ ( # `  ( ( S concat  T
) substr  <. ( # `  S
) ,  ( (
# `  S )  +  ( # `  T
) ) >. )
) ) )
6 lencl 12245 . . . . . . . . . 10  |-  ( S  e. Word  B  ->  ( # `
 S )  e. 
NN0 )
76adantr 462 . . . . . . . . 9  |-  ( ( S  e. Word  B  /\  T  e. Word  B )  ->  ( # `  S
)  e.  NN0 )
8 nn0uz 10891 . . . . . . . . 9  |-  NN0  =  ( ZZ>= `  0 )
97, 8syl6eleq 2531 . . . . . . . 8  |-  ( ( S  e. Word  B  /\  T  e. Word  B )  ->  ( # `  S
)  e.  ( ZZ>= ` 
0 ) )
107nn0zd 10741 . . . . . . . . . 10  |-  ( ( S  e. Word  B  /\  T  e. Word  B )  ->  ( # `  S
)  e.  ZZ )
11 uzid 10871 . . . . . . . . . 10  |-  ( (
# `  S )  e.  ZZ  ->  ( # `  S
)  e.  ( ZZ>= `  ( # `  S ) ) )
1210, 11syl 16 . . . . . . . . 9  |-  ( ( S  e. Word  B  /\  T  e. Word  B )  ->  ( # `  S
)  e.  ( ZZ>= `  ( # `  S ) ) )
13 lencl 12245 . . . . . . . . . 10  |-  ( T  e. Word  B  ->  ( # `
 T )  e. 
NN0 )
1413adantl 463 . . . . . . . . 9  |-  ( ( S  e. Word  B  /\  T  e. Word  B )  ->  ( # `  T
)  e.  NN0 )
15 uzaddcl 10907 . . . . . . . . 9  |-  ( ( ( # `  S
)  e.  ( ZZ>= `  ( # `  S ) )  /\  ( # `  T )  e.  NN0 )  ->  ( ( # `  S )  +  (
# `  T )
)  e.  ( ZZ>= `  ( # `  S ) ) )
1612, 14, 15syl2anc 656 . . . . . . . 8  |-  ( ( S  e. Word  B  /\  T  e. Word  B )  ->  ( ( # `  S
)  +  ( # `  T ) )  e.  ( ZZ>= `  ( # `  S
) ) )
17 elfzuzb 11443 . . . . . . . 8  |-  ( (
# `  S )  e.  ( 0 ... (
( # `  S )  +  ( # `  T
) ) )  <->  ( ( # `
 S )  e.  ( ZZ>= `  0 )  /\  ( ( # `  S
)  +  ( # `  T ) )  e.  ( ZZ>= `  ( # `  S
) ) ) )
189, 16, 17sylanbrc 659 . . . . . . 7  |-  ( ( S  e. Word  B  /\  T  e. Word  B )  ->  ( # `  S
)  e.  ( 0 ... ( ( # `  S )  +  (
# `  T )
) ) )
197, 14nn0addcld 10636 . . . . . . . . . 10  |-  ( ( S  e. Word  B  /\  T  e. Word  B )  ->  ( ( # `  S
)  +  ( # `  T ) )  e. 
NN0 )
2019, 8syl6eleq 2531 . . . . . . . . 9  |-  ( ( S  e. Word  B  /\  T  e. Word  B )  ->  ( ( # `  S
)  +  ( # `  T ) )  e.  ( ZZ>= `  0 )
)
2119nn0zd 10741 . . . . . . . . . 10  |-  ( ( S  e. Word  B  /\  T  e. Word  B )  ->  ( ( # `  S
)  +  ( # `  T ) )  e.  ZZ )
22 uzid 10871 . . . . . . . . . 10  |-  ( ( ( # `  S
)  +  ( # `  T ) )  e.  ZZ  ->  ( ( # `
 S )  +  ( # `  T
) )  e.  (
ZZ>= `  ( ( # `  S )  +  (
# `  T )
) ) )
2321, 22syl 16 . . . . . . . . 9  |-  ( ( S  e. Word  B  /\  T  e. Word  B )  ->  ( ( # `  S
)  +  ( # `  T ) )  e.  ( ZZ>= `  ( ( # `
 S )  +  ( # `  T
) ) ) )
24 elfzuzb 11443 . . . . . . . . 9  |-  ( ( ( # `  S
)  +  ( # `  T ) )  e.  ( 0 ... (
( # `  S )  +  ( # `  T
) ) )  <->  ( (
( # `  S )  +  ( # `  T
) )  e.  (
ZZ>= `  0 )  /\  ( ( # `  S
)  +  ( # `  T ) )  e.  ( ZZ>= `  ( ( # `
 S )  +  ( # `  T
) ) ) ) )
2520, 23, 24sylanbrc 659 . . . . . . . 8  |-  ( ( S  e. Word  B  /\  T  e. Word  B )  ->  ( ( # `  S
)  +  ( # `  T ) )  e.  ( 0 ... (
( # `  S )  +  ( # `  T
) ) ) )
26 ccatlen 12271 . . . . . . . . 9  |-  ( ( S  e. Word  B  /\  T  e. Word  B )  ->  ( # `  ( S concat  T ) )  =  ( ( # `  S
)  +  ( # `  T ) ) )
2726oveq2d 6106 . . . . . . . 8  |-  ( ( S  e. Word  B  /\  T  e. Word  B )  ->  ( 0 ... ( # `
 ( S concat  T
) ) )  =  ( 0 ... (
( # `  S )  +  ( # `  T
) ) ) )
2825, 27eleqtrrd 2518 . . . . . . 7  |-  ( ( S  e. Word  B  /\  T  e. Word  B )  ->  ( ( # `  S
)  +  ( # `  T ) )  e.  ( 0 ... ( # `
 ( S concat  T
) ) ) )
29 swrdlen 12315 . . . . . . 7  |-  ( ( ( S concat  T )  e. Word  B  /\  ( # `
 S )  e.  ( 0 ... (
( # `  S )  +  ( # `  T
) ) )  /\  ( ( # `  S
)  +  ( # `  T ) )  e.  ( 0 ... ( # `
 ( S concat  T
) ) ) )  ->  ( # `  (
( S concat  T ) substr  <.
( # `  S ) ,  ( ( # `  S )  +  (
# `  T )
) >. ) )  =  ( ( ( # `  S )  +  (
# `  T )
)  -  ( # `  S ) ) )
301, 18, 28, 29syl3anc 1213 . . . . . 6  |-  ( ( S  e. Word  B  /\  T  e. Word  B )  ->  ( # `  (
( S concat  T ) substr  <.
( # `  S ) ,  ( ( # `  S )  +  (
# `  T )
) >. ) )  =  ( ( ( # `  S )  +  (
# `  T )
)  -  ( # `  S ) ) )
317nn0cnd 10634 . . . . . . 7  |-  ( ( S  e. Word  B  /\  T  e. Word  B )  ->  ( # `  S
)  e.  CC )
3214nn0cnd 10634 . . . . . . 7  |-  ( ( S  e. Word  B  /\  T  e. Word  B )  ->  ( # `  T
)  e.  CC )
3331, 32pncan2d 9717 . . . . . 6  |-  ( ( S  e. Word  B  /\  T  e. Word  B )  ->  ( ( ( # `  S )  +  (
# `  T )
)  -  ( # `  S ) )  =  ( # `  T
) )
3430, 33eqtrd 2473 . . . . 5  |-  ( ( S  e. Word  B  /\  T  e. Word  B )  ->  ( # `  (
( S concat  T ) substr  <.
( # `  S ) ,  ( ( # `  S )  +  (
# `  T )
) >. ) )  =  ( # `  T
) )
3534oveq2d 6106 . . . 4  |-  ( ( S  e. Word  B  /\  T  e. Word  B )  ->  ( 0..^ ( # `  ( ( S concat  T
) substr  <. ( # `  S
) ,  ( (
# `  S )  +  ( # `  T
) ) >. )
) )  =  ( 0..^ ( # `  T
) ) )
3635fneq2d 5499 . . 3  |-  ( ( S  e. Word  B  /\  T  e. Word  B )  ->  ( ( ( S concat  T ) substr  <. ( # `  S ) ,  ( ( # `  S
)  +  ( # `  T ) ) >.
)  Fn  ( 0..^ ( # `  (
( S concat  T ) substr  <.
( # `  S ) ,  ( ( # `  S )  +  (
# `  T )
) >. ) ) )  <-> 
( ( S concat  T
) substr  <. ( # `  S
) ,  ( (
# `  S )  +  ( # `  T
) ) >. )  Fn  ( 0..^ ( # `  T ) ) ) )
375, 36mpbid 210 . 2  |-  ( ( S  e. Word  B  /\  T  e. Word  B )  ->  ( ( S concat  T
) substr  <. ( # `  S
) ,  ( (
# `  S )  +  ( # `  T
) ) >. )  Fn  ( 0..^ ( # `  T ) ) )
38 wrdf 12236 . . . 4  |-  ( T  e. Word  B  ->  T : ( 0..^ (
# `  T )
) --> B )
3938adantl 463 . . 3  |-  ( ( S  e. Word  B  /\  T  e. Word  B )  ->  T : ( 0..^ ( # `  T
) ) --> B )
40 ffn 5556 . . 3  |-  ( T : ( 0..^ (
# `  T )
) --> B  ->  T  Fn  ( 0..^ ( # `  T ) ) )
4139, 40syl 16 . 2  |-  ( ( S  e. Word  B  /\  T  e. Word  B )  ->  T  Fn  ( 0..^ ( # `  T
) ) )
421adantr 462 . . . 4  |-  ( ( ( S  e. Word  B  /\  T  e. Word  B )  /\  k  e.  ( 0..^ ( # `  T
) ) )  -> 
( S concat  T )  e. Word  B )
4318adantr 462 . . . 4  |-  ( ( ( S  e. Word  B  /\  T  e. Word  B )  /\  k  e.  ( 0..^ ( # `  T
) ) )  -> 
( # `  S )  e.  ( 0 ... ( ( # `  S
)  +  ( # `  T ) ) ) )
4428adantr 462 . . . 4  |-  ( ( ( S  e. Word  B  /\  T  e. Word  B )  /\  k  e.  ( 0..^ ( # `  T
) ) )  -> 
( ( # `  S
)  +  ( # `  T ) )  e.  ( 0 ... ( # `
 ( S concat  T
) ) ) )
4533oveq2d 6106 . . . . . 6  |-  ( ( S  e. Word  B  /\  T  e. Word  B )  ->  ( 0..^ ( ( ( # `  S
)  +  ( # `  T ) )  -  ( # `  S ) ) )  =  ( 0..^ ( # `  T
) ) )
4645eleq2d 2508 . . . . 5  |-  ( ( S  e. Word  B  /\  T  e. Word  B )  ->  ( k  e.  ( 0..^ ( ( (
# `  S )  +  ( # `  T
) )  -  ( # `
 S ) ) )  <->  k  e.  ( 0..^ ( # `  T
) ) ) )
4746biimpar 482 . . . 4  |-  ( ( ( S  e. Word  B  /\  T  e. Word  B )  /\  k  e.  ( 0..^ ( # `  T
) ) )  -> 
k  e.  ( 0..^ ( ( ( # `  S )  +  (
# `  T )
)  -  ( # `  S ) ) ) )
48 swrdfv 12316 . . . 4  |-  ( ( ( ( S concat  T
)  e. Word  B  /\  ( # `  S )  e.  ( 0 ... ( ( # `  S
)  +  ( # `  T ) ) )  /\  ( ( # `  S )  +  (
# `  T )
)  e.  ( 0 ... ( # `  ( S concat  T ) ) ) )  /\  k  e.  ( 0..^ ( ( ( # `  S
)  +  ( # `  T ) )  -  ( # `  S ) ) ) )  -> 
( ( ( S concat  T ) substr  <. ( # `  S ) ,  ( ( # `  S
)  +  ( # `  T ) ) >.
) `  k )  =  ( ( S concat  T ) `  (
k  +  ( # `  S ) ) ) )
4942, 43, 44, 47, 48syl31anc 1216 . . 3  |-  ( ( ( S  e. Word  B  /\  T  e. Word  B )  /\  k  e.  ( 0..^ ( # `  T
) ) )  -> 
( ( ( S concat  T ) substr  <. ( # `  S ) ,  ( ( # `  S
)  +  ( # `  T ) ) >.
) `  k )  =  ( ( S concat  T ) `  (
k  +  ( # `  S ) ) ) )
50 ccatval3 12274 . . . 4  |-  ( ( S  e. Word  B  /\  T  e. Word  B  /\  k  e.  ( 0..^ ( # `  T ) ) )  ->  ( ( S concat  T ) `  (
k  +  ( # `  S ) ) )  =  ( T `  k ) )
51503expa 1182 . . 3  |-  ( ( ( S  e. Word  B  /\  T  e. Word  B )  /\  k  e.  ( 0..^ ( # `  T
) ) )  -> 
( ( S concat  T
) `  ( k  +  ( # `  S
) ) )  =  ( T `  k
) )
5249, 51eqtrd 2473 . 2  |-  ( ( ( S  e. Word  B  /\  T  e. Word  B )  /\  k  e.  ( 0..^ ( # `  T
) ) )  -> 
( ( ( S concat  T ) substr  <. ( # `  S ) ,  ( ( # `  S
)  +  ( # `  T ) ) >.
) `  k )  =  ( T `  k ) )
5337, 41, 52eqfnfvd 5797 1  |-  ( ( S  e. Word  B  /\  T  e. Word  B )  ->  ( ( S concat  T
) substr  <. ( # `  S
) ,  ( (
# `  S )  +  ( # `  T
) ) >. )  =  T )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1364    e. wcel 1761   <.cop 3880    Fn wfn 5410   -->wf 5411   ` cfv 5415  (class class class)co 6090   0cc0 9278    + caddc 9281    - cmin 9591   NN0cn0 10575   ZZcz 10642   ZZ>=cuz 10857   ...cfz 11433  ..^cfzo 11544   #chash 12099  Word cword 12217   concat cconcat 12219   substr csubstr 12221
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1713  ax-7 1733  ax-8 1763  ax-9 1765  ax-10 1780  ax-11 1785  ax-12 1797  ax-13 1948  ax-ext 2422  ax-rep 4400  ax-sep 4410  ax-nul 4418  ax-pow 4467  ax-pr 4528  ax-un 6371  ax-cnex 9334  ax-resscn 9335  ax-1cn 9336  ax-icn 9337  ax-addcl 9338  ax-addrcl 9339  ax-mulcl 9340  ax-mulrcl 9341  ax-mulcom 9342  ax-addass 9343  ax-mulass 9344  ax-distr 9345  ax-i2m1 9346  ax-1ne0 9347  ax-1rid 9348  ax-rnegex 9349  ax-rrecex 9350  ax-cnre 9351  ax-pre-lttri 9352  ax-pre-lttrn 9353  ax-pre-ltadd 9354  ax-pre-mulgt0 9355
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 961  df-3an 962  df-tru 1367  df-ex 1592  df-nf 1595  df-sb 1706  df-eu 2263  df-mo 2264  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-nel 2607  df-ral 2718  df-rex 2719  df-reu 2720  df-rab 2722  df-v 2972  df-sbc 3184  df-csb 3286  df-dif 3328  df-un 3330  df-in 3332  df-ss 3339  df-pss 3341  df-nul 3635  df-if 3789  df-pw 3859  df-sn 3875  df-pr 3877  df-tp 3879  df-op 3881  df-uni 4089  df-int 4126  df-iun 4170  df-br 4290  df-opab 4348  df-mpt 4349  df-tr 4383  df-eprel 4628  df-id 4632  df-po 4637  df-so 4638  df-fr 4675  df-we 4677  df-ord 4718  df-on 4719  df-lim 4720  df-suc 4721  df-xp 4842  df-rel 4843  df-cnv 4844  df-co 4845  df-dm 4846  df-rn 4847  df-res 4848  df-ima 4849  df-iota 5378  df-fun 5417  df-fn 5418  df-f 5419  df-f1 5420  df-fo 5421  df-f1o 5422  df-fv 5423  df-riota 6049  df-ov 6093  df-oprab 6094  df-mpt2 6095  df-om 6476  df-1st 6576  df-2nd 6577  df-recs 6828  df-rdg 6862  df-1o 6916  df-oadd 6920  df-er 7097  df-en 7307  df-dom 7308  df-sdom 7309  df-fin 7310  df-card 8105  df-pnf 9416  df-mnf 9417  df-xr 9418  df-ltxr 9419  df-le 9420  df-sub 9593  df-neg 9594  df-nn 10319  df-n0 10576  df-z 10643  df-uz 10858  df-fz 11434  df-fzo 11545  df-hash 12100  df-word 12225  df-concat 12227  df-substr 12229
This theorem is referenced by:  ccatopth  12360
  Copyright terms: Public domain W3C validator