MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  swrdccat Structured version   Unicode version

Theorem swrdccat 12774
Description: The subword of a concatenation of two words as concatenation of subwords of the two concatenated words. (Contributed by Alexander van der Vekens, 29-May-2018.)
Hypothesis
Ref Expression
swrdccatin12.l  |-  L  =  ( # `  A
)
Assertion
Ref Expression
swrdccat  |-  ( ( A  e. Word  V  /\  B  e. Word  V )  ->  ( ( M  e.  ( 0 ... N
)  /\  N  e.  ( 0 ... ( L  +  ( # `  B
) ) ) )  ->  ( ( A ++  B ) substr  <. M ,  N >. )  =  ( ( A substr  <. M ,  if ( N  <_  L ,  N ,  L )
>. ) ++  ( B substr  <. if ( 0  <_  ( M  -  L ) ,  ( M  -  L ) ,  0 ) ,  ( N  -  L ) >.
) ) ) )

Proof of Theorem swrdccat
StepHypRef Expression
1 swrdccatin12.l . . . . 5  |-  L  =  ( # `  A
)
21swrdccat3 12773 . . . 4  |-  ( ( A  e. Word  V  /\  B  e. Word  V )  ->  ( ( M  e.  ( 0 ... N
)  /\  N  e.  ( 0 ... ( L  +  ( # `  B
) ) ) )  ->  ( ( A ++  B ) substr  <. M ,  N >. )  =  if ( N  <_  L ,  ( A substr  <. M ,  N >. ) ,  if ( L  <_  M , 
( B substr  <. ( M  -  L ) ,  ( N  -  L
) >. ) ,  ( ( A substr  <. M ,  L >. ) ++  ( B substr  <. 0 ,  ( N  -  L ) >.
) ) ) ) ) )
32imp 427 . . 3  |-  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  ( M  e.  ( 0 ... N
)  /\  N  e.  ( 0 ... ( L  +  ( # `  B
) ) ) ) )  ->  ( ( A ++  B ) substr  <. M ,  N >. )  =  if ( N  <_  L ,  ( A substr  <. M ,  N >. ) ,  if ( L  <_  M , 
( B substr  <. ( M  -  L ) ,  ( N  -  L
) >. ) ,  ( ( A substr  <. M ,  L >. ) ++  ( B substr  <. 0 ,  ( N  -  L ) >.
) ) ) ) )
4 lencl 12614 . . . . . 6  |-  ( A  e. Word  V  ->  ( # `
 A )  e. 
NN0 )
54adantr 463 . . . . 5  |-  ( ( A  e. Word  V  /\  B  e. Word  V )  ->  ( # `  A
)  e.  NN0 )
61eqcomi 2415 . . . . . . 7  |-  ( # `  A )  =  L
76eleq1i 2479 . . . . . 6  |-  ( (
# `  A )  e.  NN0  <->  L  e.  NN0 )
8 elfz2nn0 11824 . . . . . . . . 9  |-  ( M  e.  ( 0 ... N )  <->  ( M  e.  NN0  /\  N  e. 
NN0  /\  M  <_  N ) )
9 iftrue 3891 . . . . . . . . . . . . . . . . . 18  |-  ( N  <_  L  ->  if ( N  <_  L ,  N ,  L )  =  N )
109adantl 464 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( A  e. Word  V  /\  B  e. Word  V
)  /\  ( ( M  e.  NN0  /\  N  e.  NN0 )  /\  L  e.  NN0 ) )  /\  N  <_  L )  ->  if ( N  <_  L ,  N ,  L )  =  N )
1110opeq2d 4166 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  e. Word  V  /\  B  e. Word  V
)  /\  ( ( M  e.  NN0  /\  N  e.  NN0 )  /\  L  e.  NN0 ) )  /\  N  <_  L )  ->  <. M ,  if ( N  <_  L ,  N ,  L ) >.  =  <. M ,  N >. )
1211oveq2d 6294 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e. Word  V  /\  B  e. Word  V
)  /\  ( ( M  e.  NN0  /\  N  e.  NN0 )  /\  L  e.  NN0 ) )  /\  N  <_  L )  -> 
( A substr  <. M ,  if ( N  <_  L ,  N ,  L )
>. )  =  ( A substr  <. M ,  N >. ) )
13 iftrue 3891 . . . . . . . . . . . . . . . . . . . 20  |-  ( 0  <_  ( M  -  L )  ->  if ( 0  <_  ( M  -  L ) ,  ( M  -  L ) ,  0 )  =  ( M  -  L ) )
1413opeq1d 4165 . . . . . . . . . . . . . . . . . . 19  |-  ( 0  <_  ( M  -  L )  ->  <. if ( 0  <_  ( M  -  L ) ,  ( M  -  L ) ,  0 ) ,  ( N  -  L
) >.  =  <. ( M  -  L ) ,  ( N  -  L ) >. )
1514oveq2d 6294 . . . . . . . . . . . . . . . . . 18  |-  ( 0  <_  ( M  -  L )  ->  ( B substr  <. if ( 0  <_  ( M  -  L ) ,  ( M  -  L ) ,  0 ) ,  ( N  -  L
) >. )  =  ( B substr  <. ( M  -  L ) ,  ( N  -  L )
>. ) )
1615adantr 463 . . . . . . . . . . . . . . . . 17  |-  ( ( 0  <_  ( M  -  L )  /\  (
( ( A  e. Word  V  /\  B  e. Word  V
)  /\  ( ( M  e.  NN0  /\  N  e.  NN0 )  /\  L  e.  NN0 ) )  /\  N  <_  L ) )  ->  ( B substr  <. if ( 0  <_  ( M  -  L ) ,  ( M  -  L ) ,  0 ) ,  ( N  -  L
) >. )  =  ( B substr  <. ( M  -  L ) ,  ( N  -  L )
>. ) )
17 simpr 459 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( A  e. Word  V  /\  B  e. Word  V )  ->  B  e. Word  V )
18 nn0z 10928 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( L  e.  NN0  ->  L  e.  ZZ )
19 nn0z 10928 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( M  e.  NN0  ->  M  e.  ZZ )
2019adantr 463 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  ->  M  e.  ZZ )
21 zsubcl 10947 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( M  e.  ZZ  /\  L  e.  ZZ )  ->  ( M  -  L
)  e.  ZZ )
2220, 21sylan 469 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( M  e.  NN0  /\  N  e.  NN0 )  /\  L  e.  ZZ )  ->  ( M  -  L )  e.  ZZ )
23 nn0z 10928 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( N  e.  NN0  ->  N  e.  ZZ )
2423adantl 464 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  ->  N  e.  ZZ )
25 zsubcl 10947 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( N  e.  ZZ  /\  L  e.  ZZ )  ->  ( N  -  L
)  e.  ZZ )
2624, 25sylan 469 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( M  e.  NN0  /\  N  e.  NN0 )  /\  L  e.  ZZ )  ->  ( N  -  L )  e.  ZZ )
2722, 26jca 530 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( M  e.  NN0  /\  N  e.  NN0 )  /\  L  e.  ZZ )  ->  ( ( M  -  L )  e.  ZZ  /\  ( N  -  L )  e.  ZZ ) )
2818, 27sylan2 472 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( M  e.  NN0  /\  N  e.  NN0 )  /\  L  e.  NN0 )  ->  ( ( M  -  L )  e.  ZZ  /\  ( N  -  L )  e.  ZZ ) )
2917, 28anim12i 564 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  ( ( M  e.  NN0  /\  N  e. 
NN0 )  /\  L  e.  NN0 ) )  -> 
( B  e. Word  V  /\  ( ( M  -  L )  e.  ZZ  /\  ( N  -  L
)  e.  ZZ ) ) )
30 3anass 978 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( B  e. Word  V  /\  ( M  -  L
)  e.  ZZ  /\  ( N  -  L
)  e.  ZZ )  <-> 
( B  e. Word  V  /\  ( ( M  -  L )  e.  ZZ  /\  ( N  -  L
)  e.  ZZ ) ) )
3129, 30sylibr 212 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  ( ( M  e.  NN0  /\  N  e. 
NN0 )  /\  L  e.  NN0 ) )  -> 
( B  e. Word  V  /\  ( M  -  L
)  e.  ZZ  /\  ( N  -  L
)  e.  ZZ ) )
3231ad2antrl 726 . . . . . . . . . . . . . . . . . 18  |-  ( ( 0  <_  ( M  -  L )  /\  (
( ( A  e. Word  V  /\  B  e. Word  V
)  /\  ( ( M  e.  NN0  /\  N  e.  NN0 )  /\  L  e.  NN0 ) )  /\  N  <_  L ) )  ->  ( B  e. Word  V  /\  ( M  -  L )  e.  ZZ  /\  ( N  -  L
)  e.  ZZ ) )
33 nn0re 10845 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( M  e.  NN0  ->  M  e.  RR )
34 nn0re 10845 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( N  e.  NN0  ->  N  e.  RR )
3533, 34anim12i 564 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( M  e.  RR  /\  N  e.  RR ) )
36 nn0re 10845 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( L  e.  NN0  ->  L  e.  RR )
37 subge0 10106 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( M  e.  RR  /\  L  e.  RR )  ->  ( 0  <_  ( M  -  L )  <->  L  <_  M ) )
3837adantlr 713 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( M  e.  RR  /\  N  e.  RR )  /\  L  e.  RR )  ->  ( 0  <_ 
( M  -  L
)  <->  L  <_  M ) )
39 simpr 459 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( M  e.  RR  /\  N  e.  RR )  ->  N  e.  RR )
4039adantr 463 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( ( M  e.  RR  /\  N  e.  RR )  /\  L  e.  RR )  ->  N  e.  RR )
41 simpr 459 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( ( M  e.  RR  /\  N  e.  RR )  /\  L  e.  RR )  ->  L  e.  RR )
42 simpl 455 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( M  e.  RR  /\  N  e.  RR )  ->  M  e.  RR )
4342adantr 463 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( ( M  e.  RR  /\  N  e.  RR )  /\  L  e.  RR )  ->  M  e.  RR )
4440, 41, 433jca 1177 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( M  e.  RR  /\  N  e.  RR )  /\  L  e.  RR )  ->  ( N  e.  RR  /\  L  e.  RR  /\  M  e.  RR ) )
45 letr 9709 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( N  e.  RR  /\  L  e.  RR  /\  M  e.  RR )  ->  (
( N  <_  L  /\  L  <_  M )  ->  N  <_  M
) )
4644, 45syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( M  e.  RR  /\  N  e.  RR )  /\  L  e.  RR )  ->  ( ( N  <_  L  /\  L  <_  M )  ->  N  <_  M ) )
4746expcomd 436 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( M  e.  RR  /\  N  e.  RR )  /\  L  e.  RR )  ->  ( L  <_  M  ->  ( N  <_  L  ->  N  <_  M
) ) )
4838, 47sylbid 215 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( M  e.  RR  /\  N  e.  RR )  /\  L  e.  RR )  ->  ( 0  <_ 
( M  -  L
)  ->  ( N  <_  L  ->  N  <_  M ) ) )
4948com23 78 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( M  e.  RR  /\  N  e.  RR )  /\  L  e.  RR )  ->  ( N  <_  L  ->  ( 0  <_ 
( M  -  L
)  ->  N  <_  M ) ) )
5035, 36, 49syl2an 475 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( M  e.  NN0  /\  N  e.  NN0 )  /\  L  e.  NN0 )  ->  ( N  <_  L  ->  ( 0  <_ 
( M  -  L
)  ->  N  <_  M ) ) )
5150adantl 464 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  ( ( M  e.  NN0  /\  N  e. 
NN0 )  /\  L  e.  NN0 ) )  -> 
( N  <_  L  ->  ( 0  <_  ( M  -  L )  ->  N  <_  M )
) )
5251imp 427 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( A  e. Word  V  /\  B  e. Word  V
)  /\  ( ( M  e.  NN0  /\  N  e.  NN0 )  /\  L  e.  NN0 ) )  /\  N  <_  L )  -> 
( 0  <_  ( M  -  L )  ->  N  <_  M )
)
5352impcom 428 . . . . . . . . . . . . . . . . . . 19  |-  ( ( 0  <_  ( M  -  L )  /\  (
( ( A  e. Word  V  /\  B  e. Word  V
)  /\  ( ( M  e.  NN0  /\  N  e.  NN0 )  /\  L  e.  NN0 ) )  /\  N  <_  L ) )  ->  N  <_  M
)
5434adantl 464 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  ->  N  e.  RR )
5554adantr 463 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( M  e.  NN0  /\  N  e.  NN0 )  /\  L  e.  NN0 )  ->  N  e.  RR )
5633adantr 463 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  ->  M  e.  RR )
5756adantr 463 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( M  e.  NN0  /\  N  e.  NN0 )  /\  L  e.  NN0 )  ->  M  e.  RR )
5836adantl 464 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( M  e.  NN0  /\  N  e.  NN0 )  /\  L  e.  NN0 )  ->  L  e.  RR )
5955, 57, 583jca 1177 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( M  e.  NN0  /\  N  e.  NN0 )  /\  L  e.  NN0 )  ->  ( N  e.  RR  /\  M  e.  RR  /\  L  e.  RR ) )
6059adantl 464 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  ( ( M  e.  NN0  /\  N  e. 
NN0 )  /\  L  e.  NN0 ) )  -> 
( N  e.  RR  /\  M  e.  RR  /\  L  e.  RR )
)
6160ad2antrl 726 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( 0  <_  ( M  -  L )  /\  (
( ( A  e. Word  V  /\  B  e. Word  V
)  /\  ( ( M  e.  NN0  /\  N  e.  NN0 )  /\  L  e.  NN0 ) )  /\  N  <_  L ) )  ->  ( N  e.  RR  /\  M  e.  RR  /\  L  e.  RR ) )
62 lesub1 10087 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( N  e.  RR  /\  M  e.  RR  /\  L  e.  RR )  ->  ( N  <_  M  <->  ( N  -  L )  <_  ( M  -  L )
) )
6361, 62syl 17 . . . . . . . . . . . . . . . . . . 19  |-  ( ( 0  <_  ( M  -  L )  /\  (
( ( A  e. Word  V  /\  B  e. Word  V
)  /\  ( ( M  e.  NN0  /\  N  e.  NN0 )  /\  L  e.  NN0 ) )  /\  N  <_  L ) )  ->  ( N  <_  M 
<->  ( N  -  L
)  <_  ( M  -  L ) ) )
6453, 63mpbid 210 . . . . . . . . . . . . . . . . . 18  |-  ( ( 0  <_  ( M  -  L )  /\  (
( ( A  e. Word  V  /\  B  e. Word  V
)  /\  ( ( M  e.  NN0  /\  N  e.  NN0 )  /\  L  e.  NN0 ) )  /\  N  <_  L ) )  ->  ( N  -  L )  <_  ( M  -  L )
)
65 swrdlend 12712 . . . . . . . . . . . . . . . . . 18  |-  ( ( B  e. Word  V  /\  ( M  -  L
)  e.  ZZ  /\  ( N  -  L
)  e.  ZZ )  ->  ( ( N  -  L )  <_ 
( M  -  L
)  ->  ( B substr  <.
( M  -  L
) ,  ( N  -  L ) >.
)  =  (/) ) )
6632, 64, 65sylc 59 . . . . . . . . . . . . . . . . 17  |-  ( ( 0  <_  ( M  -  L )  /\  (
( ( A  e. Word  V  /\  B  e. Word  V
)  /\  ( ( M  e.  NN0  /\  N  e.  NN0 )  /\  L  e.  NN0 ) )  /\  N  <_  L ) )  ->  ( B substr  <. ( M  -  L ) ,  ( N  -  L ) >. )  =  (/) )
6716, 66eqtrd 2443 . . . . . . . . . . . . . . . 16  |-  ( ( 0  <_  ( M  -  L )  /\  (
( ( A  e. Word  V  /\  B  e. Word  V
)  /\  ( ( M  e.  NN0  /\  N  e.  NN0 )  /\  L  e.  NN0 ) )  /\  N  <_  L ) )  ->  ( B substr  <. if ( 0  <_  ( M  -  L ) ,  ( M  -  L ) ,  0 ) ,  ( N  -  L
) >. )  =  (/) )
68 iffalse 3894 . . . . . . . . . . . . . . . . . . 19  |-  ( -.  0  <_  ( M  -  L )  ->  if ( 0  <_  ( M  -  L ) ,  ( M  -  L ) ,  0 )  =  0 )
6968opeq1d 4165 . . . . . . . . . . . . . . . . . 18  |-  ( -.  0  <_  ( M  -  L )  ->  <. if ( 0  <_  ( M  -  L ) ,  ( M  -  L ) ,  0 ) ,  ( N  -  L
) >.  =  <. 0 ,  ( N  -  L ) >. )
7069oveq2d 6294 . . . . . . . . . . . . . . . . 17  |-  ( -.  0  <_  ( M  -  L )  ->  ( B substr  <. if ( 0  <_  ( M  -  L ) ,  ( M  -  L ) ,  0 ) ,  ( N  -  L
) >. )  =  ( B substr  <. 0 ,  ( N  -  L )
>. ) )
7117adantr 463 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  ( ( M  e.  NN0  /\  N  e. 
NN0 )  /\  L  e.  NN0 ) )  ->  B  e. Word  V )
7271adantr 463 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( A  e. Word  V  /\  B  e. Word  V
)  /\  ( ( M  e.  NN0  /\  N  e.  NN0 )  /\  L  e.  NN0 ) )  /\  N  <_  L )  ->  B  e. Word  V )
73 0zd 10917 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( A  e. Word  V  /\  B  e. Word  V
)  /\  ( ( M  e.  NN0  /\  N  e.  NN0 )  /\  L  e.  NN0 ) )  /\  N  <_  L )  -> 
0  e.  ZZ )
7424, 18, 25syl2an 475 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( M  e.  NN0  /\  N  e.  NN0 )  /\  L  e.  NN0 )  ->  ( N  -  L )  e.  ZZ )
7574adantl 464 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  ( ( M  e.  NN0  /\  N  e. 
NN0 )  /\  L  e.  NN0 ) )  -> 
( N  -  L
)  e.  ZZ )
7675adantr 463 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( A  e. Word  V  /\  B  e. Word  V
)  /\  ( ( M  e.  NN0  /\  N  e.  NN0 )  /\  L  e.  NN0 ) )  /\  N  <_  L )  -> 
( N  -  L
)  e.  ZZ )
7772, 73, 763jca 1177 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( A  e. Word  V  /\  B  e. Word  V
)  /\  ( ( M  e.  NN0  /\  N  e.  NN0 )  /\  L  e.  NN0 ) )  /\  N  <_  L )  -> 
( B  e. Word  V  /\  0  e.  ZZ  /\  ( N  -  L
)  e.  ZZ ) )
7854, 36anim12i 564 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( M  e.  NN0  /\  N  e.  NN0 )  /\  L  e.  NN0 )  ->  ( N  e.  RR  /\  L  e.  RR ) )
7978adantl 464 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  ( ( M  e.  NN0  /\  N  e. 
NN0 )  /\  L  e.  NN0 ) )  -> 
( N  e.  RR  /\  L  e.  RR ) )
80 suble0 10107 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( N  e.  RR  /\  L  e.  RR )  ->  ( ( N  -  L )  <_  0  <->  N  <_  L ) )
8179, 80syl 17 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  ( ( M  e.  NN0  /\  N  e. 
NN0 )  /\  L  e.  NN0 ) )  -> 
( ( N  -  L )  <_  0  <->  N  <_  L ) )
8281biimpar 483 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( A  e. Word  V  /\  B  e. Word  V
)  /\  ( ( M  e.  NN0  /\  N  e.  NN0 )  /\  L  e.  NN0 ) )  /\  N  <_  L )  -> 
( N  -  L
)  <_  0 )
83 swrdlend 12712 . . . . . . . . . . . . . . . . . 18  |-  ( ( B  e. Word  V  /\  0  e.  ZZ  /\  ( N  -  L )  e.  ZZ )  ->  (
( N  -  L
)  <_  0  ->  ( B substr  <. 0 ,  ( N  -  L )
>. )  =  (/) ) )
8477, 82, 83sylc 59 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( A  e. Word  V  /\  B  e. Word  V
)  /\  ( ( M  e.  NN0  /\  N  e.  NN0 )  /\  L  e.  NN0 ) )  /\  N  <_  L )  -> 
( B substr  <. 0 ,  ( N  -  L
) >. )  =  (/) )
8570, 84sylan9eq 2463 . . . . . . . . . . . . . . . 16  |-  ( ( -.  0  <_  ( M  -  L )  /\  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  (
( M  e.  NN0  /\  N  e.  NN0 )  /\  L  e.  NN0 ) )  /\  N  <_  L ) )  -> 
( B substr  <. if ( 0  <_  ( M  -  L ) ,  ( M  -  L ) ,  0 ) ,  ( N  -  L
) >. )  =  (/) )
8667, 85pm2.61ian 791 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e. Word  V  /\  B  e. Word  V
)  /\  ( ( M  e.  NN0  /\  N  e.  NN0 )  /\  L  e.  NN0 ) )  /\  N  <_  L )  -> 
( B substr  <. if ( 0  <_  ( M  -  L ) ,  ( M  -  L ) ,  0 ) ,  ( N  -  L
) >. )  =  (/) )
8712, 86oveq12d 6296 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e. Word  V  /\  B  e. Word  V
)  /\  ( ( M  e.  NN0  /\  N  e.  NN0 )  /\  L  e.  NN0 ) )  /\  N  <_  L )  -> 
( ( A substr  <. M ,  if ( N  <_  L ,  N ,  L )
>. ) ++  ( B substr  <. if ( 0  <_  ( M  -  L ) ,  ( M  -  L ) ,  0 ) ,  ( N  -  L ) >.
) )  =  ( ( A substr  <. M ,  N >. ) ++  (/) ) )
88 swrdcl 12700 . . . . . . . . . . . . . . . . . 18  |-  ( A  e. Word  V  ->  ( A substr  <. M ,  N >. )  e. Word  V )
89 ccatrid 12658 . . . . . . . . . . . . . . . . . 18  |-  ( ( A substr  <. M ,  N >. )  e. Word  V  -> 
( ( A substr  <. M ,  N >. ) ++  (/) )  =  ( A substr  <. M ,  N >. ) )
9088, 89syl 17 . . . . . . . . . . . . . . . . 17  |-  ( A  e. Word  V  ->  (
( A substr  <. M ,  N >. ) ++  (/) )  =  ( A substr  <. M ,  N >. ) )
9190adantr 463 . . . . . . . . . . . . . . . 16  |-  ( ( A  e. Word  V  /\  B  e. Word  V )  ->  ( ( A substr  <. M ,  N >. ) ++  (/) )  =  ( A substr  <. M ,  N >. ) )
9291adantr 463 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  ( ( M  e.  NN0  /\  N  e. 
NN0 )  /\  L  e.  NN0 ) )  -> 
( ( A substr  <. M ,  N >. ) ++  (/) )  =  ( A substr  <. M ,  N >. ) )
9392adantr 463 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e. Word  V  /\  B  e. Word  V
)  /\  ( ( M  e.  NN0  /\  N  e.  NN0 )  /\  L  e.  NN0 ) )  /\  N  <_  L )  -> 
( ( A substr  <. M ,  N >. ) ++  (/) )  =  ( A substr  <. M ,  N >. ) )
9487, 93eqtrd 2443 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e. Word  V  /\  B  e. Word  V
)  /\  ( ( M  e.  NN0  /\  N  e.  NN0 )  /\  L  e.  NN0 ) )  /\  N  <_  L )  -> 
( ( A substr  <. M ,  if ( N  <_  L ,  N ,  L )
>. ) ++  ( B substr  <. if ( 0  <_  ( M  -  L ) ,  ( M  -  L ) ,  0 ) ,  ( N  -  L ) >.
) )  =  ( A substr  <. M ,  N >. ) )
95 iffalse 3894 . . . . . . . . . . . . . . . . . . 19  |-  ( -.  N  <_  L  ->  if ( N  <_  L ,  N ,  L )  =  L )
96953ad2ant2 1019 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( A  e. Word  V  /\  B  e. Word  V
)  /\  ( ( M  e.  NN0  /\  N  e.  NN0 )  /\  L  e.  NN0 ) )  /\  -.  N  <_  L  /\  L  <_  M )  ->  if ( N  <_  L ,  N ,  L )  =  L )
9796opeq2d 4166 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( A  e. Word  V  /\  B  e. Word  V
)  /\  ( ( M  e.  NN0  /\  N  e.  NN0 )  /\  L  e.  NN0 ) )  /\  -.  N  <_  L  /\  L  <_  M )  ->  <. M ,  if ( N  <_  L ,  N ,  L ) >.  =  <. M ,  L >. )
9897oveq2d 6294 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  e. Word  V  /\  B  e. Word  V
)  /\  ( ( M  e.  NN0  /\  N  e.  NN0 )  /\  L  e.  NN0 ) )  /\  -.  N  <_  L  /\  L  <_  M )  -> 
( A substr  <. M ,  if ( N  <_  L ,  N ,  L )
>. )  =  ( A substr  <. M ,  L >. ) )
99 simpl 455 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( A  e. Word  V  /\  B  e. Word  V )  ->  A  e. Word  V )
10099, 20, 183anim123i 1182 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  ( M  e. 
NN0  /\  N  e.  NN0 )  /\  L  e. 
NN0 )  ->  ( A  e. Word  V  /\  M  e.  ZZ  /\  L  e.  ZZ ) )
1011003expb 1198 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  ( ( M  e.  NN0  /\  N  e. 
NN0 )  /\  L  e.  NN0 ) )  -> 
( A  e. Word  V  /\  M  e.  ZZ  /\  L  e.  ZZ ) )
102 swrdlend 12712 . . . . . . . . . . . . . . . . . . 19  |-  ( ( A  e. Word  V  /\  M  e.  ZZ  /\  L  e.  ZZ )  ->  ( L  <_  M  ->  ( A substr  <. M ,  L >. )  =  (/) ) )
103101, 102syl 17 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  ( ( M  e.  NN0  /\  N  e. 
NN0 )  /\  L  e.  NN0 ) )  -> 
( L  <_  M  ->  ( A substr  <. M ,  L >. )  =  (/) ) )
104103imp 427 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( A  e. Word  V  /\  B  e. Word  V
)  /\  ( ( M  e.  NN0  /\  N  e.  NN0 )  /\  L  e.  NN0 ) )  /\  L  <_  M )  -> 
( A substr  <. M ,  L >. )  =  (/) )
1051043adant2 1016 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  e. Word  V  /\  B  e. Word  V
)  /\  ( ( M  e.  NN0  /\  N  e.  NN0 )  /\  L  e.  NN0 ) )  /\  -.  N  <_  L  /\  L  <_  M )  -> 
( A substr  <. M ,  L >. )  =  (/) )
10698, 105eqtrd 2443 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e. Word  V  /\  B  e. Word  V
)  /\  ( ( M  e.  NN0  /\  N  e.  NN0 )  /\  L  e.  NN0 ) )  /\  -.  N  <_  L  /\  L  <_  M )  -> 
( A substr  <. M ,  if ( N  <_  L ,  N ,  L )
>. )  =  (/) )
10756, 36, 37syl2an 475 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( M  e.  NN0  /\  N  e.  NN0 )  /\  L  e.  NN0 )  ->  ( 0  <_ 
( M  -  L
)  <->  L  <_  M ) )
108107biimprd 223 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( M  e.  NN0  /\  N  e.  NN0 )  /\  L  e.  NN0 )  ->  ( L  <_  M  ->  0  <_  ( M  -  L )
) )
109108adantl 464 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  ( ( M  e.  NN0  /\  N  e. 
NN0 )  /\  L  e.  NN0 ) )  -> 
( L  <_  M  ->  0  <_  ( M  -  L ) ) )
110109imp 427 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( A  e. Word  V  /\  B  e. Word  V
)  /\  ( ( M  e.  NN0  /\  N  e.  NN0 )  /\  L  e.  NN0 ) )  /\  L  <_  M )  -> 
0  <_  ( M  -  L ) )
1111103adant2 1016 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( A  e. Word  V  /\  B  e. Word  V
)  /\  ( ( M  e.  NN0  /\  N  e.  NN0 )  /\  L  e.  NN0 ) )  /\  -.  N  <_  L  /\  L  <_  M )  -> 
0  <_  ( M  -  L ) )
112111, 14syl 17 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  e. Word  V  /\  B  e. Word  V
)  /\  ( ( M  e.  NN0  /\  N  e.  NN0 )  /\  L  e.  NN0 ) )  /\  -.  N  <_  L  /\  L  <_  M )  ->  <. if ( 0  <_ 
( M  -  L
) ,  ( M  -  L ) ,  0 ) ,  ( N  -  L )
>.  =  <. ( M  -  L ) ,  ( N  -  L
) >. )
113112oveq2d 6294 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e. Word  V  /\  B  e. Word  V
)  /\  ( ( M  e.  NN0  /\  N  e.  NN0 )  /\  L  e.  NN0 ) )  /\  -.  N  <_  L  /\  L  <_  M )  -> 
( B substr  <. if ( 0  <_  ( M  -  L ) ,  ( M  -  L ) ,  0 ) ,  ( N  -  L
) >. )  =  ( B substr  <. ( M  -  L ) ,  ( N  -  L )
>. ) )
114106, 113oveq12d 6296 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e. Word  V  /\  B  e. Word  V
)  /\  ( ( M  e.  NN0  /\  N  e.  NN0 )  /\  L  e.  NN0 ) )  /\  -.  N  <_  L  /\  L  <_  M )  -> 
( ( A substr  <. M ,  if ( N  <_  L ,  N ,  L )
>. ) ++  ( B substr  <. if ( 0  <_  ( M  -  L ) ,  ( M  -  L ) ,  0 ) ,  ( N  -  L ) >.
) )  =  (
(/) ++  ( B substr  <. ( M  -  L ) ,  ( N  -  L ) >. )
) )
115 swrdcl 12700 . . . . . . . . . . . . . . . . . 18  |-  ( B  e. Word  V  ->  ( B substr  <. ( M  -  L ) ,  ( N  -  L )
>. )  e. Word  V )
116115adantl 464 . . . . . . . . . . . . . . . . 17  |-  ( ( A  e. Word  V  /\  B  e. Word  V )  ->  ( B substr  <. ( M  -  L ) ,  ( N  -  L ) >. )  e. Word  V )
117 ccatlid 12657 . . . . . . . . . . . . . . . . 17  |-  ( ( B substr  <. ( M  -  L ) ,  ( N  -  L )
>. )  e. Word  V  -> 
( (/) ++  ( B substr  <. ( M  -  L ) ,  ( N  -  L ) >. )
)  =  ( B substr  <. ( M  -  L
) ,  ( N  -  L ) >.
) )
118116, 117syl 17 . . . . . . . . . . . . . . . 16  |-  ( ( A  e. Word  V  /\  B  e. Word  V )  ->  ( (/) ++  ( B substr  <.
( M  -  L
) ,  ( N  -  L ) >.
) )  =  ( B substr  <. ( M  -  L ) ,  ( N  -  L )
>. ) )
119118adantr 463 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  ( ( M  e.  NN0  /\  N  e. 
NN0 )  /\  L  e.  NN0 ) )  -> 
( (/) ++  ( B substr  <. ( M  -  L ) ,  ( N  -  L ) >. )
)  =  ( B substr  <. ( M  -  L
) ,  ( N  -  L ) >.
) )
1201193ad2ant1 1018 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e. Word  V  /\  B  e. Word  V
)  /\  ( ( M  e.  NN0  /\  N  e.  NN0 )  /\  L  e.  NN0 ) )  /\  -.  N  <_  L  /\  L  <_  M )  -> 
( (/) ++  ( B substr  <. ( M  -  L ) ,  ( N  -  L ) >. )
)  =  ( B substr  <. ( M  -  L
) ,  ( N  -  L ) >.
) )
121114, 120eqtrd 2443 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e. Word  V  /\  B  e. Word  V
)  /\  ( ( M  e.  NN0  /\  N  e.  NN0 )  /\  L  e.  NN0 ) )  /\  -.  N  <_  L  /\  L  <_  M )  -> 
( ( A substr  <. M ,  if ( N  <_  L ,  N ,  L )
>. ) ++  ( B substr  <. if ( 0  <_  ( M  -  L ) ,  ( M  -  L ) ,  0 ) ,  ( N  -  L ) >.
) )  =  ( B substr  <. ( M  -  L ) ,  ( N  -  L )
>. ) )
122953ad2ant2 1019 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  e. Word  V  /\  B  e. Word  V
)  /\  ( ( M  e.  NN0  /\  N  e.  NN0 )  /\  L  e.  NN0 ) )  /\  -.  N  <_  L  /\  -.  L  <_  M )  ->  if ( N  <_  L ,  N ,  L )  =  L )
123122opeq2d 4166 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e. Word  V  /\  B  e. Word  V
)  /\  ( ( M  e.  NN0  /\  N  e.  NN0 )  /\  L  e.  NN0 ) )  /\  -.  N  <_  L  /\  -.  L  <_  M )  ->  <. M ,  if ( N  <_  L ,  N ,  L ) >.  =  <. M ,  L >. )
124123oveq2d 6294 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e. Word  V  /\  B  e. Word  V
)  /\  ( ( M  e.  NN0  /\  N  e.  NN0 )  /\  L  e.  NN0 ) )  /\  -.  N  <_  L  /\  -.  L  <_  M )  ->  ( A substr  <. M ,  if ( N  <_  L ,  N ,  L )
>. )  =  ( A substr  <. M ,  L >. ) )
12533, 36, 37syl2an 475 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( M  e.  NN0  /\  L  e.  NN0 )  -> 
( 0  <_  ( M  -  L )  <->  L  <_  M ) )
126125adantlr 713 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( M  e.  NN0  /\  N  e.  NN0 )  /\  L  e.  NN0 )  ->  ( 0  <_ 
( M  -  L
)  <->  L  <_  M ) )
127126adantl 464 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  ( ( M  e.  NN0  /\  N  e. 
NN0 )  /\  L  e.  NN0 ) )  -> 
( 0  <_  ( M  -  L )  <->  L  <_  M ) )
128127biimpd 207 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  ( ( M  e.  NN0  /\  N  e. 
NN0 )  /\  L  e.  NN0 ) )  -> 
( 0  <_  ( M  -  L )  ->  L  <_  M )
)
129128con3dimp 439 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( A  e. Word  V  /\  B  e. Word  V
)  /\  ( ( M  e.  NN0  /\  N  e.  NN0 )  /\  L  e.  NN0 ) )  /\  -.  L  <_  M )  ->  -.  0  <_  ( M  -  L ) )
1301293adant2 1016 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( A  e. Word  V  /\  B  e. Word  V
)  /\  ( ( M  e.  NN0  /\  N  e.  NN0 )  /\  L  e.  NN0 ) )  /\  -.  N  <_  L  /\  -.  L  <_  M )  ->  -.  0  <_  ( M  -  L ) )
131130, 68syl 17 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  e. Word  V  /\  B  e. Word  V
)  /\  ( ( M  e.  NN0  /\  N  e.  NN0 )  /\  L  e.  NN0 ) )  /\  -.  N  <_  L  /\  -.  L  <_  M )  ->  if ( 0  <_  ( M  -  L ) ,  ( M  -  L ) ,  0 )  =  0 )
132131opeq1d 4165 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e. Word  V  /\  B  e. Word  V
)  /\  ( ( M  e.  NN0  /\  N  e.  NN0 )  /\  L  e.  NN0 ) )  /\  -.  N  <_  L  /\  -.  L  <_  M )  ->  <. if ( 0  <_  ( M  -  L ) ,  ( M  -  L ) ,  0 ) ,  ( N  -  L
) >.  =  <. 0 ,  ( N  -  L ) >. )
133132oveq2d 6294 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e. Word  V  /\  B  e. Word  V
)  /\  ( ( M  e.  NN0  /\  N  e.  NN0 )  /\  L  e.  NN0 ) )  /\  -.  N  <_  L  /\  -.  L  <_  M )  ->  ( B substr  <. if ( 0  <_  ( M  -  L ) ,  ( M  -  L ) ,  0 ) ,  ( N  -  L
) >. )  =  ( B substr  <. 0 ,  ( N  -  L )
>. ) )
134124, 133oveq12d 6296 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e. Word  V  /\  B  e. Word  V
)  /\  ( ( M  e.  NN0  /\  N  e.  NN0 )  /\  L  e.  NN0 ) )  /\  -.  N  <_  L  /\  -.  L  <_  M )  ->  ( ( A substr  <. M ,  if ( N  <_  L ,  N ,  L ) >. ) ++  ( B substr  <. if ( 0  <_  ( M  -  L ) ,  ( M  -  L ) ,  0 ) ,  ( N  -  L
) >. ) )  =  ( ( A substr  <. M ,  L >. ) ++  ( B substr  <. 0 ,  ( N  -  L ) >.
) ) )
13594, 121, 1342if2 3933 . . . . . . . . . . . 12  |-  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  ( ( M  e.  NN0  /\  N  e. 
NN0 )  /\  L  e.  NN0 ) )  -> 
( ( A substr  <. M ,  if ( N  <_  L ,  N ,  L )
>. ) ++  ( B substr  <. if ( 0  <_  ( M  -  L ) ,  ( M  -  L ) ,  0 ) ,  ( N  -  L ) >.
) )  =  if ( N  <_  L ,  ( A substr  <. M ,  N >. ) ,  if ( L  <_  M , 
( B substr  <. ( M  -  L ) ,  ( N  -  L
) >. ) ,  ( ( A substr  <. M ,  L >. ) ++  ( B substr  <. 0 ,  ( N  -  L ) >.
) ) ) ) )
136135exp32 603 . . . . . . . . . . 11  |-  ( ( A  e. Word  V  /\  B  e. Word  V )  ->  ( ( M  e. 
NN0  /\  N  e.  NN0 )  ->  ( L  e.  NN0  ->  ( ( A substr  <. M ,  if ( N  <_  L ,  N ,  L ) >. ) ++  ( B substr  <. if ( 0  <_  ( M  -  L ) ,  ( M  -  L ) ,  0 ) ,  ( N  -  L
) >. ) )  =  if ( N  <_  L ,  ( A substr  <. M ,  N >. ) ,  if ( L  <_  M ,  ( B substr  <. ( M  -  L ) ,  ( N  -  L )
>. ) ,  ( ( A substr  <. M ,  L >. ) ++  ( B substr  <. 0 ,  ( N  -  L ) >. )
) ) ) ) ) )
137136com12 29 . . . . . . . . . 10  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( ( A  e. Word  V  /\  B  e. Word  V
)  ->  ( L  e.  NN0  ->  ( ( A substr  <. M ,  if ( N  <_  L ,  N ,  L ) >. ) ++  ( B substr  <. if ( 0  <_  ( M  -  L ) ,  ( M  -  L ) ,  0 ) ,  ( N  -  L
) >. ) )  =  if ( N  <_  L ,  ( A substr  <. M ,  N >. ) ,  if ( L  <_  M ,  ( B substr  <. ( M  -  L ) ,  ( N  -  L )
>. ) ,  ( ( A substr  <. M ,  L >. ) ++  ( B substr  <. 0 ,  ( N  -  L ) >. )
) ) ) ) ) )
1381373adant3 1017 . . . . . . . . 9  |-  ( ( M  e.  NN0  /\  N  e.  NN0  /\  M  <_  N )  ->  (
( A  e. Word  V  /\  B  e. Word  V )  ->  ( L  e. 
NN0  ->  ( ( A substr  <. M ,  if ( N  <_  L ,  N ,  L ) >. ) ++  ( B substr  <. if ( 0  <_  ( M  -  L ) ,  ( M  -  L ) ,  0 ) ,  ( N  -  L
) >. ) )  =  if ( N  <_  L ,  ( A substr  <. M ,  N >. ) ,  if ( L  <_  M ,  ( B substr  <. ( M  -  L ) ,  ( N  -  L )
>. ) ,  ( ( A substr  <. M ,  L >. ) ++  ( B substr  <. 0 ,  ( N  -  L ) >. )
) ) ) ) ) )
1398, 138sylbi 195 . . . . . . . 8  |-  ( M  e.  ( 0 ... N )  ->  (
( A  e. Word  V  /\  B  e. Word  V )  ->  ( L  e. 
NN0  ->  ( ( A substr  <. M ,  if ( N  <_  L ,  N ,  L ) >. ) ++  ( B substr  <. if ( 0  <_  ( M  -  L ) ,  ( M  -  L ) ,  0 ) ,  ( N  -  L
) >. ) )  =  if ( N  <_  L ,  ( A substr  <. M ,  N >. ) ,  if ( L  <_  M ,  ( B substr  <. ( M  -  L ) ,  ( N  -  L )
>. ) ,  ( ( A substr  <. M ,  L >. ) ++  ( B substr  <. 0 ,  ( N  -  L ) >. )
) ) ) ) ) )
140139adantr 463 . . . . . . 7  |-  ( ( M  e.  ( 0 ... N )  /\  N  e.  ( 0 ... ( L  +  ( # `  B ) ) ) )  -> 
( ( A  e. Word  V  /\  B  e. Word  V
)  ->  ( L  e.  NN0  ->  ( ( A substr  <. M ,  if ( N  <_  L ,  N ,  L ) >. ) ++  ( B substr  <. if ( 0  <_  ( M  -  L ) ,  ( M  -  L ) ,  0 ) ,  ( N  -  L
) >. ) )  =  if ( N  <_  L ,  ( A substr  <. M ,  N >. ) ,  if ( L  <_  M ,  ( B substr  <. ( M  -  L ) ,  ( N  -  L )
>. ) ,  ( ( A substr  <. M ,  L >. ) ++  ( B substr  <. 0 ,  ( N  -  L ) >. )
) ) ) ) ) )
141140com13 80 . . . . . 6  |-  ( L  e.  NN0  ->  ( ( A  e. Word  V  /\  B  e. Word  V )  ->  ( ( M  e.  ( 0 ... N
)  /\  N  e.  ( 0 ... ( L  +  ( # `  B
) ) ) )  ->  ( ( A substr  <. M ,  if ( N  <_  L ,  N ,  L ) >. ) ++  ( B substr  <. if ( 0  <_  ( M  -  L ) ,  ( M  -  L ) ,  0 ) ,  ( N  -  L
) >. ) )  =  if ( N  <_  L ,  ( A substr  <. M ,  N >. ) ,  if ( L  <_  M ,  ( B substr  <. ( M  -  L ) ,  ( N  -  L )
>. ) ,  ( ( A substr  <. M ,  L >. ) ++  ( B substr  <. 0 ,  ( N  -  L ) >. )
) ) ) ) ) )
1427, 141sylbi 195 . . . . 5  |-  ( (
# `  A )  e.  NN0  ->  ( ( A  e. Word  V  /\  B  e. Word  V )  ->  (
( M  e.  ( 0 ... N )  /\  N  e.  ( 0 ... ( L  +  ( # `  B
) ) ) )  ->  ( ( A substr  <. M ,  if ( N  <_  L ,  N ,  L ) >. ) ++  ( B substr  <. if ( 0  <_  ( M  -  L ) ,  ( M  -  L ) ,  0 ) ,  ( N  -  L
) >. ) )  =  if ( N  <_  L ,  ( A substr  <. M ,  N >. ) ,  if ( L  <_  M ,  ( B substr  <. ( M  -  L ) ,  ( N  -  L )
>. ) ,  ( ( A substr  <. M ,  L >. ) ++  ( B substr  <. 0 ,  ( N  -  L ) >. )
) ) ) ) ) )
1435, 142mpcom 34 . . . 4  |-  ( ( A  e. Word  V  /\  B  e. Word  V )  ->  ( ( M  e.  ( 0 ... N
)  /\  N  e.  ( 0 ... ( L  +  ( # `  B
) ) ) )  ->  ( ( A substr  <. M ,  if ( N  <_  L ,  N ,  L ) >. ) ++  ( B substr  <. if ( 0  <_  ( M  -  L ) ,  ( M  -  L ) ,  0 ) ,  ( N  -  L
) >. ) )  =  if ( N  <_  L ,  ( A substr  <. M ,  N >. ) ,  if ( L  <_  M ,  ( B substr  <. ( M  -  L ) ,  ( N  -  L )
>. ) ,  ( ( A substr  <. M ,  L >. ) ++  ( B substr  <. 0 ,  ( N  -  L ) >. )
) ) ) ) )
144143imp 427 . . 3  |-  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  ( M  e.  ( 0 ... N
)  /\  N  e.  ( 0 ... ( L  +  ( # `  B
) ) ) ) )  ->  ( ( A substr  <. M ,  if ( N  <_  L ,  N ,  L ) >. ) ++  ( B substr  <. if ( 0  <_  ( M  -  L ) ,  ( M  -  L ) ,  0 ) ,  ( N  -  L
) >. ) )  =  if ( N  <_  L ,  ( A substr  <. M ,  N >. ) ,  if ( L  <_  M ,  ( B substr  <. ( M  -  L ) ,  ( N  -  L )
>. ) ,  ( ( A substr  <. M ,  L >. ) ++  ( B substr  <. 0 ,  ( N  -  L ) >. )
) ) ) )
1453, 144eqtr4d 2446 . 2  |-  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  ( M  e.  ( 0 ... N
)  /\  N  e.  ( 0 ... ( L  +  ( # `  B
) ) ) ) )  ->  ( ( A ++  B ) substr  <. M ,  N >. )  =  ( ( A substr  <. M ,  if ( N  <_  L ,  N ,  L )
>. ) ++  ( B substr  <. if ( 0  <_  ( M  -  L ) ,  ( M  -  L ) ,  0 ) ,  ( N  -  L ) >.
) ) )
146145ex 432 1  |-  ( ( A  e. Word  V  /\  B  e. Word  V )  ->  ( ( M  e.  ( 0 ... N
)  /\  N  e.  ( 0 ... ( L  +  ( # `  B
) ) ) )  ->  ( ( A ++  B ) substr  <. M ,  N >. )  =  ( ( A substr  <. M ,  if ( N  <_  L ,  N ,  L )
>. ) ++  ( B substr  <. if ( 0  <_  ( M  -  L ) ,  ( M  -  L ) ,  0 ) ,  ( N  -  L ) >.
) ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 367    /\ w3a 974    = wceq 1405    e. wcel 1842   (/)c0 3738   ifcif 3885   <.cop 3978   class class class wbr 4395   ` cfv 5569  (class class class)co 6278   RRcr 9521   0cc0 9522    + caddc 9525    <_ cle 9659    - cmin 9841   NN0cn0 10836   ZZcz 10905   ...cfz 11726   #chash 12452  Word cword 12583   ++ cconcat 12585   substr csubstr 12587
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-8 1844  ax-9 1846  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026  ax-ext 2380  ax-rep 4507  ax-sep 4517  ax-nul 4525  ax-pow 4572  ax-pr 4630  ax-un 6574  ax-cnex 9578  ax-resscn 9579  ax-1cn 9580  ax-icn 9581  ax-addcl 9582  ax-addrcl 9583  ax-mulcl 9584  ax-mulrcl 9585  ax-mulcom 9586  ax-addass 9587  ax-mulass 9588  ax-distr 9589  ax-i2m1 9590  ax-1ne0 9591  ax-1rid 9592  ax-rnegex 9593  ax-rrecex 9594  ax-cnre 9595  ax-pre-lttri 9596  ax-pre-lttrn 9597  ax-pre-ltadd 9598  ax-pre-mulgt0 9599
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 975  df-3an 976  df-tru 1408  df-ex 1634  df-nf 1638  df-sb 1764  df-eu 2242  df-mo 2243  df-clab 2388  df-cleq 2394  df-clel 2397  df-nfc 2552  df-ne 2600  df-nel 2601  df-ral 2759  df-rex 2760  df-reu 2761  df-rmo 2762  df-rab 2763  df-v 3061  df-sbc 3278  df-csb 3374  df-dif 3417  df-un 3419  df-in 3421  df-ss 3428  df-pss 3430  df-nul 3739  df-if 3886  df-pw 3957  df-sn 3973  df-pr 3975  df-tp 3977  df-op 3979  df-uni 4192  df-int 4228  df-iun 4273  df-br 4396  df-opab 4454  df-mpt 4455  df-tr 4490  df-eprel 4734  df-id 4738  df-po 4744  df-so 4745  df-fr 4782  df-we 4784  df-xp 4829  df-rel 4830  df-cnv 4831  df-co 4832  df-dm 4833  df-rn 4834  df-res 4835  df-ima 4836  df-pred 5367  df-ord 5413  df-on 5414  df-lim 5415  df-suc 5416  df-iota 5533  df-fun 5571  df-fn 5572  df-f 5573  df-f1 5574  df-fo 5575  df-f1o 5576  df-fv 5577  df-riota 6240  df-ov 6281  df-oprab 6282  df-mpt2 6283  df-om 6684  df-1st 6784  df-2nd 6785  df-wrecs 7013  df-recs 7075  df-rdg 7113  df-1o 7167  df-oadd 7171  df-er 7348  df-en 7555  df-dom 7556  df-sdom 7557  df-fin 7558  df-card 8352  df-cda 8580  df-pnf 9660  df-mnf 9661  df-xr 9662  df-ltxr 9663  df-le 9664  df-sub 9843  df-neg 9844  df-nn 10577  df-2 10635  df-n0 10837  df-z 10906  df-uz 11128  df-fz 11727  df-fzo 11855  df-hash 12453  df-word 12591  df-concat 12593  df-substr 12595
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator