MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  swrdccat Structured version   Visualization version   Unicode version

Theorem swrdccat 12903
Description: The subword of a concatenation of two words as concatenation of subwords of the two concatenated words. (Contributed by Alexander van der Vekens, 29-May-2018.)
Hypothesis
Ref Expression
swrdccatin12.l  |-  L  =  ( # `  A
)
Assertion
Ref Expression
swrdccat  |-  ( ( A  e. Word  V  /\  B  e. Word  V )  ->  ( ( M  e.  ( 0 ... N
)  /\  N  e.  ( 0 ... ( L  +  ( # `  B
) ) ) )  ->  ( ( A ++  B ) substr  <. M ,  N >. )  =  ( ( A substr  <. M ,  if ( N  <_  L ,  N ,  L )
>. ) ++  ( B substr  <. if ( 0  <_  ( M  -  L ) ,  ( M  -  L ) ,  0 ) ,  ( N  -  L ) >.
) ) ) )

Proof of Theorem swrdccat
StepHypRef Expression
1 swrdccatin12.l . . . . 5  |-  L  =  ( # `  A
)
21swrdccat3 12902 . . . 4  |-  ( ( A  e. Word  V  /\  B  e. Word  V )  ->  ( ( M  e.  ( 0 ... N
)  /\  N  e.  ( 0 ... ( L  +  ( # `  B
) ) ) )  ->  ( ( A ++  B ) substr  <. M ,  N >. )  =  if ( N  <_  L ,  ( A substr  <. M ,  N >. ) ,  if ( L  <_  M , 
( B substr  <. ( M  -  L ) ,  ( N  -  L
) >. ) ,  ( ( A substr  <. M ,  L >. ) ++  ( B substr  <. 0 ,  ( N  -  L ) >.
) ) ) ) ) )
32imp 436 . . 3  |-  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  ( M  e.  ( 0 ... N
)  /\  N  e.  ( 0 ... ( L  +  ( # `  B
) ) ) ) )  ->  ( ( A ++  B ) substr  <. M ,  N >. )  =  if ( N  <_  L ,  ( A substr  <. M ,  N >. ) ,  if ( L  <_  M , 
( B substr  <. ( M  -  L ) ,  ( N  -  L
) >. ) ,  ( ( A substr  <. M ,  L >. ) ++  ( B substr  <. 0 ,  ( N  -  L ) >.
) ) ) ) )
4 lencl 12737 . . . . . 6  |-  ( A  e. Word  V  ->  ( # `
 A )  e. 
NN0 )
54adantr 472 . . . . 5  |-  ( ( A  e. Word  V  /\  B  e. Word  V )  ->  ( # `  A
)  e.  NN0 )
61eqcomi 2480 . . . . . . 7  |-  ( # `  A )  =  L
76eleq1i 2540 . . . . . 6  |-  ( (
# `  A )  e.  NN0  <->  L  e.  NN0 )
8 elfz2nn0 11911 . . . . . . . . 9  |-  ( M  e.  ( 0 ... N )  <->  ( M  e.  NN0  /\  N  e. 
NN0  /\  M  <_  N ) )
9 iftrue 3878 . . . . . . . . . . . . . . . . . 18  |-  ( N  <_  L  ->  if ( N  <_  L ,  N ,  L )  =  N )
109adantl 473 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( A  e. Word  V  /\  B  e. Word  V
)  /\  ( ( M  e.  NN0  /\  N  e.  NN0 )  /\  L  e.  NN0 ) )  /\  N  <_  L )  ->  if ( N  <_  L ,  N ,  L )  =  N )
1110opeq2d 4165 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  e. Word  V  /\  B  e. Word  V
)  /\  ( ( M  e.  NN0  /\  N  e.  NN0 )  /\  L  e.  NN0 ) )  /\  N  <_  L )  ->  <. M ,  if ( N  <_  L ,  N ,  L ) >.  =  <. M ,  N >. )
1211oveq2d 6324 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e. Word  V  /\  B  e. Word  V
)  /\  ( ( M  e.  NN0  /\  N  e.  NN0 )  /\  L  e.  NN0 ) )  /\  N  <_  L )  -> 
( A substr  <. M ,  if ( N  <_  L ,  N ,  L )
>. )  =  ( A substr  <. M ,  N >. ) )
13 iftrue 3878 . . . . . . . . . . . . . . . . . . . 20  |-  ( 0  <_  ( M  -  L )  ->  if ( 0  <_  ( M  -  L ) ,  ( M  -  L ) ,  0 )  =  ( M  -  L ) )
1413opeq1d 4164 . . . . . . . . . . . . . . . . . . 19  |-  ( 0  <_  ( M  -  L )  ->  <. if ( 0  <_  ( M  -  L ) ,  ( M  -  L ) ,  0 ) ,  ( N  -  L
) >.  =  <. ( M  -  L ) ,  ( N  -  L ) >. )
1514oveq2d 6324 . . . . . . . . . . . . . . . . . 18  |-  ( 0  <_  ( M  -  L )  ->  ( B substr  <. if ( 0  <_  ( M  -  L ) ,  ( M  -  L ) ,  0 ) ,  ( N  -  L
) >. )  =  ( B substr  <. ( M  -  L ) ,  ( N  -  L )
>. ) )
1615adantr 472 . . . . . . . . . . . . . . . . 17  |-  ( ( 0  <_  ( M  -  L )  /\  (
( ( A  e. Word  V  /\  B  e. Word  V
)  /\  ( ( M  e.  NN0  /\  N  e.  NN0 )  /\  L  e.  NN0 ) )  /\  N  <_  L ) )  ->  ( B substr  <. if ( 0  <_  ( M  -  L ) ,  ( M  -  L ) ,  0 ) ,  ( N  -  L
) >. )  =  ( B substr  <. ( M  -  L ) ,  ( N  -  L )
>. ) )
17 simpr 468 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( A  e. Word  V  /\  B  e. Word  V )  ->  B  e. Word  V )
18 nn0z 10984 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( L  e.  NN0  ->  L  e.  ZZ )
19 nn0z 10984 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( M  e.  NN0  ->  M  e.  ZZ )
2019adantr 472 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  ->  M  e.  ZZ )
21 zsubcl 11003 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( M  e.  ZZ  /\  L  e.  ZZ )  ->  ( M  -  L
)  e.  ZZ )
2220, 21sylan 479 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( M  e.  NN0  /\  N  e.  NN0 )  /\  L  e.  ZZ )  ->  ( M  -  L )  e.  ZZ )
23 nn0z 10984 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( N  e.  NN0  ->  N  e.  ZZ )
2423adantl 473 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  ->  N  e.  ZZ )
25 zsubcl 11003 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( N  e.  ZZ  /\  L  e.  ZZ )  ->  ( N  -  L
)  e.  ZZ )
2624, 25sylan 479 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( M  e.  NN0  /\  N  e.  NN0 )  /\  L  e.  ZZ )  ->  ( N  -  L )  e.  ZZ )
2722, 26jca 541 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( M  e.  NN0  /\  N  e.  NN0 )  /\  L  e.  ZZ )  ->  ( ( M  -  L )  e.  ZZ  /\  ( N  -  L )  e.  ZZ ) )
2818, 27sylan2 482 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( M  e.  NN0  /\  N  e.  NN0 )  /\  L  e.  NN0 )  ->  ( ( M  -  L )  e.  ZZ  /\  ( N  -  L )  e.  ZZ ) )
2917, 28anim12i 576 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  ( ( M  e.  NN0  /\  N  e. 
NN0 )  /\  L  e.  NN0 ) )  -> 
( B  e. Word  V  /\  ( ( M  -  L )  e.  ZZ  /\  ( N  -  L
)  e.  ZZ ) ) )
30 3anass 1011 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( B  e. Word  V  /\  ( M  -  L
)  e.  ZZ  /\  ( N  -  L
)  e.  ZZ )  <-> 
( B  e. Word  V  /\  ( ( M  -  L )  e.  ZZ  /\  ( N  -  L
)  e.  ZZ ) ) )
3129, 30sylibr 217 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  ( ( M  e.  NN0  /\  N  e. 
NN0 )  /\  L  e.  NN0 ) )  -> 
( B  e. Word  V  /\  ( M  -  L
)  e.  ZZ  /\  ( N  -  L
)  e.  ZZ ) )
3231ad2antrl 742 . . . . . . . . . . . . . . . . . 18  |-  ( ( 0  <_  ( M  -  L )  /\  (
( ( A  e. Word  V  /\  B  e. Word  V
)  /\  ( ( M  e.  NN0  /\  N  e.  NN0 )  /\  L  e.  NN0 ) )  /\  N  <_  L ) )  ->  ( B  e. Word  V  /\  ( M  -  L )  e.  ZZ  /\  ( N  -  L
)  e.  ZZ ) )
33 nn0re 10902 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( M  e.  NN0  ->  M  e.  RR )
34 nn0re 10902 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( N  e.  NN0  ->  N  e.  RR )
3533, 34anim12i 576 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( M  e.  RR  /\  N  e.  RR ) )
36 nn0re 10902 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( L  e.  NN0  ->  L  e.  RR )
37 subge0 10148 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( M  e.  RR  /\  L  e.  RR )  ->  ( 0  <_  ( M  -  L )  <->  L  <_  M ) )
3837adantlr 729 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( M  e.  RR  /\  N  e.  RR )  /\  L  e.  RR )  ->  ( 0  <_ 
( M  -  L
)  <->  L  <_  M ) )
39 simpr 468 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( M  e.  RR  /\  N  e.  RR )  ->  N  e.  RR )
4039adantr 472 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( ( M  e.  RR  /\  N  e.  RR )  /\  L  e.  RR )  ->  N  e.  RR )
41 simpr 468 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( ( M  e.  RR  /\  N  e.  RR )  /\  L  e.  RR )  ->  L  e.  RR )
42 simpl 464 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( M  e.  RR  /\  N  e.  RR )  ->  M  e.  RR )
4342adantr 472 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( ( M  e.  RR  /\  N  e.  RR )  /\  L  e.  RR )  ->  M  e.  RR )
4440, 41, 433jca 1210 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( M  e.  RR  /\  N  e.  RR )  /\  L  e.  RR )  ->  ( N  e.  RR  /\  L  e.  RR  /\  M  e.  RR ) )
45 letr 9745 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( N  e.  RR  /\  L  e.  RR  /\  M  e.  RR )  ->  (
( N  <_  L  /\  L  <_  M )  ->  N  <_  M
) )
4644, 45syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( M  e.  RR  /\  N  e.  RR )  /\  L  e.  RR )  ->  ( ( N  <_  L  /\  L  <_  M )  ->  N  <_  M ) )
4746expcomd 445 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( M  e.  RR  /\  N  e.  RR )  /\  L  e.  RR )  ->  ( L  <_  M  ->  ( N  <_  L  ->  N  <_  M
) ) )
4838, 47sylbid 223 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( M  e.  RR  /\  N  e.  RR )  /\  L  e.  RR )  ->  ( 0  <_ 
( M  -  L
)  ->  ( N  <_  L  ->  N  <_  M ) ) )
4948com23 80 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( M  e.  RR  /\  N  e.  RR )  /\  L  e.  RR )  ->  ( N  <_  L  ->  ( 0  <_ 
( M  -  L
)  ->  N  <_  M ) ) )
5035, 36, 49syl2an 485 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( M  e.  NN0  /\  N  e.  NN0 )  /\  L  e.  NN0 )  ->  ( N  <_  L  ->  ( 0  <_ 
( M  -  L
)  ->  N  <_  M ) ) )
5150adantl 473 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  ( ( M  e.  NN0  /\  N  e. 
NN0 )  /\  L  e.  NN0 ) )  -> 
( N  <_  L  ->  ( 0  <_  ( M  -  L )  ->  N  <_  M )
) )
5251imp 436 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( A  e. Word  V  /\  B  e. Word  V
)  /\  ( ( M  e.  NN0  /\  N  e.  NN0 )  /\  L  e.  NN0 ) )  /\  N  <_  L )  -> 
( 0  <_  ( M  -  L )  ->  N  <_  M )
)
5352impcom 437 . . . . . . . . . . . . . . . . . . 19  |-  ( ( 0  <_  ( M  -  L )  /\  (
( ( A  e. Word  V  /\  B  e. Word  V
)  /\  ( ( M  e.  NN0  /\  N  e.  NN0 )  /\  L  e.  NN0 ) )  /\  N  <_  L ) )  ->  N  <_  M
)
5434adantl 473 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  ->  N  e.  RR )
5554adantr 472 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( M  e.  NN0  /\  N  e.  NN0 )  /\  L  e.  NN0 )  ->  N  e.  RR )
5633adantr 472 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  ->  M  e.  RR )
5756adantr 472 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( M  e.  NN0  /\  N  e.  NN0 )  /\  L  e.  NN0 )  ->  M  e.  RR )
5836adantl 473 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( M  e.  NN0  /\  N  e.  NN0 )  /\  L  e.  NN0 )  ->  L  e.  RR )
5955, 57, 583jca 1210 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( M  e.  NN0  /\  N  e.  NN0 )  /\  L  e.  NN0 )  ->  ( N  e.  RR  /\  M  e.  RR  /\  L  e.  RR ) )
6059adantl 473 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  ( ( M  e.  NN0  /\  N  e. 
NN0 )  /\  L  e.  NN0 ) )  -> 
( N  e.  RR  /\  M  e.  RR  /\  L  e.  RR )
)
6160ad2antrl 742 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( 0  <_  ( M  -  L )  /\  (
( ( A  e. Word  V  /\  B  e. Word  V
)  /\  ( ( M  e.  NN0  /\  N  e.  NN0 )  /\  L  e.  NN0 ) )  /\  N  <_  L ) )  ->  ( N  e.  RR  /\  M  e.  RR  /\  L  e.  RR ) )
62 lesub1 10129 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( N  e.  RR  /\  M  e.  RR  /\  L  e.  RR )  ->  ( N  <_  M  <->  ( N  -  L )  <_  ( M  -  L )
) )
6361, 62syl 17 . . . . . . . . . . . . . . . . . . 19  |-  ( ( 0  <_  ( M  -  L )  /\  (
( ( A  e. Word  V  /\  B  e. Word  V
)  /\  ( ( M  e.  NN0  /\  N  e.  NN0 )  /\  L  e.  NN0 ) )  /\  N  <_  L ) )  ->  ( N  <_  M 
<->  ( N  -  L
)  <_  ( M  -  L ) ) )
6453, 63mpbid 215 . . . . . . . . . . . . . . . . . 18  |-  ( ( 0  <_  ( M  -  L )  /\  (
( ( A  e. Word  V  /\  B  e. Word  V
)  /\  ( ( M  e.  NN0  /\  N  e.  NN0 )  /\  L  e.  NN0 ) )  /\  N  <_  L ) )  ->  ( N  -  L )  <_  ( M  -  L )
)
65 swrdlend 12841 . . . . . . . . . . . . . . . . . 18  |-  ( ( B  e. Word  V  /\  ( M  -  L
)  e.  ZZ  /\  ( N  -  L
)  e.  ZZ )  ->  ( ( N  -  L )  <_ 
( M  -  L
)  ->  ( B substr  <.
( M  -  L
) ,  ( N  -  L ) >.
)  =  (/) ) )
6632, 64, 65sylc 61 . . . . . . . . . . . . . . . . 17  |-  ( ( 0  <_  ( M  -  L )  /\  (
( ( A  e. Word  V  /\  B  e. Word  V
)  /\  ( ( M  e.  NN0  /\  N  e.  NN0 )  /\  L  e.  NN0 ) )  /\  N  <_  L ) )  ->  ( B substr  <. ( M  -  L ) ,  ( N  -  L ) >. )  =  (/) )
6716, 66eqtrd 2505 . . . . . . . . . . . . . . . 16  |-  ( ( 0  <_  ( M  -  L )  /\  (
( ( A  e. Word  V  /\  B  e. Word  V
)  /\  ( ( M  e.  NN0  /\  N  e.  NN0 )  /\  L  e.  NN0 ) )  /\  N  <_  L ) )  ->  ( B substr  <. if ( 0  <_  ( M  -  L ) ,  ( M  -  L ) ,  0 ) ,  ( N  -  L
) >. )  =  (/) )
68 iffalse 3881 . . . . . . . . . . . . . . . . . . 19  |-  ( -.  0  <_  ( M  -  L )  ->  if ( 0  <_  ( M  -  L ) ,  ( M  -  L ) ,  0 )  =  0 )
6968opeq1d 4164 . . . . . . . . . . . . . . . . . 18  |-  ( -.  0  <_  ( M  -  L )  ->  <. if ( 0  <_  ( M  -  L ) ,  ( M  -  L ) ,  0 ) ,  ( N  -  L
) >.  =  <. 0 ,  ( N  -  L ) >. )
7069oveq2d 6324 . . . . . . . . . . . . . . . . 17  |-  ( -.  0  <_  ( M  -  L )  ->  ( B substr  <. if ( 0  <_  ( M  -  L ) ,  ( M  -  L ) ,  0 ) ,  ( N  -  L
) >. )  =  ( B substr  <. 0 ,  ( N  -  L )
>. ) )
7117adantr 472 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  ( ( M  e.  NN0  /\  N  e. 
NN0 )  /\  L  e.  NN0 ) )  ->  B  e. Word  V )
7271adantr 472 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( A  e. Word  V  /\  B  e. Word  V
)  /\  ( ( M  e.  NN0  /\  N  e.  NN0 )  /\  L  e.  NN0 ) )  /\  N  <_  L )  ->  B  e. Word  V )
73 0zd 10973 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( A  e. Word  V  /\  B  e. Word  V
)  /\  ( ( M  e.  NN0  /\  N  e.  NN0 )  /\  L  e.  NN0 ) )  /\  N  <_  L )  -> 
0  e.  ZZ )
7424, 18, 25syl2an 485 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( M  e.  NN0  /\  N  e.  NN0 )  /\  L  e.  NN0 )  ->  ( N  -  L )  e.  ZZ )
7574adantl 473 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  ( ( M  e.  NN0  /\  N  e. 
NN0 )  /\  L  e.  NN0 ) )  -> 
( N  -  L
)  e.  ZZ )
7675adantr 472 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( A  e. Word  V  /\  B  e. Word  V
)  /\  ( ( M  e.  NN0  /\  N  e.  NN0 )  /\  L  e.  NN0 ) )  /\  N  <_  L )  -> 
( N  -  L
)  e.  ZZ )
7772, 73, 763jca 1210 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( A  e. Word  V  /\  B  e. Word  V
)  /\  ( ( M  e.  NN0  /\  N  e.  NN0 )  /\  L  e.  NN0 ) )  /\  N  <_  L )  -> 
( B  e. Word  V  /\  0  e.  ZZ  /\  ( N  -  L
)  e.  ZZ ) )
7854, 36anim12i 576 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( M  e.  NN0  /\  N  e.  NN0 )  /\  L  e.  NN0 )  ->  ( N  e.  RR  /\  L  e.  RR ) )
7978adantl 473 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  ( ( M  e.  NN0  /\  N  e. 
NN0 )  /\  L  e.  NN0 ) )  -> 
( N  e.  RR  /\  L  e.  RR ) )
80 suble0 10149 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( N  e.  RR  /\  L  e.  RR )  ->  ( ( N  -  L )  <_  0  <->  N  <_  L ) )
8179, 80syl 17 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  ( ( M  e.  NN0  /\  N  e. 
NN0 )  /\  L  e.  NN0 ) )  -> 
( ( N  -  L )  <_  0  <->  N  <_  L ) )
8281biimpar 493 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( A  e. Word  V  /\  B  e. Word  V
)  /\  ( ( M  e.  NN0  /\  N  e.  NN0 )  /\  L  e.  NN0 ) )  /\  N  <_  L )  -> 
( N  -  L
)  <_  0 )
83 swrdlend 12841 . . . . . . . . . . . . . . . . . 18  |-  ( ( B  e. Word  V  /\  0  e.  ZZ  /\  ( N  -  L )  e.  ZZ )  ->  (
( N  -  L
)  <_  0  ->  ( B substr  <. 0 ,  ( N  -  L )
>. )  =  (/) ) )
8477, 82, 83sylc 61 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( A  e. Word  V  /\  B  e. Word  V
)  /\  ( ( M  e.  NN0  /\  N  e.  NN0 )  /\  L  e.  NN0 ) )  /\  N  <_  L )  -> 
( B substr  <. 0 ,  ( N  -  L
) >. )  =  (/) )
8570, 84sylan9eq 2525 . . . . . . . . . . . . . . . 16  |-  ( ( -.  0  <_  ( M  -  L )  /\  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  (
( M  e.  NN0  /\  N  e.  NN0 )  /\  L  e.  NN0 ) )  /\  N  <_  L ) )  -> 
( B substr  <. if ( 0  <_  ( M  -  L ) ,  ( M  -  L ) ,  0 ) ,  ( N  -  L
) >. )  =  (/) )
8667, 85pm2.61ian 807 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e. Word  V  /\  B  e. Word  V
)  /\  ( ( M  e.  NN0  /\  N  e.  NN0 )  /\  L  e.  NN0 ) )  /\  N  <_  L )  -> 
( B substr  <. if ( 0  <_  ( M  -  L ) ,  ( M  -  L ) ,  0 ) ,  ( N  -  L
) >. )  =  (/) )
8712, 86oveq12d 6326 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e. Word  V  /\  B  e. Word  V
)  /\  ( ( M  e.  NN0  /\  N  e.  NN0 )  /\  L  e.  NN0 ) )  /\  N  <_  L )  -> 
( ( A substr  <. M ,  if ( N  <_  L ,  N ,  L )
>. ) ++  ( B substr  <. if ( 0  <_  ( M  -  L ) ,  ( M  -  L ) ,  0 ) ,  ( N  -  L ) >.
) )  =  ( ( A substr  <. M ,  N >. ) ++  (/) ) )
88 swrdcl 12829 . . . . . . . . . . . . . . . . . 18  |-  ( A  e. Word  V  ->  ( A substr  <. M ,  N >. )  e. Word  V )
89 ccatrid 12782 . . . . . . . . . . . . . . . . . 18  |-  ( ( A substr  <. M ,  N >. )  e. Word  V  -> 
( ( A substr  <. M ,  N >. ) ++  (/) )  =  ( A substr  <. M ,  N >. ) )
9088, 89syl 17 . . . . . . . . . . . . . . . . 17  |-  ( A  e. Word  V  ->  (
( A substr  <. M ,  N >. ) ++  (/) )  =  ( A substr  <. M ,  N >. ) )
9190adantr 472 . . . . . . . . . . . . . . . 16  |-  ( ( A  e. Word  V  /\  B  e. Word  V )  ->  ( ( A substr  <. M ,  N >. ) ++  (/) )  =  ( A substr  <. M ,  N >. ) )
9291adantr 472 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  ( ( M  e.  NN0  /\  N  e. 
NN0 )  /\  L  e.  NN0 ) )  -> 
( ( A substr  <. M ,  N >. ) ++  (/) )  =  ( A substr  <. M ,  N >. ) )
9392adantr 472 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e. Word  V  /\  B  e. Word  V
)  /\  ( ( M  e.  NN0  /\  N  e.  NN0 )  /\  L  e.  NN0 ) )  /\  N  <_  L )  -> 
( ( A substr  <. M ,  N >. ) ++  (/) )  =  ( A substr  <. M ,  N >. ) )
9487, 93eqtrd 2505 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e. Word  V  /\  B  e. Word  V
)  /\  ( ( M  e.  NN0  /\  N  e.  NN0 )  /\  L  e.  NN0 ) )  /\  N  <_  L )  -> 
( ( A substr  <. M ,  if ( N  <_  L ,  N ,  L )
>. ) ++  ( B substr  <. if ( 0  <_  ( M  -  L ) ,  ( M  -  L ) ,  0 ) ,  ( N  -  L ) >.
) )  =  ( A substr  <. M ,  N >. ) )
95 iffalse 3881 . . . . . . . . . . . . . . . . . . 19  |-  ( -.  N  <_  L  ->  if ( N  <_  L ,  N ,  L )  =  L )
96953ad2ant2 1052 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( A  e. Word  V  /\  B  e. Word  V
)  /\  ( ( M  e.  NN0  /\  N  e.  NN0 )  /\  L  e.  NN0 ) )  /\  -.  N  <_  L  /\  L  <_  M )  ->  if ( N  <_  L ,  N ,  L )  =  L )
9796opeq2d 4165 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( A  e. Word  V  /\  B  e. Word  V
)  /\  ( ( M  e.  NN0  /\  N  e.  NN0 )  /\  L  e.  NN0 ) )  /\  -.  N  <_  L  /\  L  <_  M )  ->  <. M ,  if ( N  <_  L ,  N ,  L ) >.  =  <. M ,  L >. )
9897oveq2d 6324 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  e. Word  V  /\  B  e. Word  V
)  /\  ( ( M  e.  NN0  /\  N  e.  NN0 )  /\  L  e.  NN0 ) )  /\  -.  N  <_  L  /\  L  <_  M )  -> 
( A substr  <. M ,  if ( N  <_  L ,  N ,  L )
>. )  =  ( A substr  <. M ,  L >. ) )
99 simpl 464 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( A  e. Word  V  /\  B  e. Word  V )  ->  A  e. Word  V )
10099, 20, 183anim123i 1215 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  ( M  e. 
NN0  /\  N  e.  NN0 )  /\  L  e. 
NN0 )  ->  ( A  e. Word  V  /\  M  e.  ZZ  /\  L  e.  ZZ ) )
1011003expb 1232 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  ( ( M  e.  NN0  /\  N  e. 
NN0 )  /\  L  e.  NN0 ) )  -> 
( A  e. Word  V  /\  M  e.  ZZ  /\  L  e.  ZZ ) )
102 swrdlend 12841 . . . . . . . . . . . . . . . . . . 19  |-  ( ( A  e. Word  V  /\  M  e.  ZZ  /\  L  e.  ZZ )  ->  ( L  <_  M  ->  ( A substr  <. M ,  L >. )  =  (/) ) )
103101, 102syl 17 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  ( ( M  e.  NN0  /\  N  e. 
NN0 )  /\  L  e.  NN0 ) )  -> 
( L  <_  M  ->  ( A substr  <. M ,  L >. )  =  (/) ) )
104103imp 436 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( A  e. Word  V  /\  B  e. Word  V
)  /\  ( ( M  e.  NN0  /\  N  e.  NN0 )  /\  L  e.  NN0 ) )  /\  L  <_  M )  -> 
( A substr  <. M ,  L >. )  =  (/) )
1051043adant2 1049 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  e. Word  V  /\  B  e. Word  V
)  /\  ( ( M  e.  NN0  /\  N  e.  NN0 )  /\  L  e.  NN0 ) )  /\  -.  N  <_  L  /\  L  <_  M )  -> 
( A substr  <. M ,  L >. )  =  (/) )
10698, 105eqtrd 2505 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e. Word  V  /\  B  e. Word  V
)  /\  ( ( M  e.  NN0  /\  N  e.  NN0 )  /\  L  e.  NN0 ) )  /\  -.  N  <_  L  /\  L  <_  M )  -> 
( A substr  <. M ,  if ( N  <_  L ,  N ,  L )
>. )  =  (/) )
10756, 36, 37syl2an 485 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( M  e.  NN0  /\  N  e.  NN0 )  /\  L  e.  NN0 )  ->  ( 0  <_ 
( M  -  L
)  <->  L  <_  M ) )
108107biimprd 231 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( M  e.  NN0  /\  N  e.  NN0 )  /\  L  e.  NN0 )  ->  ( L  <_  M  ->  0  <_  ( M  -  L )
) )
109108adantl 473 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  ( ( M  e.  NN0  /\  N  e. 
NN0 )  /\  L  e.  NN0 ) )  -> 
( L  <_  M  ->  0  <_  ( M  -  L ) ) )
110109imp 436 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( A  e. Word  V  /\  B  e. Word  V
)  /\  ( ( M  e.  NN0  /\  N  e.  NN0 )  /\  L  e.  NN0 ) )  /\  L  <_  M )  -> 
0  <_  ( M  -  L ) )
1111103adant2 1049 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( A  e. Word  V  /\  B  e. Word  V
)  /\  ( ( M  e.  NN0  /\  N  e.  NN0 )  /\  L  e.  NN0 ) )  /\  -.  N  <_  L  /\  L  <_  M )  -> 
0  <_  ( M  -  L ) )
112111, 14syl 17 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  e. Word  V  /\  B  e. Word  V
)  /\  ( ( M  e.  NN0  /\  N  e.  NN0 )  /\  L  e.  NN0 ) )  /\  -.  N  <_  L  /\  L  <_  M )  ->  <. if ( 0  <_ 
( M  -  L
) ,  ( M  -  L ) ,  0 ) ,  ( N  -  L )
>.  =  <. ( M  -  L ) ,  ( N  -  L
) >. )
113112oveq2d 6324 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e. Word  V  /\  B  e. Word  V
)  /\  ( ( M  e.  NN0  /\  N  e.  NN0 )  /\  L  e.  NN0 ) )  /\  -.  N  <_  L  /\  L  <_  M )  -> 
( B substr  <. if ( 0  <_  ( M  -  L ) ,  ( M  -  L ) ,  0 ) ,  ( N  -  L
) >. )  =  ( B substr  <. ( M  -  L ) ,  ( N  -  L )
>. ) )
114106, 113oveq12d 6326 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e. Word  V  /\  B  e. Word  V
)  /\  ( ( M  e.  NN0  /\  N  e.  NN0 )  /\  L  e.  NN0 ) )  /\  -.  N  <_  L  /\  L  <_  M )  -> 
( ( A substr  <. M ,  if ( N  <_  L ,  N ,  L )
>. ) ++  ( B substr  <. if ( 0  <_  ( M  -  L ) ,  ( M  -  L ) ,  0 ) ,  ( N  -  L ) >.
) )  =  (
(/) ++  ( B substr  <. ( M  -  L ) ,  ( N  -  L ) >. )
) )
115 swrdcl 12829 . . . . . . . . . . . . . . . . . 18  |-  ( B  e. Word  V  ->  ( B substr  <. ( M  -  L ) ,  ( N  -  L )
>. )  e. Word  V )
116115adantl 473 . . . . . . . . . . . . . . . . 17  |-  ( ( A  e. Word  V  /\  B  e. Word  V )  ->  ( B substr  <. ( M  -  L ) ,  ( N  -  L ) >. )  e. Word  V )
117 ccatlid 12781 . . . . . . . . . . . . . . . . 17  |-  ( ( B substr  <. ( M  -  L ) ,  ( N  -  L )
>. )  e. Word  V  -> 
( (/) ++  ( B substr  <. ( M  -  L ) ,  ( N  -  L ) >. )
)  =  ( B substr  <. ( M  -  L
) ,  ( N  -  L ) >.
) )
118116, 117syl 17 . . . . . . . . . . . . . . . 16  |-  ( ( A  e. Word  V  /\  B  e. Word  V )  ->  ( (/) ++  ( B substr  <.
( M  -  L
) ,  ( N  -  L ) >.
) )  =  ( B substr  <. ( M  -  L ) ,  ( N  -  L )
>. ) )
119118adantr 472 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  ( ( M  e.  NN0  /\  N  e. 
NN0 )  /\  L  e.  NN0 ) )  -> 
( (/) ++  ( B substr  <. ( M  -  L ) ,  ( N  -  L ) >. )
)  =  ( B substr  <. ( M  -  L
) ,  ( N  -  L ) >.
) )
1201193ad2ant1 1051 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e. Word  V  /\  B  e. Word  V
)  /\  ( ( M  e.  NN0  /\  N  e.  NN0 )  /\  L  e.  NN0 ) )  /\  -.  N  <_  L  /\  L  <_  M )  -> 
( (/) ++  ( B substr  <. ( M  -  L ) ,  ( N  -  L ) >. )
)  =  ( B substr  <. ( M  -  L
) ,  ( N  -  L ) >.
) )
121114, 120eqtrd 2505 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e. Word  V  /\  B  e. Word  V
)  /\  ( ( M  e.  NN0  /\  N  e.  NN0 )  /\  L  e.  NN0 ) )  /\  -.  N  <_  L  /\  L  <_  M )  -> 
( ( A substr  <. M ,  if ( N  <_  L ,  N ,  L )
>. ) ++  ( B substr  <. if ( 0  <_  ( M  -  L ) ,  ( M  -  L ) ,  0 ) ,  ( N  -  L ) >.
) )  =  ( B substr  <. ( M  -  L ) ,  ( N  -  L )
>. ) )
122953ad2ant2 1052 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  e. Word  V  /\  B  e. Word  V
)  /\  ( ( M  e.  NN0  /\  N  e.  NN0 )  /\  L  e.  NN0 ) )  /\  -.  N  <_  L  /\  -.  L  <_  M )  ->  if ( N  <_  L ,  N ,  L )  =  L )
123122opeq2d 4165 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e. Word  V  /\  B  e. Word  V
)  /\  ( ( M  e.  NN0  /\  N  e.  NN0 )  /\  L  e.  NN0 ) )  /\  -.  N  <_  L  /\  -.  L  <_  M )  ->  <. M ,  if ( N  <_  L ,  N ,  L ) >.  =  <. M ,  L >. )
124123oveq2d 6324 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e. Word  V  /\  B  e. Word  V
)  /\  ( ( M  e.  NN0  /\  N  e.  NN0 )  /\  L  e.  NN0 ) )  /\  -.  N  <_  L  /\  -.  L  <_  M )  ->  ( A substr  <. M ,  if ( N  <_  L ,  N ,  L )
>. )  =  ( A substr  <. M ,  L >. ) )
12533, 36, 37syl2an 485 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( M  e.  NN0  /\  L  e.  NN0 )  -> 
( 0  <_  ( M  -  L )  <->  L  <_  M ) )
126125adantlr 729 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( M  e.  NN0  /\  N  e.  NN0 )  /\  L  e.  NN0 )  ->  ( 0  <_ 
( M  -  L
)  <->  L  <_  M ) )
127126adantl 473 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  ( ( M  e.  NN0  /\  N  e. 
NN0 )  /\  L  e.  NN0 ) )  -> 
( 0  <_  ( M  -  L )  <->  L  <_  M ) )
128127biimpd 212 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  ( ( M  e.  NN0  /\  N  e. 
NN0 )  /\  L  e.  NN0 ) )  -> 
( 0  <_  ( M  -  L )  ->  L  <_  M )
)
129128con3dimp 448 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( A  e. Word  V  /\  B  e. Word  V
)  /\  ( ( M  e.  NN0  /\  N  e.  NN0 )  /\  L  e.  NN0 ) )  /\  -.  L  <_  M )  ->  -.  0  <_  ( M  -  L ) )
1301293adant2 1049 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( A  e. Word  V  /\  B  e. Word  V
)  /\  ( ( M  e.  NN0  /\  N  e.  NN0 )  /\  L  e.  NN0 ) )  /\  -.  N  <_  L  /\  -.  L  <_  M )  ->  -.  0  <_  ( M  -  L ) )
131130, 68syl 17 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  e. Word  V  /\  B  e. Word  V
)  /\  ( ( M  e.  NN0  /\  N  e.  NN0 )  /\  L  e.  NN0 ) )  /\  -.  N  <_  L  /\  -.  L  <_  M )  ->  if ( 0  <_  ( M  -  L ) ,  ( M  -  L ) ,  0 )  =  0 )
132131opeq1d 4164 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e. Word  V  /\  B  e. Word  V
)  /\  ( ( M  e.  NN0  /\  N  e.  NN0 )  /\  L  e.  NN0 ) )  /\  -.  N  <_  L  /\  -.  L  <_  M )  ->  <. if ( 0  <_  ( M  -  L ) ,  ( M  -  L ) ,  0 ) ,  ( N  -  L
) >.  =  <. 0 ,  ( N  -  L ) >. )
133132oveq2d 6324 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e. Word  V  /\  B  e. Word  V
)  /\  ( ( M  e.  NN0  /\  N  e.  NN0 )  /\  L  e.  NN0 ) )  /\  -.  N  <_  L  /\  -.  L  <_  M )  ->  ( B substr  <. if ( 0  <_  ( M  -  L ) ,  ( M  -  L ) ,  0 ) ,  ( N  -  L
) >. )  =  ( B substr  <. 0 ,  ( N  -  L )
>. ) )
134124, 133oveq12d 6326 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e. Word  V  /\  B  e. Word  V
)  /\  ( ( M  e.  NN0  /\  N  e.  NN0 )  /\  L  e.  NN0 ) )  /\  -.  N  <_  L  /\  -.  L  <_  M )  ->  ( ( A substr  <. M ,  if ( N  <_  L ,  N ,  L ) >. ) ++  ( B substr  <. if ( 0  <_  ( M  -  L ) ,  ( M  -  L ) ,  0 ) ,  ( N  -  L
) >. ) )  =  ( ( A substr  <. M ,  L >. ) ++  ( B substr  <. 0 ,  ( N  -  L ) >.
) ) )
13594, 121, 1342if2 3920 . . . . . . . . . . . 12  |-  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  ( ( M  e.  NN0  /\  N  e. 
NN0 )  /\  L  e.  NN0 ) )  -> 
( ( A substr  <. M ,  if ( N  <_  L ,  N ,  L )
>. ) ++  ( B substr  <. if ( 0  <_  ( M  -  L ) ,  ( M  -  L ) ,  0 ) ,  ( N  -  L ) >.
) )  =  if ( N  <_  L ,  ( A substr  <. M ,  N >. ) ,  if ( L  <_  M , 
( B substr  <. ( M  -  L ) ,  ( N  -  L
) >. ) ,  ( ( A substr  <. M ,  L >. ) ++  ( B substr  <. 0 ,  ( N  -  L ) >.
) ) ) ) )
136135exp32 616 . . . . . . . . . . 11  |-  ( ( A  e. Word  V  /\  B  e. Word  V )  ->  ( ( M  e. 
NN0  /\  N  e.  NN0 )  ->  ( L  e.  NN0  ->  ( ( A substr  <. M ,  if ( N  <_  L ,  N ,  L ) >. ) ++  ( B substr  <. if ( 0  <_  ( M  -  L ) ,  ( M  -  L ) ,  0 ) ,  ( N  -  L
) >. ) )  =  if ( N  <_  L ,  ( A substr  <. M ,  N >. ) ,  if ( L  <_  M ,  ( B substr  <. ( M  -  L ) ,  ( N  -  L )
>. ) ,  ( ( A substr  <. M ,  L >. ) ++  ( B substr  <. 0 ,  ( N  -  L ) >. )
) ) ) ) ) )
137136com12 31 . . . . . . . . . 10  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( ( A  e. Word  V  /\  B  e. Word  V
)  ->  ( L  e.  NN0  ->  ( ( A substr  <. M ,  if ( N  <_  L ,  N ,  L ) >. ) ++  ( B substr  <. if ( 0  <_  ( M  -  L ) ,  ( M  -  L ) ,  0 ) ,  ( N  -  L
) >. ) )  =  if ( N  <_  L ,  ( A substr  <. M ,  N >. ) ,  if ( L  <_  M ,  ( B substr  <. ( M  -  L ) ,  ( N  -  L )
>. ) ,  ( ( A substr  <. M ,  L >. ) ++  ( B substr  <. 0 ,  ( N  -  L ) >. )
) ) ) ) ) )
1381373adant3 1050 . . . . . . . . 9  |-  ( ( M  e.  NN0  /\  N  e.  NN0  /\  M  <_  N )  ->  (
( A  e. Word  V  /\  B  e. Word  V )  ->  ( L  e. 
NN0  ->  ( ( A substr  <. M ,  if ( N  <_  L ,  N ,  L ) >. ) ++  ( B substr  <. if ( 0  <_  ( M  -  L ) ,  ( M  -  L ) ,  0 ) ,  ( N  -  L
) >. ) )  =  if ( N  <_  L ,  ( A substr  <. M ,  N >. ) ,  if ( L  <_  M ,  ( B substr  <. ( M  -  L ) ,  ( N  -  L )
>. ) ,  ( ( A substr  <. M ,  L >. ) ++  ( B substr  <. 0 ,  ( N  -  L ) >. )
) ) ) ) ) )
1398, 138sylbi 200 . . . . . . . 8  |-  ( M  e.  ( 0 ... N )  ->  (
( A  e. Word  V  /\  B  e. Word  V )  ->  ( L  e. 
NN0  ->  ( ( A substr  <. M ,  if ( N  <_  L ,  N ,  L ) >. ) ++  ( B substr  <. if ( 0  <_  ( M  -  L ) ,  ( M  -  L ) ,  0 ) ,  ( N  -  L
) >. ) )  =  if ( N  <_  L ,  ( A substr  <. M ,  N >. ) ,  if ( L  <_  M ,  ( B substr  <. ( M  -  L ) ,  ( N  -  L )
>. ) ,  ( ( A substr  <. M ,  L >. ) ++  ( B substr  <. 0 ,  ( N  -  L ) >. )
) ) ) ) ) )
140139adantr 472 . . . . . . 7  |-  ( ( M  e.  ( 0 ... N )  /\  N  e.  ( 0 ... ( L  +  ( # `  B ) ) ) )  -> 
( ( A  e. Word  V  /\  B  e. Word  V
)  ->  ( L  e.  NN0  ->  ( ( A substr  <. M ,  if ( N  <_  L ,  N ,  L ) >. ) ++  ( B substr  <. if ( 0  <_  ( M  -  L ) ,  ( M  -  L ) ,  0 ) ,  ( N  -  L
) >. ) )  =  if ( N  <_  L ,  ( A substr  <. M ,  N >. ) ,  if ( L  <_  M ,  ( B substr  <. ( M  -  L ) ,  ( N  -  L )
>. ) ,  ( ( A substr  <. M ,  L >. ) ++  ( B substr  <. 0 ,  ( N  -  L ) >. )
) ) ) ) ) )
141140com13 82 . . . . . 6  |-  ( L  e.  NN0  ->  ( ( A  e. Word  V  /\  B  e. Word  V )  ->  ( ( M  e.  ( 0 ... N
)  /\  N  e.  ( 0 ... ( L  +  ( # `  B
) ) ) )  ->  ( ( A substr  <. M ,  if ( N  <_  L ,  N ,  L ) >. ) ++  ( B substr  <. if ( 0  <_  ( M  -  L ) ,  ( M  -  L ) ,  0 ) ,  ( N  -  L
) >. ) )  =  if ( N  <_  L ,  ( A substr  <. M ,  N >. ) ,  if ( L  <_  M ,  ( B substr  <. ( M  -  L ) ,  ( N  -  L )
>. ) ,  ( ( A substr  <. M ,  L >. ) ++  ( B substr  <. 0 ,  ( N  -  L ) >. )
) ) ) ) ) )
1427, 141sylbi 200 . . . . 5  |-  ( (
# `  A )  e.  NN0  ->  ( ( A  e. Word  V  /\  B  e. Word  V )  ->  (
( M  e.  ( 0 ... N )  /\  N  e.  ( 0 ... ( L  +  ( # `  B
) ) ) )  ->  ( ( A substr  <. M ,  if ( N  <_  L ,  N ,  L ) >. ) ++  ( B substr  <. if ( 0  <_  ( M  -  L ) ,  ( M  -  L ) ,  0 ) ,  ( N  -  L
) >. ) )  =  if ( N  <_  L ,  ( A substr  <. M ,  N >. ) ,  if ( L  <_  M ,  ( B substr  <. ( M  -  L ) ,  ( N  -  L )
>. ) ,  ( ( A substr  <. M ,  L >. ) ++  ( B substr  <. 0 ,  ( N  -  L ) >. )
) ) ) ) ) )
1435, 142mpcom 36 . . . 4  |-  ( ( A  e. Word  V  /\  B  e. Word  V )  ->  ( ( M  e.  ( 0 ... N
)  /\  N  e.  ( 0 ... ( L  +  ( # `  B
) ) ) )  ->  ( ( A substr  <. M ,  if ( N  <_  L ,  N ,  L ) >. ) ++  ( B substr  <. if ( 0  <_  ( M  -  L ) ,  ( M  -  L ) ,  0 ) ,  ( N  -  L
) >. ) )  =  if ( N  <_  L ,  ( A substr  <. M ,  N >. ) ,  if ( L  <_  M ,  ( B substr  <. ( M  -  L ) ,  ( N  -  L )
>. ) ,  ( ( A substr  <. M ,  L >. ) ++  ( B substr  <. 0 ,  ( N  -  L ) >. )
) ) ) ) )
144143imp 436 . . 3  |-  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  ( M  e.  ( 0 ... N
)  /\  N  e.  ( 0 ... ( L  +  ( # `  B
) ) ) ) )  ->  ( ( A substr  <. M ,  if ( N  <_  L ,  N ,  L ) >. ) ++  ( B substr  <. if ( 0  <_  ( M  -  L ) ,  ( M  -  L ) ,  0 ) ,  ( N  -  L
) >. ) )  =  if ( N  <_  L ,  ( A substr  <. M ,  N >. ) ,  if ( L  <_  M ,  ( B substr  <. ( M  -  L ) ,  ( N  -  L )
>. ) ,  ( ( A substr  <. M ,  L >. ) ++  ( B substr  <. 0 ,  ( N  -  L ) >. )
) ) ) )
1453, 144eqtr4d 2508 . 2  |-  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  ( M  e.  ( 0 ... N
)  /\  N  e.  ( 0 ... ( L  +  ( # `  B
) ) ) ) )  ->  ( ( A ++  B ) substr  <. M ,  N >. )  =  ( ( A substr  <. M ,  if ( N  <_  L ,  N ,  L )
>. ) ++  ( B substr  <. if ( 0  <_  ( M  -  L ) ,  ( M  -  L ) ,  0 ) ,  ( N  -  L ) >.
) ) )
146145ex 441 1  |-  ( ( A  e. Word  V  /\  B  e. Word  V )  ->  ( ( M  e.  ( 0 ... N
)  /\  N  e.  ( 0 ... ( L  +  ( # `  B
) ) ) )  ->  ( ( A ++  B ) substr  <. M ,  N >. )  =  ( ( A substr  <. M ,  if ( N  <_  L ,  N ,  L )
>. ) ++  ( B substr  <. if ( 0  <_  ( M  -  L ) ,  ( M  -  L ) ,  0 ) ,  ( N  -  L ) >.
) ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 189    /\ wa 376    /\ w3a 1007    = wceq 1452    e. wcel 1904   (/)c0 3722   ifcif 3872   <.cop 3965   class class class wbr 4395   ` cfv 5589  (class class class)co 6308   RRcr 9556   0cc0 9557    + caddc 9560    <_ cle 9694    - cmin 9880   NN0cn0 10893   ZZcz 10961   ...cfz 11810   #chash 12553  Word cword 12703   ++ cconcat 12705   substr csubstr 12707
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-8 1906  ax-9 1913  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451  ax-rep 4508  ax-sep 4518  ax-nul 4527  ax-pow 4579  ax-pr 4639  ax-un 6602  ax-cnex 9613  ax-resscn 9614  ax-1cn 9615  ax-icn 9616  ax-addcl 9617  ax-addrcl 9618  ax-mulcl 9619  ax-mulrcl 9620  ax-mulcom 9621  ax-addass 9622  ax-mulass 9623  ax-distr 9624  ax-i2m1 9625  ax-1ne0 9626  ax-1rid 9627  ax-rnegex 9628  ax-rrecex 9629  ax-cnre 9630  ax-pre-lttri 9631  ax-pre-lttrn 9632  ax-pre-ltadd 9633  ax-pre-mulgt0 9634
This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-3or 1008  df-3an 1009  df-tru 1455  df-ex 1672  df-nf 1676  df-sb 1806  df-eu 2323  df-mo 2324  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ne 2643  df-nel 2644  df-ral 2761  df-rex 2762  df-reu 2763  df-rmo 2764  df-rab 2765  df-v 3033  df-sbc 3256  df-csb 3350  df-dif 3393  df-un 3395  df-in 3397  df-ss 3404  df-pss 3406  df-nul 3723  df-if 3873  df-pw 3944  df-sn 3960  df-pr 3962  df-tp 3964  df-op 3966  df-uni 4191  df-int 4227  df-iun 4271  df-br 4396  df-opab 4455  df-mpt 4456  df-tr 4491  df-eprel 4750  df-id 4754  df-po 4760  df-so 4761  df-fr 4798  df-we 4800  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-pred 5387  df-ord 5433  df-on 5434  df-lim 5435  df-suc 5436  df-iota 5553  df-fun 5591  df-fn 5592  df-f 5593  df-f1 5594  df-fo 5595  df-f1o 5596  df-fv 5597  df-riota 6270  df-ov 6311  df-oprab 6312  df-mpt2 6313  df-om 6712  df-1st 6812  df-2nd 6813  df-wrecs 7046  df-recs 7108  df-rdg 7146  df-1o 7200  df-oadd 7204  df-er 7381  df-en 7588  df-dom 7589  df-sdom 7590  df-fin 7591  df-card 8391  df-cda 8616  df-pnf 9695  df-mnf 9696  df-xr 9697  df-ltxr 9698  df-le 9699  df-sub 9882  df-neg 9883  df-nn 10632  df-2 10690  df-n0 10894  df-z 10962  df-uz 11183  df-fz 11811  df-fzo 11943  df-hash 12554  df-word 12711  df-concat 12713  df-substr 12715
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator