MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  swrdccat Structured version   Visualization version   Unicode version

Theorem swrdccat 12844
Description: The subword of a concatenation of two words as concatenation of subwords of the two concatenated words. (Contributed by Alexander van der Vekens, 29-May-2018.)
Hypothesis
Ref Expression
swrdccatin12.l  |-  L  =  ( # `  A
)
Assertion
Ref Expression
swrdccat  |-  ( ( A  e. Word  V  /\  B  e. Word  V )  ->  ( ( M  e.  ( 0 ... N
)  /\  N  e.  ( 0 ... ( L  +  ( # `  B
) ) ) )  ->  ( ( A ++  B ) substr  <. M ,  N >. )  =  ( ( A substr  <. M ,  if ( N  <_  L ,  N ,  L )
>. ) ++  ( B substr  <. if ( 0  <_  ( M  -  L ) ,  ( M  -  L ) ,  0 ) ,  ( N  -  L ) >.
) ) ) )

Proof of Theorem swrdccat
StepHypRef Expression
1 swrdccatin12.l . . . . 5  |-  L  =  ( # `  A
)
21swrdccat3 12843 . . . 4  |-  ( ( A  e. Word  V  /\  B  e. Word  V )  ->  ( ( M  e.  ( 0 ... N
)  /\  N  e.  ( 0 ... ( L  +  ( # `  B
) ) ) )  ->  ( ( A ++  B ) substr  <. M ,  N >. )  =  if ( N  <_  L ,  ( A substr  <. M ,  N >. ) ,  if ( L  <_  M , 
( B substr  <. ( M  -  L ) ,  ( N  -  L
) >. ) ,  ( ( A substr  <. M ,  L >. ) ++  ( B substr  <. 0 ,  ( N  -  L ) >.
) ) ) ) ) )
32imp 431 . . 3  |-  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  ( M  e.  ( 0 ... N
)  /\  N  e.  ( 0 ... ( L  +  ( # `  B
) ) ) ) )  ->  ( ( A ++  B ) substr  <. M ,  N >. )  =  if ( N  <_  L ,  ( A substr  <. M ,  N >. ) ,  if ( L  <_  M , 
( B substr  <. ( M  -  L ) ,  ( N  -  L
) >. ) ,  ( ( A substr  <. M ,  L >. ) ++  ( B substr  <. 0 ,  ( N  -  L ) >.
) ) ) ) )
4 lencl 12684 . . . . . 6  |-  ( A  e. Word  V  ->  ( # `
 A )  e. 
NN0 )
54adantr 467 . . . . 5  |-  ( ( A  e. Word  V  /\  B  e. Word  V )  ->  ( # `  A
)  e.  NN0 )
61eqcomi 2459 . . . . . . 7  |-  ( # `  A )  =  L
76eleq1i 2519 . . . . . 6  |-  ( (
# `  A )  e.  NN0  <->  L  e.  NN0 )
8 elfz2nn0 11882 . . . . . . . . 9  |-  ( M  e.  ( 0 ... N )  <->  ( M  e.  NN0  /\  N  e. 
NN0  /\  M  <_  N ) )
9 iftrue 3886 . . . . . . . . . . . . . . . . . 18  |-  ( N  <_  L  ->  if ( N  <_  L ,  N ,  L )  =  N )
109adantl 468 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( A  e. Word  V  /\  B  e. Word  V
)  /\  ( ( M  e.  NN0  /\  N  e.  NN0 )  /\  L  e.  NN0 ) )  /\  N  <_  L )  ->  if ( N  <_  L ,  N ,  L )  =  N )
1110opeq2d 4172 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  e. Word  V  /\  B  e. Word  V
)  /\  ( ( M  e.  NN0  /\  N  e.  NN0 )  /\  L  e.  NN0 ) )  /\  N  <_  L )  ->  <. M ,  if ( N  <_  L ,  N ,  L ) >.  =  <. M ,  N >. )
1211oveq2d 6304 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e. Word  V  /\  B  e. Word  V
)  /\  ( ( M  e.  NN0  /\  N  e.  NN0 )  /\  L  e.  NN0 ) )  /\  N  <_  L )  -> 
( A substr  <. M ,  if ( N  <_  L ,  N ,  L )
>. )  =  ( A substr  <. M ,  N >. ) )
13 iftrue 3886 . . . . . . . . . . . . . . . . . . . 20  |-  ( 0  <_  ( M  -  L )  ->  if ( 0  <_  ( M  -  L ) ,  ( M  -  L ) ,  0 )  =  ( M  -  L ) )
1413opeq1d 4171 . . . . . . . . . . . . . . . . . . 19  |-  ( 0  <_  ( M  -  L )  ->  <. if ( 0  <_  ( M  -  L ) ,  ( M  -  L ) ,  0 ) ,  ( N  -  L
) >.  =  <. ( M  -  L ) ,  ( N  -  L ) >. )
1514oveq2d 6304 . . . . . . . . . . . . . . . . . 18  |-  ( 0  <_  ( M  -  L )  ->  ( B substr  <. if ( 0  <_  ( M  -  L ) ,  ( M  -  L ) ,  0 ) ,  ( N  -  L
) >. )  =  ( B substr  <. ( M  -  L ) ,  ( N  -  L )
>. ) )
1615adantr 467 . . . . . . . . . . . . . . . . 17  |-  ( ( 0  <_  ( M  -  L )  /\  (
( ( A  e. Word  V  /\  B  e. Word  V
)  /\  ( ( M  e.  NN0  /\  N  e.  NN0 )  /\  L  e.  NN0 ) )  /\  N  <_  L ) )  ->  ( B substr  <. if ( 0  <_  ( M  -  L ) ,  ( M  -  L ) ,  0 ) ,  ( N  -  L
) >. )  =  ( B substr  <. ( M  -  L ) ,  ( N  -  L )
>. ) )
17 simpr 463 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( A  e. Word  V  /\  B  e. Word  V )  ->  B  e. Word  V )
18 nn0z 10957 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( L  e.  NN0  ->  L  e.  ZZ )
19 nn0z 10957 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( M  e.  NN0  ->  M  e.  ZZ )
2019adantr 467 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  ->  M  e.  ZZ )
21 zsubcl 10976 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( M  e.  ZZ  /\  L  e.  ZZ )  ->  ( M  -  L
)  e.  ZZ )
2220, 21sylan 474 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( M  e.  NN0  /\  N  e.  NN0 )  /\  L  e.  ZZ )  ->  ( M  -  L )  e.  ZZ )
23 nn0z 10957 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( N  e.  NN0  ->  N  e.  ZZ )
2423adantl 468 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  ->  N  e.  ZZ )
25 zsubcl 10976 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( N  e.  ZZ  /\  L  e.  ZZ )  ->  ( N  -  L
)  e.  ZZ )
2624, 25sylan 474 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( M  e.  NN0  /\  N  e.  NN0 )  /\  L  e.  ZZ )  ->  ( N  -  L )  e.  ZZ )
2722, 26jca 535 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( M  e.  NN0  /\  N  e.  NN0 )  /\  L  e.  ZZ )  ->  ( ( M  -  L )  e.  ZZ  /\  ( N  -  L )  e.  ZZ ) )
2818, 27sylan2 477 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( M  e.  NN0  /\  N  e.  NN0 )  /\  L  e.  NN0 )  ->  ( ( M  -  L )  e.  ZZ  /\  ( N  -  L )  e.  ZZ ) )
2917, 28anim12i 569 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  ( ( M  e.  NN0  /\  N  e. 
NN0 )  /\  L  e.  NN0 ) )  -> 
( B  e. Word  V  /\  ( ( M  -  L )  e.  ZZ  /\  ( N  -  L
)  e.  ZZ ) ) )
30 3anass 988 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( B  e. Word  V  /\  ( M  -  L
)  e.  ZZ  /\  ( N  -  L
)  e.  ZZ )  <-> 
( B  e. Word  V  /\  ( ( M  -  L )  e.  ZZ  /\  ( N  -  L
)  e.  ZZ ) ) )
3129, 30sylibr 216 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  ( ( M  e.  NN0  /\  N  e. 
NN0 )  /\  L  e.  NN0 ) )  -> 
( B  e. Word  V  /\  ( M  -  L
)  e.  ZZ  /\  ( N  -  L
)  e.  ZZ ) )
3231ad2antrl 733 . . . . . . . . . . . . . . . . . 18  |-  ( ( 0  <_  ( M  -  L )  /\  (
( ( A  e. Word  V  /\  B  e. Word  V
)  /\  ( ( M  e.  NN0  /\  N  e.  NN0 )  /\  L  e.  NN0 ) )  /\  N  <_  L ) )  ->  ( B  e. Word  V  /\  ( M  -  L )  e.  ZZ  /\  ( N  -  L
)  e.  ZZ ) )
33 nn0re 10875 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( M  e.  NN0  ->  M  e.  RR )
34 nn0re 10875 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( N  e.  NN0  ->  N  e.  RR )
3533, 34anim12i 569 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( M  e.  RR  /\  N  e.  RR ) )
36 nn0re 10875 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( L  e.  NN0  ->  L  e.  RR )
37 subge0 10124 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( M  e.  RR  /\  L  e.  RR )  ->  ( 0  <_  ( M  -  L )  <->  L  <_  M ) )
3837adantlr 720 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( M  e.  RR  /\  N  e.  RR )  /\  L  e.  RR )  ->  ( 0  <_ 
( M  -  L
)  <->  L  <_  M ) )
39 simpr 463 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( M  e.  RR  /\  N  e.  RR )  ->  N  e.  RR )
4039adantr 467 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( ( M  e.  RR  /\  N  e.  RR )  /\  L  e.  RR )  ->  N  e.  RR )
41 simpr 463 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( ( M  e.  RR  /\  N  e.  RR )  /\  L  e.  RR )  ->  L  e.  RR )
42 simpl 459 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( M  e.  RR  /\  N  e.  RR )  ->  M  e.  RR )
4342adantr 467 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( ( M  e.  RR  /\  N  e.  RR )  /\  L  e.  RR )  ->  M  e.  RR )
4440, 41, 433jca 1187 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( M  e.  RR  /\  N  e.  RR )  /\  L  e.  RR )  ->  ( N  e.  RR  /\  L  e.  RR  /\  M  e.  RR ) )
45 letr 9724 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( N  e.  RR  /\  L  e.  RR  /\  M  e.  RR )  ->  (
( N  <_  L  /\  L  <_  M )  ->  N  <_  M
) )
4644, 45syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( M  e.  RR  /\  N  e.  RR )  /\  L  e.  RR )  ->  ( ( N  <_  L  /\  L  <_  M )  ->  N  <_  M ) )
4746expcomd 440 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( M  e.  RR  /\  N  e.  RR )  /\  L  e.  RR )  ->  ( L  <_  M  ->  ( N  <_  L  ->  N  <_  M
) ) )
4838, 47sylbid 219 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( M  e.  RR  /\  N  e.  RR )  /\  L  e.  RR )  ->  ( 0  <_ 
( M  -  L
)  ->  ( N  <_  L  ->  N  <_  M ) ) )
4948com23 81 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( M  e.  RR  /\  N  e.  RR )  /\  L  e.  RR )  ->  ( N  <_  L  ->  ( 0  <_ 
( M  -  L
)  ->  N  <_  M ) ) )
5035, 36, 49syl2an 480 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( M  e.  NN0  /\  N  e.  NN0 )  /\  L  e.  NN0 )  ->  ( N  <_  L  ->  ( 0  <_ 
( M  -  L
)  ->  N  <_  M ) ) )
5150adantl 468 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  ( ( M  e.  NN0  /\  N  e. 
NN0 )  /\  L  e.  NN0 ) )  -> 
( N  <_  L  ->  ( 0  <_  ( M  -  L )  ->  N  <_  M )
) )
5251imp 431 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( A  e. Word  V  /\  B  e. Word  V
)  /\  ( ( M  e.  NN0  /\  N  e.  NN0 )  /\  L  e.  NN0 ) )  /\  N  <_  L )  -> 
( 0  <_  ( M  -  L )  ->  N  <_  M )
)
5352impcom 432 . . . . . . . . . . . . . . . . . . 19  |-  ( ( 0  <_  ( M  -  L )  /\  (
( ( A  e. Word  V  /\  B  e. Word  V
)  /\  ( ( M  e.  NN0  /\  N  e.  NN0 )  /\  L  e.  NN0 ) )  /\  N  <_  L ) )  ->  N  <_  M
)
5434adantl 468 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  ->  N  e.  RR )
5554adantr 467 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( M  e.  NN0  /\  N  e.  NN0 )  /\  L  e.  NN0 )  ->  N  e.  RR )
5633adantr 467 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  ->  M  e.  RR )
5756adantr 467 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( M  e.  NN0  /\  N  e.  NN0 )  /\  L  e.  NN0 )  ->  M  e.  RR )
5836adantl 468 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( M  e.  NN0  /\  N  e.  NN0 )  /\  L  e.  NN0 )  ->  L  e.  RR )
5955, 57, 583jca 1187 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( M  e.  NN0  /\  N  e.  NN0 )  /\  L  e.  NN0 )  ->  ( N  e.  RR  /\  M  e.  RR  /\  L  e.  RR ) )
6059adantl 468 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  ( ( M  e.  NN0  /\  N  e. 
NN0 )  /\  L  e.  NN0 ) )  -> 
( N  e.  RR  /\  M  e.  RR  /\  L  e.  RR )
)
6160ad2antrl 733 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( 0  <_  ( M  -  L )  /\  (
( ( A  e. Word  V  /\  B  e. Word  V
)  /\  ( ( M  e.  NN0  /\  N  e.  NN0 )  /\  L  e.  NN0 ) )  /\  N  <_  L ) )  ->  ( N  e.  RR  /\  M  e.  RR  /\  L  e.  RR ) )
62 lesub1 10105 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( N  e.  RR  /\  M  e.  RR  /\  L  e.  RR )  ->  ( N  <_  M  <->  ( N  -  L )  <_  ( M  -  L )
) )
6361, 62syl 17 . . . . . . . . . . . . . . . . . . 19  |-  ( ( 0  <_  ( M  -  L )  /\  (
( ( A  e. Word  V  /\  B  e. Word  V
)  /\  ( ( M  e.  NN0  /\  N  e.  NN0 )  /\  L  e.  NN0 ) )  /\  N  <_  L ) )  ->  ( N  <_  M 
<->  ( N  -  L
)  <_  ( M  -  L ) ) )
6453, 63mpbid 214 . . . . . . . . . . . . . . . . . 18  |-  ( ( 0  <_  ( M  -  L )  /\  (
( ( A  e. Word  V  /\  B  e. Word  V
)  /\  ( ( M  e.  NN0  /\  N  e.  NN0 )  /\  L  e.  NN0 ) )  /\  N  <_  L ) )  ->  ( N  -  L )  <_  ( M  -  L )
)
65 swrdlend 12782 . . . . . . . . . . . . . . . . . 18  |-  ( ( B  e. Word  V  /\  ( M  -  L
)  e.  ZZ  /\  ( N  -  L
)  e.  ZZ )  ->  ( ( N  -  L )  <_ 
( M  -  L
)  ->  ( B substr  <.
( M  -  L
) ,  ( N  -  L ) >.
)  =  (/) ) )
6632, 64, 65sylc 62 . . . . . . . . . . . . . . . . 17  |-  ( ( 0  <_  ( M  -  L )  /\  (
( ( A  e. Word  V  /\  B  e. Word  V
)  /\  ( ( M  e.  NN0  /\  N  e.  NN0 )  /\  L  e.  NN0 ) )  /\  N  <_  L ) )  ->  ( B substr  <. ( M  -  L ) ,  ( N  -  L ) >. )  =  (/) )
6716, 66eqtrd 2484 . . . . . . . . . . . . . . . 16  |-  ( ( 0  <_  ( M  -  L )  /\  (
( ( A  e. Word  V  /\  B  e. Word  V
)  /\  ( ( M  e.  NN0  /\  N  e.  NN0 )  /\  L  e.  NN0 ) )  /\  N  <_  L ) )  ->  ( B substr  <. if ( 0  <_  ( M  -  L ) ,  ( M  -  L ) ,  0 ) ,  ( N  -  L
) >. )  =  (/) )
68 iffalse 3889 . . . . . . . . . . . . . . . . . . 19  |-  ( -.  0  <_  ( M  -  L )  ->  if ( 0  <_  ( M  -  L ) ,  ( M  -  L ) ,  0 )  =  0 )
6968opeq1d 4171 . . . . . . . . . . . . . . . . . 18  |-  ( -.  0  <_  ( M  -  L )  ->  <. if ( 0  <_  ( M  -  L ) ,  ( M  -  L ) ,  0 ) ,  ( N  -  L
) >.  =  <. 0 ,  ( N  -  L ) >. )
7069oveq2d 6304 . . . . . . . . . . . . . . . . 17  |-  ( -.  0  <_  ( M  -  L )  ->  ( B substr  <. if ( 0  <_  ( M  -  L ) ,  ( M  -  L ) ,  0 ) ,  ( N  -  L
) >. )  =  ( B substr  <. 0 ,  ( N  -  L )
>. ) )
7117adantr 467 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  ( ( M  e.  NN0  /\  N  e. 
NN0 )  /\  L  e.  NN0 ) )  ->  B  e. Word  V )
7271adantr 467 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( A  e. Word  V  /\  B  e. Word  V
)  /\  ( ( M  e.  NN0  /\  N  e.  NN0 )  /\  L  e.  NN0 ) )  /\  N  <_  L )  ->  B  e. Word  V )
73 0zd 10946 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( A  e. Word  V  /\  B  e. Word  V
)  /\  ( ( M  e.  NN0  /\  N  e.  NN0 )  /\  L  e.  NN0 ) )  /\  N  <_  L )  -> 
0  e.  ZZ )
7424, 18, 25syl2an 480 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( M  e.  NN0  /\  N  e.  NN0 )  /\  L  e.  NN0 )  ->  ( N  -  L )  e.  ZZ )
7574adantl 468 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  ( ( M  e.  NN0  /\  N  e. 
NN0 )  /\  L  e.  NN0 ) )  -> 
( N  -  L
)  e.  ZZ )
7675adantr 467 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( A  e. Word  V  /\  B  e. Word  V
)  /\  ( ( M  e.  NN0  /\  N  e.  NN0 )  /\  L  e.  NN0 ) )  /\  N  <_  L )  -> 
( N  -  L
)  e.  ZZ )
7772, 73, 763jca 1187 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( A  e. Word  V  /\  B  e. Word  V
)  /\  ( ( M  e.  NN0  /\  N  e.  NN0 )  /\  L  e.  NN0 ) )  /\  N  <_  L )  -> 
( B  e. Word  V  /\  0  e.  ZZ  /\  ( N  -  L
)  e.  ZZ ) )
7854, 36anim12i 569 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( M  e.  NN0  /\  N  e.  NN0 )  /\  L  e.  NN0 )  ->  ( N  e.  RR  /\  L  e.  RR ) )
7978adantl 468 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  ( ( M  e.  NN0  /\  N  e. 
NN0 )  /\  L  e.  NN0 ) )  -> 
( N  e.  RR  /\  L  e.  RR ) )
80 suble0 10125 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( N  e.  RR  /\  L  e.  RR )  ->  ( ( N  -  L )  <_  0  <->  N  <_  L ) )
8179, 80syl 17 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  ( ( M  e.  NN0  /\  N  e. 
NN0 )  /\  L  e.  NN0 ) )  -> 
( ( N  -  L )  <_  0  <->  N  <_  L ) )
8281biimpar 488 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( A  e. Word  V  /\  B  e. Word  V
)  /\  ( ( M  e.  NN0  /\  N  e.  NN0 )  /\  L  e.  NN0 ) )  /\  N  <_  L )  -> 
( N  -  L
)  <_  0 )
83 swrdlend 12782 . . . . . . . . . . . . . . . . . 18  |-  ( ( B  e. Word  V  /\  0  e.  ZZ  /\  ( N  -  L )  e.  ZZ )  ->  (
( N  -  L
)  <_  0  ->  ( B substr  <. 0 ,  ( N  -  L )
>. )  =  (/) ) )
8477, 82, 83sylc 62 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( A  e. Word  V  /\  B  e. Word  V
)  /\  ( ( M  e.  NN0  /\  N  e.  NN0 )  /\  L  e.  NN0 ) )  /\  N  <_  L )  -> 
( B substr  <. 0 ,  ( N  -  L
) >. )  =  (/) )
8570, 84sylan9eq 2504 . . . . . . . . . . . . . . . 16  |-  ( ( -.  0  <_  ( M  -  L )  /\  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  (
( M  e.  NN0  /\  N  e.  NN0 )  /\  L  e.  NN0 ) )  /\  N  <_  L ) )  -> 
( B substr  <. if ( 0  <_  ( M  -  L ) ,  ( M  -  L ) ,  0 ) ,  ( N  -  L
) >. )  =  (/) )
8667, 85pm2.61ian 798 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e. Word  V  /\  B  e. Word  V
)  /\  ( ( M  e.  NN0  /\  N  e.  NN0 )  /\  L  e.  NN0 ) )  /\  N  <_  L )  -> 
( B substr  <. if ( 0  <_  ( M  -  L ) ,  ( M  -  L ) ,  0 ) ,  ( N  -  L
) >. )  =  (/) )
8712, 86oveq12d 6306 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e. Word  V  /\  B  e. Word  V
)  /\  ( ( M  e.  NN0  /\  N  e.  NN0 )  /\  L  e.  NN0 ) )  /\  N  <_  L )  -> 
( ( A substr  <. M ,  if ( N  <_  L ,  N ,  L )
>. ) ++  ( B substr  <. if ( 0  <_  ( M  -  L ) ,  ( M  -  L ) ,  0 ) ,  ( N  -  L ) >.
) )  =  ( ( A substr  <. M ,  N >. ) ++  (/) ) )
88 swrdcl 12770 . . . . . . . . . . . . . . . . . 18  |-  ( A  e. Word  V  ->  ( A substr  <. M ,  N >. )  e. Word  V )
89 ccatrid 12728 . . . . . . . . . . . . . . . . . 18  |-  ( ( A substr  <. M ,  N >. )  e. Word  V  -> 
( ( A substr  <. M ,  N >. ) ++  (/) )  =  ( A substr  <. M ,  N >. ) )
9088, 89syl 17 . . . . . . . . . . . . . . . . 17  |-  ( A  e. Word  V  ->  (
( A substr  <. M ,  N >. ) ++  (/) )  =  ( A substr  <. M ,  N >. ) )
9190adantr 467 . . . . . . . . . . . . . . . 16  |-  ( ( A  e. Word  V  /\  B  e. Word  V )  ->  ( ( A substr  <. M ,  N >. ) ++  (/) )  =  ( A substr  <. M ,  N >. ) )
9291adantr 467 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  ( ( M  e.  NN0  /\  N  e. 
NN0 )  /\  L  e.  NN0 ) )  -> 
( ( A substr  <. M ,  N >. ) ++  (/) )  =  ( A substr  <. M ,  N >. ) )
9392adantr 467 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e. Word  V  /\  B  e. Word  V
)  /\  ( ( M  e.  NN0  /\  N  e.  NN0 )  /\  L  e.  NN0 ) )  /\  N  <_  L )  -> 
( ( A substr  <. M ,  N >. ) ++  (/) )  =  ( A substr  <. M ,  N >. ) )
9487, 93eqtrd 2484 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e. Word  V  /\  B  e. Word  V
)  /\  ( ( M  e.  NN0  /\  N  e.  NN0 )  /\  L  e.  NN0 ) )  /\  N  <_  L )  -> 
( ( A substr  <. M ,  if ( N  <_  L ,  N ,  L )
>. ) ++  ( B substr  <. if ( 0  <_  ( M  -  L ) ,  ( M  -  L ) ,  0 ) ,  ( N  -  L ) >.
) )  =  ( A substr  <. M ,  N >. ) )
95 iffalse 3889 . . . . . . . . . . . . . . . . . . 19  |-  ( -.  N  <_  L  ->  if ( N  <_  L ,  N ,  L )  =  L )
96953ad2ant2 1029 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( A  e. Word  V  /\  B  e. Word  V
)  /\  ( ( M  e.  NN0  /\  N  e.  NN0 )  /\  L  e.  NN0 ) )  /\  -.  N  <_  L  /\  L  <_  M )  ->  if ( N  <_  L ,  N ,  L )  =  L )
9796opeq2d 4172 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( A  e. Word  V  /\  B  e. Word  V
)  /\  ( ( M  e.  NN0  /\  N  e.  NN0 )  /\  L  e.  NN0 ) )  /\  -.  N  <_  L  /\  L  <_  M )  ->  <. M ,  if ( N  <_  L ,  N ,  L ) >.  =  <. M ,  L >. )
9897oveq2d 6304 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  e. Word  V  /\  B  e. Word  V
)  /\  ( ( M  e.  NN0  /\  N  e.  NN0 )  /\  L  e.  NN0 ) )  /\  -.  N  <_  L  /\  L  <_  M )  -> 
( A substr  <. M ,  if ( N  <_  L ,  N ,  L )
>. )  =  ( A substr  <. M ,  L >. ) )
99 simpl 459 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( A  e. Word  V  /\  B  e. Word  V )  ->  A  e. Word  V )
10099, 20, 183anim123i 1192 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  ( M  e. 
NN0  /\  N  e.  NN0 )  /\  L  e. 
NN0 )  ->  ( A  e. Word  V  /\  M  e.  ZZ  /\  L  e.  ZZ ) )
1011003expb 1208 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  ( ( M  e.  NN0  /\  N  e. 
NN0 )  /\  L  e.  NN0 ) )  -> 
( A  e. Word  V  /\  M  e.  ZZ  /\  L  e.  ZZ ) )
102 swrdlend 12782 . . . . . . . . . . . . . . . . . . 19  |-  ( ( A  e. Word  V  /\  M  e.  ZZ  /\  L  e.  ZZ )  ->  ( L  <_  M  ->  ( A substr  <. M ,  L >. )  =  (/) ) )
103101, 102syl 17 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  ( ( M  e.  NN0  /\  N  e. 
NN0 )  /\  L  e.  NN0 ) )  -> 
( L  <_  M  ->  ( A substr  <. M ,  L >. )  =  (/) ) )
104103imp 431 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( A  e. Word  V  /\  B  e. Word  V
)  /\  ( ( M  e.  NN0  /\  N  e.  NN0 )  /\  L  e.  NN0 ) )  /\  L  <_  M )  -> 
( A substr  <. M ,  L >. )  =  (/) )
1051043adant2 1026 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  e. Word  V  /\  B  e. Word  V
)  /\  ( ( M  e.  NN0  /\  N  e.  NN0 )  /\  L  e.  NN0 ) )  /\  -.  N  <_  L  /\  L  <_  M )  -> 
( A substr  <. M ,  L >. )  =  (/) )
10698, 105eqtrd 2484 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e. Word  V  /\  B  e. Word  V
)  /\  ( ( M  e.  NN0  /\  N  e.  NN0 )  /\  L  e.  NN0 ) )  /\  -.  N  <_  L  /\  L  <_  M )  -> 
( A substr  <. M ,  if ( N  <_  L ,  N ,  L )
>. )  =  (/) )
10756, 36, 37syl2an 480 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( M  e.  NN0  /\  N  e.  NN0 )  /\  L  e.  NN0 )  ->  ( 0  <_ 
( M  -  L
)  <->  L  <_  M ) )
108107biimprd 227 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( M  e.  NN0  /\  N  e.  NN0 )  /\  L  e.  NN0 )  ->  ( L  <_  M  ->  0  <_  ( M  -  L )
) )
109108adantl 468 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  ( ( M  e.  NN0  /\  N  e. 
NN0 )  /\  L  e.  NN0 ) )  -> 
( L  <_  M  ->  0  <_  ( M  -  L ) ) )
110109imp 431 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( A  e. Word  V  /\  B  e. Word  V
)  /\  ( ( M  e.  NN0  /\  N  e.  NN0 )  /\  L  e.  NN0 ) )  /\  L  <_  M )  -> 
0  <_  ( M  -  L ) )
1111103adant2 1026 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( A  e. Word  V  /\  B  e. Word  V
)  /\  ( ( M  e.  NN0  /\  N  e.  NN0 )  /\  L  e.  NN0 ) )  /\  -.  N  <_  L  /\  L  <_  M )  -> 
0  <_  ( M  -  L ) )
112111, 14syl 17 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  e. Word  V  /\  B  e. Word  V
)  /\  ( ( M  e.  NN0  /\  N  e.  NN0 )  /\  L  e.  NN0 ) )  /\  -.  N  <_  L  /\  L  <_  M )  ->  <. if ( 0  <_ 
( M  -  L
) ,  ( M  -  L ) ,  0 ) ,  ( N  -  L )
>.  =  <. ( M  -  L ) ,  ( N  -  L
) >. )
113112oveq2d 6304 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e. Word  V  /\  B  e. Word  V
)  /\  ( ( M  e.  NN0  /\  N  e.  NN0 )  /\  L  e.  NN0 ) )  /\  -.  N  <_  L  /\  L  <_  M )  -> 
( B substr  <. if ( 0  <_  ( M  -  L ) ,  ( M  -  L ) ,  0 ) ,  ( N  -  L
) >. )  =  ( B substr  <. ( M  -  L ) ,  ( N  -  L )
>. ) )
114106, 113oveq12d 6306 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e. Word  V  /\  B  e. Word  V
)  /\  ( ( M  e.  NN0  /\  N  e.  NN0 )  /\  L  e.  NN0 ) )  /\  -.  N  <_  L  /\  L  <_  M )  -> 
( ( A substr  <. M ,  if ( N  <_  L ,  N ,  L )
>. ) ++  ( B substr  <. if ( 0  <_  ( M  -  L ) ,  ( M  -  L ) ,  0 ) ,  ( N  -  L ) >.
) )  =  (
(/) ++  ( B substr  <. ( M  -  L ) ,  ( N  -  L ) >. )
) )
115 swrdcl 12770 . . . . . . . . . . . . . . . . . 18  |-  ( B  e. Word  V  ->  ( B substr  <. ( M  -  L ) ,  ( N  -  L )
>. )  e. Word  V )
116115adantl 468 . . . . . . . . . . . . . . . . 17  |-  ( ( A  e. Word  V  /\  B  e. Word  V )  ->  ( B substr  <. ( M  -  L ) ,  ( N  -  L ) >. )  e. Word  V )
117 ccatlid 12727 . . . . . . . . . . . . . . . . 17  |-  ( ( B substr  <. ( M  -  L ) ,  ( N  -  L )
>. )  e. Word  V  -> 
( (/) ++  ( B substr  <. ( M  -  L ) ,  ( N  -  L ) >. )
)  =  ( B substr  <. ( M  -  L
) ,  ( N  -  L ) >.
) )
118116, 117syl 17 . . . . . . . . . . . . . . . 16  |-  ( ( A  e. Word  V  /\  B  e. Word  V )  ->  ( (/) ++  ( B substr  <.
( M  -  L
) ,  ( N  -  L ) >.
) )  =  ( B substr  <. ( M  -  L ) ,  ( N  -  L )
>. ) )
119118adantr 467 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  ( ( M  e.  NN0  /\  N  e. 
NN0 )  /\  L  e.  NN0 ) )  -> 
( (/) ++  ( B substr  <. ( M  -  L ) ,  ( N  -  L ) >. )
)  =  ( B substr  <. ( M  -  L
) ,  ( N  -  L ) >.
) )
1201193ad2ant1 1028 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e. Word  V  /\  B  e. Word  V
)  /\  ( ( M  e.  NN0  /\  N  e.  NN0 )  /\  L  e.  NN0 ) )  /\  -.  N  <_  L  /\  L  <_  M )  -> 
( (/) ++  ( B substr  <. ( M  -  L ) ,  ( N  -  L ) >. )
)  =  ( B substr  <. ( M  -  L
) ,  ( N  -  L ) >.
) )
121114, 120eqtrd 2484 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e. Word  V  /\  B  e. Word  V
)  /\  ( ( M  e.  NN0  /\  N  e.  NN0 )  /\  L  e.  NN0 ) )  /\  -.  N  <_  L  /\  L  <_  M )  -> 
( ( A substr  <. M ,  if ( N  <_  L ,  N ,  L )
>. ) ++  ( B substr  <. if ( 0  <_  ( M  -  L ) ,  ( M  -  L ) ,  0 ) ,  ( N  -  L ) >.
) )  =  ( B substr  <. ( M  -  L ) ,  ( N  -  L )
>. ) )
122953ad2ant2 1029 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  e. Word  V  /\  B  e. Word  V
)  /\  ( ( M  e.  NN0  /\  N  e.  NN0 )  /\  L  e.  NN0 ) )  /\  -.  N  <_  L  /\  -.  L  <_  M )  ->  if ( N  <_  L ,  N ,  L )  =  L )
123122opeq2d 4172 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e. Word  V  /\  B  e. Word  V
)  /\  ( ( M  e.  NN0  /\  N  e.  NN0 )  /\  L  e.  NN0 ) )  /\  -.  N  <_  L  /\  -.  L  <_  M )  ->  <. M ,  if ( N  <_  L ,  N ,  L ) >.  =  <. M ,  L >. )
124123oveq2d 6304 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e. Word  V  /\  B  e. Word  V
)  /\  ( ( M  e.  NN0  /\  N  e.  NN0 )  /\  L  e.  NN0 ) )  /\  -.  N  <_  L  /\  -.  L  <_  M )  ->  ( A substr  <. M ,  if ( N  <_  L ,  N ,  L )
>. )  =  ( A substr  <. M ,  L >. ) )
12533, 36, 37syl2an 480 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( M  e.  NN0  /\  L  e.  NN0 )  -> 
( 0  <_  ( M  -  L )  <->  L  <_  M ) )
126125adantlr 720 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( M  e.  NN0  /\  N  e.  NN0 )  /\  L  e.  NN0 )  ->  ( 0  <_ 
( M  -  L
)  <->  L  <_  M ) )
127126adantl 468 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  ( ( M  e.  NN0  /\  N  e. 
NN0 )  /\  L  e.  NN0 ) )  -> 
( 0  <_  ( M  -  L )  <->  L  <_  M ) )
128127biimpd 211 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  ( ( M  e.  NN0  /\  N  e. 
NN0 )  /\  L  e.  NN0 ) )  -> 
( 0  <_  ( M  -  L )  ->  L  <_  M )
)
129128con3dimp 443 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( A  e. Word  V  /\  B  e. Word  V
)  /\  ( ( M  e.  NN0  /\  N  e.  NN0 )  /\  L  e.  NN0 ) )  /\  -.  L  <_  M )  ->  -.  0  <_  ( M  -  L ) )
1301293adant2 1026 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( A  e. Word  V  /\  B  e. Word  V
)  /\  ( ( M  e.  NN0  /\  N  e.  NN0 )  /\  L  e.  NN0 ) )  /\  -.  N  <_  L  /\  -.  L  <_  M )  ->  -.  0  <_  ( M  -  L ) )
131130, 68syl 17 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  e. Word  V  /\  B  e. Word  V
)  /\  ( ( M  e.  NN0  /\  N  e.  NN0 )  /\  L  e.  NN0 ) )  /\  -.  N  <_  L  /\  -.  L  <_  M )  ->  if ( 0  <_  ( M  -  L ) ,  ( M  -  L ) ,  0 )  =  0 )
132131opeq1d 4171 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e. Word  V  /\  B  e. Word  V
)  /\  ( ( M  e.  NN0  /\  N  e.  NN0 )  /\  L  e.  NN0 ) )  /\  -.  N  <_  L  /\  -.  L  <_  M )  ->  <. if ( 0  <_  ( M  -  L ) ,  ( M  -  L ) ,  0 ) ,  ( N  -  L
) >.  =  <. 0 ,  ( N  -  L ) >. )
133132oveq2d 6304 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e. Word  V  /\  B  e. Word  V
)  /\  ( ( M  e.  NN0  /\  N  e.  NN0 )  /\  L  e.  NN0 ) )  /\  -.  N  <_  L  /\  -.  L  <_  M )  ->  ( B substr  <. if ( 0  <_  ( M  -  L ) ,  ( M  -  L ) ,  0 ) ,  ( N  -  L
) >. )  =  ( B substr  <. 0 ,  ( N  -  L )
>. ) )
134124, 133oveq12d 6306 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e. Word  V  /\  B  e. Word  V
)  /\  ( ( M  e.  NN0  /\  N  e.  NN0 )  /\  L  e.  NN0 ) )  /\  -.  N  <_  L  /\  -.  L  <_  M )  ->  ( ( A substr  <. M ,  if ( N  <_  L ,  N ,  L ) >. ) ++  ( B substr  <. if ( 0  <_  ( M  -  L ) ,  ( M  -  L ) ,  0 ) ,  ( N  -  L
) >. ) )  =  ( ( A substr  <. M ,  L >. ) ++  ( B substr  <. 0 ,  ( N  -  L ) >.
) ) )
13594, 121, 1342if2 3928 . . . . . . . . . . . 12  |-  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  ( ( M  e.  NN0  /\  N  e. 
NN0 )  /\  L  e.  NN0 ) )  -> 
( ( A substr  <. M ,  if ( N  <_  L ,  N ,  L )
>. ) ++  ( B substr  <. if ( 0  <_  ( M  -  L ) ,  ( M  -  L ) ,  0 ) ,  ( N  -  L ) >.
) )  =  if ( N  <_  L ,  ( A substr  <. M ,  N >. ) ,  if ( L  <_  M , 
( B substr  <. ( M  -  L ) ,  ( N  -  L
) >. ) ,  ( ( A substr  <. M ,  L >. ) ++  ( B substr  <. 0 ,  ( N  -  L ) >.
) ) ) ) )
136135exp32 609 . . . . . . . . . . 11  |-  ( ( A  e. Word  V  /\  B  e. Word  V )  ->  ( ( M  e. 
NN0  /\  N  e.  NN0 )  ->  ( L  e.  NN0  ->  ( ( A substr  <. M ,  if ( N  <_  L ,  N ,  L ) >. ) ++  ( B substr  <. if ( 0  <_  ( M  -  L ) ,  ( M  -  L ) ,  0 ) ,  ( N  -  L
) >. ) )  =  if ( N  <_  L ,  ( A substr  <. M ,  N >. ) ,  if ( L  <_  M ,  ( B substr  <. ( M  -  L ) ,  ( N  -  L )
>. ) ,  ( ( A substr  <. M ,  L >. ) ++  ( B substr  <. 0 ,  ( N  -  L ) >. )
) ) ) ) ) )
137136com12 32 . . . . . . . . . 10  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( ( A  e. Word  V  /\  B  e. Word  V
)  ->  ( L  e.  NN0  ->  ( ( A substr  <. M ,  if ( N  <_  L ,  N ,  L ) >. ) ++  ( B substr  <. if ( 0  <_  ( M  -  L ) ,  ( M  -  L ) ,  0 ) ,  ( N  -  L
) >. ) )  =  if ( N  <_  L ,  ( A substr  <. M ,  N >. ) ,  if ( L  <_  M ,  ( B substr  <. ( M  -  L ) ,  ( N  -  L )
>. ) ,  ( ( A substr  <. M ,  L >. ) ++  ( B substr  <. 0 ,  ( N  -  L ) >. )
) ) ) ) ) )
1381373adant3 1027 . . . . . . . . 9  |-  ( ( M  e.  NN0  /\  N  e.  NN0  /\  M  <_  N )  ->  (
( A  e. Word  V  /\  B  e. Word  V )  ->  ( L  e. 
NN0  ->  ( ( A substr  <. M ,  if ( N  <_  L ,  N ,  L ) >. ) ++  ( B substr  <. if ( 0  <_  ( M  -  L ) ,  ( M  -  L ) ,  0 ) ,  ( N  -  L
) >. ) )  =  if ( N  <_  L ,  ( A substr  <. M ,  N >. ) ,  if ( L  <_  M ,  ( B substr  <. ( M  -  L ) ,  ( N  -  L )
>. ) ,  ( ( A substr  <. M ,  L >. ) ++  ( B substr  <. 0 ,  ( N  -  L ) >. )
) ) ) ) ) )
1398, 138sylbi 199 . . . . . . . 8  |-  ( M  e.  ( 0 ... N )  ->  (
( A  e. Word  V  /\  B  e. Word  V )  ->  ( L  e. 
NN0  ->  ( ( A substr  <. M ,  if ( N  <_  L ,  N ,  L ) >. ) ++  ( B substr  <. if ( 0  <_  ( M  -  L ) ,  ( M  -  L ) ,  0 ) ,  ( N  -  L
) >. ) )  =  if ( N  <_  L ,  ( A substr  <. M ,  N >. ) ,  if ( L  <_  M ,  ( B substr  <. ( M  -  L ) ,  ( N  -  L )
>. ) ,  ( ( A substr  <. M ,  L >. ) ++  ( B substr  <. 0 ,  ( N  -  L ) >. )
) ) ) ) ) )
140139adantr 467 . . . . . . 7  |-  ( ( M  e.  ( 0 ... N )  /\  N  e.  ( 0 ... ( L  +  ( # `  B ) ) ) )  -> 
( ( A  e. Word  V  /\  B  e. Word  V
)  ->  ( L  e.  NN0  ->  ( ( A substr  <. M ,  if ( N  <_  L ,  N ,  L ) >. ) ++  ( B substr  <. if ( 0  <_  ( M  -  L ) ,  ( M  -  L ) ,  0 ) ,  ( N  -  L
) >. ) )  =  if ( N  <_  L ,  ( A substr  <. M ,  N >. ) ,  if ( L  <_  M ,  ( B substr  <. ( M  -  L ) ,  ( N  -  L )
>. ) ,  ( ( A substr  <. M ,  L >. ) ++  ( B substr  <. 0 ,  ( N  -  L ) >. )
) ) ) ) ) )
141140com13 83 . . . . . 6  |-  ( L  e.  NN0  ->  ( ( A  e. Word  V  /\  B  e. Word  V )  ->  ( ( M  e.  ( 0 ... N
)  /\  N  e.  ( 0 ... ( L  +  ( # `  B
) ) ) )  ->  ( ( A substr  <. M ,  if ( N  <_  L ,  N ,  L ) >. ) ++  ( B substr  <. if ( 0  <_  ( M  -  L ) ,  ( M  -  L ) ,  0 ) ,  ( N  -  L
) >. ) )  =  if ( N  <_  L ,  ( A substr  <. M ,  N >. ) ,  if ( L  <_  M ,  ( B substr  <. ( M  -  L ) ,  ( N  -  L )
>. ) ,  ( ( A substr  <. M ,  L >. ) ++  ( B substr  <. 0 ,  ( N  -  L ) >. )
) ) ) ) ) )
1427, 141sylbi 199 . . . . 5  |-  ( (
# `  A )  e.  NN0  ->  ( ( A  e. Word  V  /\  B  e. Word  V )  ->  (
( M  e.  ( 0 ... N )  /\  N  e.  ( 0 ... ( L  +  ( # `  B
) ) ) )  ->  ( ( A substr  <. M ,  if ( N  <_  L ,  N ,  L ) >. ) ++  ( B substr  <. if ( 0  <_  ( M  -  L ) ,  ( M  -  L ) ,  0 ) ,  ( N  -  L
) >. ) )  =  if ( N  <_  L ,  ( A substr  <. M ,  N >. ) ,  if ( L  <_  M ,  ( B substr  <. ( M  -  L ) ,  ( N  -  L )
>. ) ,  ( ( A substr  <. M ,  L >. ) ++  ( B substr  <. 0 ,  ( N  -  L ) >. )
) ) ) ) ) )
1435, 142mpcom 37 . . . 4  |-  ( ( A  e. Word  V  /\  B  e. Word  V )  ->  ( ( M  e.  ( 0 ... N
)  /\  N  e.  ( 0 ... ( L  +  ( # `  B
) ) ) )  ->  ( ( A substr  <. M ,  if ( N  <_  L ,  N ,  L ) >. ) ++  ( B substr  <. if ( 0  <_  ( M  -  L ) ,  ( M  -  L ) ,  0 ) ,  ( N  -  L
) >. ) )  =  if ( N  <_  L ,  ( A substr  <. M ,  N >. ) ,  if ( L  <_  M ,  ( B substr  <. ( M  -  L ) ,  ( N  -  L )
>. ) ,  ( ( A substr  <. M ,  L >. ) ++  ( B substr  <. 0 ,  ( N  -  L ) >. )
) ) ) ) )
144143imp 431 . . 3  |-  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  ( M  e.  ( 0 ... N
)  /\  N  e.  ( 0 ... ( L  +  ( # `  B
) ) ) ) )  ->  ( ( A substr  <. M ,  if ( N  <_  L ,  N ,  L ) >. ) ++  ( B substr  <. if ( 0  <_  ( M  -  L ) ,  ( M  -  L ) ,  0 ) ,  ( N  -  L
) >. ) )  =  if ( N  <_  L ,  ( A substr  <. M ,  N >. ) ,  if ( L  <_  M ,  ( B substr  <. ( M  -  L ) ,  ( N  -  L )
>. ) ,  ( ( A substr  <. M ,  L >. ) ++  ( B substr  <. 0 ,  ( N  -  L ) >. )
) ) ) )
1453, 144eqtr4d 2487 . 2  |-  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  ( M  e.  ( 0 ... N
)  /\  N  e.  ( 0 ... ( L  +  ( # `  B
) ) ) ) )  ->  ( ( A ++  B ) substr  <. M ,  N >. )  =  ( ( A substr  <. M ,  if ( N  <_  L ,  N ,  L )
>. ) ++  ( B substr  <. if ( 0  <_  ( M  -  L ) ,  ( M  -  L ) ,  0 ) ,  ( N  -  L ) >.
) ) )
146145ex 436 1  |-  ( ( A  e. Word  V  /\  B  e. Word  V )  ->  ( ( M  e.  ( 0 ... N
)  /\  N  e.  ( 0 ... ( L  +  ( # `  B
) ) ) )  ->  ( ( A ++  B ) substr  <. M ,  N >. )  =  ( ( A substr  <. M ,  if ( N  <_  L ,  N ,  L )
>. ) ++  ( B substr  <. if ( 0  <_  ( M  -  L ) ,  ( M  -  L ) ,  0 ) ,  ( N  -  L ) >.
) ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 188    /\ wa 371    /\ w3a 984    = wceq 1443    e. wcel 1886   (/)c0 3730   ifcif 3880   <.cop 3973   class class class wbr 4401   ` cfv 5581  (class class class)co 6288   RRcr 9535   0cc0 9536    + caddc 9539    <_ cle 9673    - cmin 9857   NN0cn0 10866   ZZcz 10934   ...cfz 11781   #chash 12512  Word cword 12653   ++ cconcat 12655   substr csubstr 12657
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1668  ax-4 1681  ax-5 1757  ax-6 1804  ax-7 1850  ax-8 1888  ax-9 1895  ax-10 1914  ax-11 1919  ax-12 1932  ax-13 2090  ax-ext 2430  ax-rep 4514  ax-sep 4524  ax-nul 4533  ax-pow 4580  ax-pr 4638  ax-un 6580  ax-cnex 9592  ax-resscn 9593  ax-1cn 9594  ax-icn 9595  ax-addcl 9596  ax-addrcl 9597  ax-mulcl 9598  ax-mulrcl 9599  ax-mulcom 9600  ax-addass 9601  ax-mulass 9602  ax-distr 9603  ax-i2m1 9604  ax-1ne0 9605  ax-1rid 9606  ax-rnegex 9607  ax-rrecex 9608  ax-cnre 9609  ax-pre-lttri 9610  ax-pre-lttrn 9611  ax-pre-ltadd 9612  ax-pre-mulgt0 9613
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3or 985  df-3an 986  df-tru 1446  df-ex 1663  df-nf 1667  df-sb 1797  df-eu 2302  df-mo 2303  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2580  df-ne 2623  df-nel 2624  df-ral 2741  df-rex 2742  df-reu 2743  df-rmo 2744  df-rab 2745  df-v 3046  df-sbc 3267  df-csb 3363  df-dif 3406  df-un 3408  df-in 3410  df-ss 3417  df-pss 3419  df-nul 3731  df-if 3881  df-pw 3952  df-sn 3968  df-pr 3970  df-tp 3972  df-op 3974  df-uni 4198  df-int 4234  df-iun 4279  df-br 4402  df-opab 4461  df-mpt 4462  df-tr 4497  df-eprel 4744  df-id 4748  df-po 4754  df-so 4755  df-fr 4792  df-we 4794  df-xp 4839  df-rel 4840  df-cnv 4841  df-co 4842  df-dm 4843  df-rn 4844  df-res 4845  df-ima 4846  df-pred 5379  df-ord 5425  df-on 5426  df-lim 5427  df-suc 5428  df-iota 5545  df-fun 5583  df-fn 5584  df-f 5585  df-f1 5586  df-fo 5587  df-f1o 5588  df-fv 5589  df-riota 6250  df-ov 6291  df-oprab 6292  df-mpt2 6293  df-om 6690  df-1st 6790  df-2nd 6791  df-wrecs 7025  df-recs 7087  df-rdg 7125  df-1o 7179  df-oadd 7183  df-er 7360  df-en 7567  df-dom 7568  df-sdom 7569  df-fin 7570  df-card 8370  df-cda 8595  df-pnf 9674  df-mnf 9675  df-xr 9676  df-ltxr 9677  df-le 9678  df-sub 9859  df-neg 9860  df-nn 10607  df-2 10665  df-n0 10867  df-z 10935  df-uz 11157  df-fz 11782  df-fzo 11913  df-hash 12513  df-word 12661  df-concat 12663  df-substr 12665
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator