MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  swrd00 Structured version   Unicode version

Theorem swrd00 12602
Description: A zero length substring. (Contributed by Stefan O'Rear, 27-Aug-2015.)
Assertion
Ref Expression
swrd00  |-  ( S substr  <. X ,  X >. )  =  (/)

Proof of Theorem swrd00
Dummy variables  s 
b  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opelxp 5028 . . . 4  |-  ( <. S ,  <. X ,  X >. >.  e.  ( _V 
X.  ( ZZ  X.  ZZ ) )  <->  ( S  e.  _V  /\  <. X ,  X >.  e.  ( ZZ 
X.  ZZ ) ) )
2 opelxp 5028 . . . . 5  |-  ( <. X ,  X >.  e.  ( ZZ  X.  ZZ ) 
<->  ( X  e.  ZZ  /\  X  e.  ZZ ) )
3 swrdval 12601 . . . . . . 7  |-  ( ( S  e.  _V  /\  X  e.  ZZ  /\  X  e.  ZZ )  ->  ( S substr  <. X ,  X >. )  =  if ( ( X..^ X ) 
C_  dom  S , 
( x  e.  ( 0..^ ( X  -  X ) )  |->  ( S `  ( x  +  X ) ) ) ,  (/) ) )
4 fzo0 11813 . . . . . . . . . 10  |-  ( X..^ X )  =  (/)
5 0ss 3814 . . . . . . . . . 10  |-  (/)  C_  dom  S
64, 5eqsstri 3534 . . . . . . . . 9  |-  ( X..^ X )  C_  dom  S
76iftruei 3946 . . . . . . . 8  |-  if ( ( X..^ X ) 
C_  dom  S , 
( x  e.  ( 0..^ ( X  -  X ) )  |->  ( S `  ( x  +  X ) ) ) ,  (/) )  =  ( x  e.  ( 0..^ ( X  -  X ) )  |->  ( S `  ( x  +  X ) ) )
8 zcn 10865 . . . . . . . . . . . . . 14  |-  ( X  e.  ZZ  ->  X  e.  CC )
98subidd 9914 . . . . . . . . . . . . 13  |-  ( X  e.  ZZ  ->  ( X  -  X )  =  0 )
109oveq2d 6298 . . . . . . . . . . . 12  |-  ( X  e.  ZZ  ->  (
0..^ ( X  -  X ) )  =  ( 0..^ 0 ) )
11103ad2ant2 1018 . . . . . . . . . . 11  |-  ( ( S  e.  _V  /\  X  e.  ZZ  /\  X  e.  ZZ )  ->  (
0..^ ( X  -  X ) )  =  ( 0..^ 0 ) )
12 fzo0 11813 . . . . . . . . . . 11  |-  ( 0..^ 0 )  =  (/)
1311, 12syl6eq 2524 . . . . . . . . . 10  |-  ( ( S  e.  _V  /\  X  e.  ZZ  /\  X  e.  ZZ )  ->  (
0..^ ( X  -  X ) )  =  (/) )
1413mpteq1d 4528 . . . . . . . . 9  |-  ( ( S  e.  _V  /\  X  e.  ZZ  /\  X  e.  ZZ )  ->  (
x  e.  ( 0..^ ( X  -  X
) )  |->  ( S `
 ( x  +  X ) ) )  =  ( x  e.  (/)  |->  ( S `  ( x  +  X
) ) ) )
15 mpt0 5706 . . . . . . . . 9  |-  ( x  e.  (/)  |->  ( S `  ( x  +  X
) ) )  =  (/)
1614, 15syl6eq 2524 . . . . . . . 8  |-  ( ( S  e.  _V  /\  X  e.  ZZ  /\  X  e.  ZZ )  ->  (
x  e.  ( 0..^ ( X  -  X
) )  |->  ( S `
 ( x  +  X ) ) )  =  (/) )
177, 16syl5eq 2520 . . . . . . 7  |-  ( ( S  e.  _V  /\  X  e.  ZZ  /\  X  e.  ZZ )  ->  if ( ( X..^ X
)  C_  dom  S , 
( x  e.  ( 0..^ ( X  -  X ) )  |->  ( S `  ( x  +  X ) ) ) ,  (/) )  =  (/) )
183, 17eqtrd 2508 . . . . . 6  |-  ( ( S  e.  _V  /\  X  e.  ZZ  /\  X  e.  ZZ )  ->  ( S substr  <. X ,  X >. )  =  (/) )
19183expb 1197 . . . . 5  |-  ( ( S  e.  _V  /\  ( X  e.  ZZ  /\  X  e.  ZZ ) )  ->  ( S substr  <. X ,  X >. )  =  (/) )
202, 19sylan2b 475 . . . 4  |-  ( ( S  e.  _V  /\  <. X ,  X >.  e.  ( ZZ  X.  ZZ ) )  ->  ( S substr  <. X ,  X >. )  =  (/) )
211, 20sylbi 195 . . 3  |-  ( <. S ,  <. X ,  X >. >.  e.  ( _V 
X.  ( ZZ  X.  ZZ ) )  ->  ( S substr  <. X ,  X >. )  =  (/) )
22 df-substr 12506 . . . 4  |- substr  =  ( s  e.  _V , 
b  e.  ( ZZ 
X.  ZZ )  |->  if ( ( ( 1st `  b )..^ ( 2nd `  b ) )  C_  dom  s ,  ( x  e.  ( 0..^ ( ( 2nd `  b
)  -  ( 1st `  b ) ) ) 
|->  ( s `  (
x  +  ( 1st `  b ) ) ) ) ,  (/) ) )
23 ovex 6307 . . . . . 6  |-  ( 0..^ ( ( 2nd `  b
)  -  ( 1st `  b ) ) )  e.  _V
2423mptex 6129 . . . . 5  |-  ( x  e.  ( 0..^ ( ( 2nd `  b
)  -  ( 1st `  b ) ) ) 
|->  ( s `  (
x  +  ( 1st `  b ) ) ) )  e.  _V
25 0ex 4577 . . . . 5  |-  (/)  e.  _V
2624, 25ifex 4008 . . . 4  |-  if ( ( ( 1st `  b
)..^ ( 2nd `  b
) )  C_  dom  s ,  ( x  e.  ( 0..^ ( ( 2nd `  b )  -  ( 1st `  b
) ) )  |->  ( s `  ( x  +  ( 1st `  b
) ) ) ) ,  (/) )  e.  _V
2722, 26dmmpt2 6851 . . 3  |-  dom substr  =  ( _V  X.  ( ZZ 
X.  ZZ ) )
2821, 27eleq2s 2575 . 2  |-  ( <. S ,  <. X ,  X >. >.  e.  dom substr  ->  ( S substr  <. X ,  X >. )  =  (/) )
29 df-ov 6285 . . 3  |-  ( S substr  <. X ,  X >. )  =  ( substr  `  <. S ,  <. X ,  X >. >. )
30 ndmfv 5888 . . 3  |-  ( -. 
<. S ,  <. X ,  X >. >.  e.  dom substr  ->  ( substr  ` 
<. S ,  <. X ,  X >. >. )  =  (/) )
3129, 30syl5eq 2520 . 2  |-  ( -. 
<. S ,  <. X ,  X >. >.  e.  dom substr  ->  ( S substr  <. X ,  X >. )  =  (/) )
3228, 31pm2.61i 164 1  |-  ( S substr  <. X ,  X >. )  =  (/)
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    /\ wa 369    /\ w3a 973    = wceq 1379    e. wcel 1767   _Vcvv 3113    C_ wss 3476   (/)c0 3785   ifcif 3939   <.cop 4033    |-> cmpt 4505    X. cxp 4997   dom cdm 4999   ` cfv 5586  (class class class)co 6282   1stc1st 6779   2ndc2nd 6780   0cc0 9488    + caddc 9491    - cmin 9801   ZZcz 10860  ..^cfzo 11788   substr csubstr 12498
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6574  ax-cnex 9544  ax-resscn 9545  ax-1cn 9546  ax-icn 9547  ax-addcl 9548  ax-addrcl 9549  ax-mulcl 9550  ax-mulrcl 9551  ax-mulcom 9552  ax-addass 9553  ax-mulass 9554  ax-distr 9555  ax-i2m1 9556  ax-1ne0 9557  ax-1rid 9558  ax-rnegex 9559  ax-rrecex 9560  ax-cnre 9561  ax-pre-lttri 9562  ax-pre-lttrn 9563  ax-pre-ltadd 9564  ax-pre-mulgt0 9565
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5549  df-fun 5588  df-fn 5589  df-f 5590  df-f1 5591  df-fo 5592  df-f1o 5593  df-fv 5594  df-riota 6243  df-ov 6285  df-oprab 6286  df-mpt2 6287  df-om 6679  df-1st 6781  df-2nd 6782  df-recs 7039  df-rdg 7073  df-er 7308  df-en 7514  df-dom 7515  df-sdom 7516  df-pnf 9626  df-mnf 9627  df-xr 9628  df-ltxr 9629  df-le 9630  df-sub 9803  df-neg 9804  df-nn 10533  df-n0 10792  df-z 10861  df-uz 11079  df-fz 11669  df-fzo 11789  df-substr 12506
This theorem is referenced by:  swrdccatin1  12665  swrdccat3blem  12677  cshw0  12722
  Copyright terms: Public domain W3C validator